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Ivo Terek

Fix a smooth manifold M. Let’s start recalling one general fact about connections:

Proposition. Let E → M be a vector bundle equipped with an affine connection ∇∗, and A
be a End(E)-valued 1-form. Set ∇ .

= ∇∗ + A. Then:

(a) ∇ is also an affine connection on E and, conversely, every affine connection on E is of this
form, for some A.

(b) the relation between the curvature tensors of ∇∗ and ∇ (as in the above item) is

R∇ = R∇
∗
+ d∇

∗
A +

1
2
[A, A],

where d∇
∗

is the covariant exterior derivative acting on bundle-valued forms, induced by
∇∗, and [·, ·] is the “wedge product” on End(E)-valued forms induced by the commutator
of bundle morphisms as underlying operation.

(c) When E = TM, the relation between the torsion tensors is

τ∇(X, Y) = τ∇
∗
(X, Y) + AXY − AY X,

and if g is a pseudo-Riemannian metric on M, then we have

(∇Xg)(Y , Z) = (∇∗Xg)(Y , Z) + g(AXY , Z) + g(Y , AX Z),

for all X, Y , Z ∈ X(M).

Remark. Item (c) says that adding a symmetric A to the connection∇∗ does not affect
its torsion, and thus the only way to make ∇ torsion-free is by choosing A = −τ∇

∗
/2

(plus something symmetric). Moreover, if ∇∗ parallelizes g, then ∇ will parallelize g

as well if and only if AX is g-skew-adjoint for all X ∈ X(M).

Proof: For now, an exercise.

Now, let g be a curve of pseudo-Riemannian metrics on M. The velocity vectors g
.

of this curve are all symmetric (0, 2)-tensor fields. For each instant of time, the corre-
sponding g has a Levi-Civita connection∇, and the velocity

.
∇ of this curve of connec-

tions consists of symmetric (1, 2)-tensor fields (this is exactly what τ
.
= 0 means, where

τ is the torsion of g). The metric compatibility of the Levi-Civita connections, in turn,
is slightly less straightforward to translate into a property of

.
∇.
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Lemma. (∇Xg
.
)(Y , Z) = g(

.
∇XY , Z) + g(X,

.
∇X Z).

Proof: Apply dot on both sides of Xg(Y , Z) = g(∇XY , Z) + g(Y ,∇X Z) to get that

Xg
.
(Y , Z) = g

.
(∇XY , Z) + g

.
(Y ,∇X Z) + g(

.
∇XY , Z) + g(Y ,

.
∇X Z).

Now use that Xg
.
(Y , Z) = (∇Xg

.
)(Y , Z) + g

.
(∇XY , Z) + g

.
(Y ,∇X Z) and cancel every-

thing possible with g
..

With this in place, we can actually compute what
.
∇ is.

Proposition. 2g(
.
∇XY , Z) = (∇Xg

.
)(Y , Z) + (∇Yg

.
)(X, Z)− (∇Zg

.
)(X, Y).

Proof: Apply dot on both sides of the Koszul formula

2g(∇XY , Z) = (LYg)(X, Z) + d(Y [)(X, Z)

to get
2g.(∇XY , Z) + 2g(

.
∇XY , Z) = (LYg

.
)(X, Z) + d(Y [̇)(X, Z),

where Y [ = g(Y , ·) and Y [̇ = g
.
(Y , ·). A short computation expanding the definitions

on the right side and using symmetry of
.
∇ to gather terms, together with the previous

lemma, leads to the result.

Next stop, curvature. Each Levi-Civita connection ∇ has its own curvature tensor
R, and what is the velocity R

.
of the curve of curvature tensors? For this, it helps to

recall that the space of linear connections is an affine space, with translation vector
space consisting of type (1, 2)-tensor fields. This means that if we fix a “reference”
connection ∇∗ (which may be arbitrary, and even one connection in the curve ∇), we
may write ∇ = ∇∗ + A, where A is a curve of type (1, 2)-tensor fields with A

.
=

.
∇.

Proposition. R
.
= d∇

.
∇.

Proof: Apply dot on both sides of curvature relation

R = R∗ + d∇
∗
A +

1
2
[A, A],

bearing in mind that [A,
.
∇] = [

.
∇, A], to obtain R

.
= d∇

∗ .
∇+ [A,

.
∇] = d∇

.
∇. The last

equality follows from a straightforward computation.

For the Ricci curvature, a general lemma comes in handy:

Lemma. If S is a End(TM)-valued 1-form and tr1
1 stands for the trace taken relative to the

first upper and lower indices of S (relative to some coordinate system – this is invariant), then

tr(X 7→ (d∇S)(X, Y)Z) = div(S)(Y , Z)− (∇Y tr1
1(S))Z.

Note that tr1
1(S) is a bona fide 1-form on M.
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Proof: By definition of d∇S, the components of such trace evaluated at (∂j, ∂k) are just
given by (d∇S)i

ijk = Si
jk;i − Si

ik;j = div(S)jk − tr1
1(S)k;j, as required.

Corollary. Ric
.

= div(
.
∇)−∇tr1

1(
.
∇).

Proof: The previous lemma applies to the expression R
.
= d∇

.
∇, as time derivative

commutes with traces.

As for the scalar curvature, the expression s = tr gRic is slightly more complicated
to deal with, as the time-dependence appears both on g and Ric. One convenient
notation device to proceed will be to consider the fiber metric 〈·, ·〉 induced by g on
tensor bundles over TM. In particular, if h is any type (0, 2)-tensor field on M, we
have that 〈g, h〉 = trgh.

