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Fix a smooth manifold M. Let’s start recalling one general fact about connections:

Proposition. Let E — M be a vector bundle equipped with an affine connection V*, and A
be a End(E)-valued 1-form. Set V = V* + A. Then:

(a) V is also an affine connection on E and, conversely, every affine connection on E is of this
form, for some A.

(b) the relation between the curvature tensors of V* and V (as in the above item) is

RV =RV +dV A+ %[A,A],

where AV is the covariant exterior derivative acting on bundle-valued forms, induced by
V*, and |-, -] is the “wedge product” on End (E)-valued forms induced by the commutator
of bundle morphisms as underlying operation.

(c) When E = TM, the relation between the torsion tensors is
™V(X,Y)=1" (X,Y) + AxY — AyX,
and if g is a pseudo-Riemannian metric on M, then we have
(Vxe)(Y,Z) = (Vxg)(Y,Z) + g(AxY, Z) +g(Y, AxZ),
forall X,Y,Z € X(M).

Remark. Item (c) says that adding a symmetric A to the connection V* does not affect
its torsion, and thus the only way to make V torsion-free is by choosing A = —tV" /2
(plus something symmetric). Moreover, if V* parallelizes g, then V will parallelize g
as well if and only if Ay is g-skew-adjoint for all X € X(M).

Proof: For now, an exercise. L]
Now, let g be a curve of pseudo-Riemannian metrics on M. The velocity vectors g

of this curve are all symmetric (0,2)-tensor fields. For each instant of time, the corre-

sponding g has a Levi-Civita connection V, and the velocity V of this curve of connec-
tions consists of symmetric (1,2)-tensor fields (this is exactly what T = 0 means, where
T is the torsion of g). The metric compatibility of the Levi-Civita connections, in turn,

is slightly less straightforward to translate into a property of V.
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Lemma. (Vxg)(Y,Z) = g(VxY,Z) 4+ g(X, VxZ).
Proof: Apply dot on both sides of Xg(Y,Z) = g(VxY,Z) +g(Y, VxZ) to get that

Xs(Y,Z) =g(VxY,Z)+g(Y,VxZ) + g(VxY,Z) + g(Y,VxZ).

Now use that Xg(Y,Z) = (Vxg)(Y,Z) +g(VxY,Z) + g(¥Y, VxZ) and cancel every-
thing possible with g. O

With this in place, we can actually compute what V is.

Proposition. 2g(VxY,Z) = (Vxg)(Y,Z) + (Vyg)(X, Z) — (Vz&)(X, Y).
Proof: Apply dot on both sides of the Koszul formula
2g(VxY,Z) = (%vg)(X, Z) +d(Y;)(X, Z)
to get .
26(VxY, Z) +2g(VxY, Z) = (Zy§)(X, Z) +d(¥})(X, Z),

where Y, = g(¥,-) and Y; = g(Y,-). A short computation expanding the definitions

on the right side and using symmetry of V to gather terms, together with the previous
lemma, leads to the result. O

Next stop, curvature. Each Levi-Civita connection V has its own curvature tensor

R, and what is the velocity R of the curve of curvature tensors? For this, it helps to
recall that the space of linear connections is an affine space, with translation vector
space consisting of type (1,2)-tensor fields. This means that if we fix a “reference”
connection V* (which may be arbitrary, and even one connection in the curve V) we

may write V = V* 4+ A, where A is a curve of type (1,2)-tensor fields with A=V.
Proposition. R=d"V.

Proof: Apply dot on both sides of curvature relation
R=R*"+dV A+ %[A, A],

bearing in mind that [A, V] = [V, A], to obtain R = dV'V + [A, V] = dVV. The last
equality follows from a straightforward computation. O

For the Ricci curvature, a general lemma comes in handy:

Lemma. If S is a End(TM)-valued 1-form and tr} stands for the trace taken relative to the
first upper and lower indices of S (relative to some coordinate system — this is invariant), then

tr(X — (dVS)(X,Y)Z) = div(S)(Y, Z) — (Vytri(S))Z.

Note that tr}(S) is a bona fide 1-form on M.
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Proof: By definition of dV'S, the components of such trace evaluated at (0, 0) are just

given by (dVS);:jk =S —Si

ki — Sty = div(S)jx — tr} (S);, as required. 0

Corollary. Ric = div(V) — Vtr%(v).

Proof: The previous lemma applies to the expression R = dV V, as time derivative
commutes with traces. O

As for the scalar curvature, the expression s = tr gRic is slightly more complicated
to deal with, as the time-dependence appears both on g and Ric. One convenient
notation device to proceed will be to consider the fiber metric (-, -) induced by g on
tensor bundles over TM. In particular, if & is any type (0,2)-tensor field on M, we
have that (g, 1) = trgh.

Lemma. Let S be an End(TM)-valued 1-form, and « be a 1-form on M. If tr 1 , stands for the
g-trace on the lower two indices of S (relative to the vector field arquments — so that try 5(S) is
a vector field on M), then:

(i) (g div(S)) = div(tr12(S)).
(ii) (g, Va) = div(a?).