Lemma. Let S be an End(TM)-valued 1-form, and α be a 1-form on M. If tr 1,2 stands for the
g-trace on the lower two indices of S (relative to the vector field arguments – so that tr1,2(S) is
a vector field on M), then:

(i) 〈g, div(S)〉 = div(tr1,2(S)).

(ii) 〈g,∇α〉 = div(α]).

Proof: Locally:

(i) 〈g, div(S)〉 = gijSk
ij;k = (gijSk

ij);k = tr1,2(S)k
;k = div(tr1,2(S)).

(ii) 〈g,∇α〉 = gijαi;j = (gijαi);j = α
j
;j = div(α]).

Proposition. s
.
= −〈g., Ric〉+ div(tr 1,2

.
∇)− div((tr1

1(
.
∇)])

Proof: Apply dot on both sides of s = 〈g, Ric〉 to get

s
.
= −〈g., Ric〉+ 〈g, Ric

.
〉

= −〈g., Ric
.
〉+ 〈g, div(

.
∇)−∇tr1

1(
.
∇)〉

= −〈g., Ric〉+ div(tr 1,2
.
∇)− div((tr1

1(
.
∇)]).

Remark. The negative sign in 〈g., Ric〉 requires an explanation. Very briefly, it is be-
cause the time-dependence of 〈g, Ric〉 appears not only on g and Ric, but also on 〈·, ·〉
itself, so that the formula for the derivative dιA(H) = −A−1HA−1 of the inversion
map ι on any Lie group (here taken to be GL(n, R), once we pass to coordinates) ap-
plies.

To apply what was established so far in a more interesting situation, we will also
need to know the time evolution of the volume forms νg.
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Proposition. (νg)· =
trgg

.

2
νg

Proof: A local computation, using that d(det)A(H) = det(A)tr(A−1H), for all matri-
ces A ∈ GL(n, R) and H ∈ gl(n, R), together with the chain rule. We have that(

|det g|1/2
)·

=
1

2|det g|1/2 |det g| tr(g−1g
.
) =

trgg
.

2
|det g|1/2,

and the result follows from multiplying both sides by dx1 ∧ · · · ∧ dxn (and bringing it
inside the time derivative on the left side).

The Einstein-Hilbert functional

Assume that M is compact. For each pseudo-Riemannian metric g on M, write

E[g]
.
=
∫

M
s[g] νg,

where s[g] stands for the scalar curvature of g. This functional E defined above is
called the Einstein-Hilbert functional on M. If φ : M → M is any diffeomorphism, it
holds that E[φ∗g] = E[g], so that Emay be thought of as being defined on the moduli
space of pseudo-Riemannian metrics on M. Let’s compute the first variation of E, by
letting g depend on time and applying what was done in the previous section. We
now go back to writing s for s[g].

dEg(g
.
) =

∫
M
(s
.
νg + s(νg)·)

=
∫

M

(
−〈g., Ric〉+ div(tr1,2(

.
∇)− tr1

1(
.
∇)]) + s

2
〈g., g〉

)
νg

= −
∫

M

〈
g
., Ric− s

2
g
〉

νg,

where in the last step we have used Stokes’ theorem to get rid of the divergence terms.
This means that g is a critical point of E if and only if

Ric− sg
2

= 0,

which is equivalent to Ric = 0, provided that n = dim M > 2.
The situation becomes more interesting if we consider restrictions of E. To motivate

one such restriction, note that E is not scale-invariant. For instance, take a constant
λ > 0 and consider the metric λg. The Levi-Civita connection remains unchanged
under homotheties, and hence so does the type (1, 3) curvature tensor, as well as the
Ricci tensor, leading to s[λg] = λ−1s[g]. A coordinate computation also shows that the
relation between volume forms is νλg = λn/2νg. Thus

E[λg] =
∫

M
s[λg]νλg =

∫
M

λ−1s[g]λn/2νg = λ(n−2)/2E[g].
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How does one rescale E to a new functional, say, Ê, which is scale-invariant? The idea
is to use the volume functional, obviously defined by

V[g] =
∫

M
νg.

Just like E, V is a Riemannian functional, in the sense that if φ : M → M is a diffeomor-
phism, then V[φ∗g] = V[g]. However, it is now easy to see that V[λg] = λn/2 V[g] for
all λ > 0. Write Ê[g] = E[g]/V[g]p, where the power p is to be found. We have that

Ê[λg] = Ê[g] =⇒ E[λg]

V[λg]p
=

E[g]

V[g]p
=⇒ λ(n−2)/2E[g]

λnp/2V[g]p
=

E[g]

V[g]p

Arbitrariety of g allows us to cancel Eand Veverywhere, and use λ0 = 1 to conclude
that

n− 2
2

=
np
2

=⇒ p =
n− 2

n
.

In short, we conclude that the following are equivalent:

(i) g is a critical point of the functional Êgiven by Ê[g] =
E[g]

V[g](n−2)/n
;

(ii) g is a critical point of the restriction of the functional E to the space of metrics for
which V[g] is a constant (which, without loss of generality, we’ll take to be 1).

Option (ii) is more fruitful to pursue, as we have one last technique up our sleeve:
Lagrange multipliers. Since we clearly have that

dVg(g
.
) =

1
2

∫
M
〈g., g〉 νg,

we conclude that critical points of E subject to V[g] = 1 must satisfy∫
M

〈
g
.,−Ric +

s
2
g− λg

〉
νg = 0, for all g.,

where λ ∈ R is a Lagrange multiplier. However, the condition

−Ric +
s
2
g− λg = 0

is equivalent to g being an Einstein metric. We have proved the:

Theorem. The critical points of the Einstein-Hilbert functional on a compact manifold are
Ricci-flat metrics. When restricting this functional to the space of unit volume metrics, the
critical points are Einstein metrics.

Page 5