Proof: Locally:
(i) (g div(S)) = g8l = (87Sf)x = tr12(5) = div(tr12(S)).

(ii) (g Va) = gl = (ga;); = o, = div(a?).

[
Proposition. § = — (g, Ric) + div(tr1,V) — div((tr%(V)ﬁ)
Proof: Apply dot on both sides of s = (g, Ric) to get
§ = — (g, Ric) + (g, Ric)
= — (g Ric) + (g div(V) — Vir{(V))
= — (g Ric) + div(tr1,V) — div((tr] (V).
[

Remark. The negative sign in (g, Ric) requires an explanation. Very briefly, it is be-
cause the time-dependence of (g, Ric) appears not only on g and Ric, but also on (-, -)
itself, so that the formula for the derivative diy(H) = —A~'HA~! of the inversion
map ¢ on any Lie group (here taken to be GL(#,R), once we pass to coordinates) ap-
plies.

To apply what was established so far in a more interesting situation, we will also
need to know the time evolution of the volume forms Vg.
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treg

o v

Proof: A local computation, using that d(det) 4(H) = det(A)tr(A~1H), for all matri-
ces A € GL(n,R) and H € gl(n,R), together with the chain rule. We have that

(|detg|1/2). =

Proposition. (v)" =

1 1. treg

= _|detelt 1g) = Z8% |detg|1/2,

2|detg|1/2| etg|tr(g™ g) = —~ |detg]

and the result follows from multiplying both sides by dx! A - - - A dx” (and bringing it
inside the time derivative on the left side). Il

The Einstein-Hilbert functional

Assume that M is compact. For each pseudo-Riemannian metric g on M, write

elg) = | slglvs

where s[g] stands for the scalar curvature of g. This functional € defined above is
called the Einstein-Hilbert functional on M. If ¢: M — M is any diffeomorphism, it
holds that €[¢*g] = 6[g], so that € may be thought of as being defined on the moduli
space of pseudo-Riemannian metrics on M. Let’s compute the first variation of §, by
letting g depend on time and applying what was done in the previous section. We
now go back to writing s for s|g].

d8,(3) = / (v +5(vg))

= / g, RIC —|— le(tI‘l z(V) — tr%(v)ﬁ) + §<g/ g>> Vg

_/ <g,R1c ;g>vg,

where in the last step we have used Stokes’ theorem to get rid of the divergence terms.
This means that g is a critical point of € if and only if
. sg
Ric 5 = =0,
which is equivalent to Ric = 0, provided that n = dim M > 2.

The situation becomes more interesting if we consider restrictions of €. To motivate
one such restriction, note that € is not scale-invariant. For instance, take a constant
A > 0 and consider the metric Ag. The Levi-Civita connection remains unchanged
under homotheties, and hence so does the type (1,3) curvature tensor, as well as the
Ricci tensor, leading to s[Ag] = A~!s[g]. A coordinate computation also shows that the
relation between volume forms is v, = A/ zvg. Thus

8lAg] = /MS[Ag]VAg = /M A Ts[g]A" 2vg = A2/ 2g g,

Page 4



TIME EVOLUTION OF RIEMANNIAN OBJECTS AND APPLICATIONS Ivo Terek

How does one rescale € to a new functional, say, €, which is scale-invariant? The idea
is to use the volume functional, obviously defined by

Vel = | ve

Just like €, V' is a Riemannian functional, in the sense that if ¢: M — M is a diffeomor-
phism, then % [¢*g] = ¥ [g]. However, it is now easy to see that ¥/ [A\g] = A"/2% [g] for
all A > 0. Write 8[g] = 8[g] /¥ [g]”, where the power p is to be found. We have that

A A €[Ag] €[g] A1=2)/2¢]g] €lg]
€[\g] =€[g] = W[Agp :oy[;]i’ — /\”P/ZW[g];g” :c[/[gg_]p

Arbitrariety of g allows us to cancel € and ¥ everywhere, and use A’ = 1 to conclude
that

-
2 2 P=
In short, we conclude that the following are equivalent:

n—2 np n—2

€[g]

(i) gis a critical point of the functional € given by €[g] = W ;

(ii) gis a critical point of the restriction of the functional € to the space of metrics for
which 7 [g] is a constant (which, without loss of generality, we'll take to be 1).

Option (ii) is more fruitful to pursue, as we have one last technique up our sleeve:
Lagrange multipliers. Since we clearly have that

A& = 5 [ {68 ve

we conclude that critical points of € subject to ¥’ [¢] = 1 must satisfy

/ <g', —Ric+ og — Ag> vy =0, forallg,
M 2
where A € R is a Lagrange multiplier. However, the condition

—Ric+§g—Ag=o

is equivalent to g being an Einstein metric. We have proved the:

Theorem. The critical points of the Einstein-Hilbert functional on a compact manifold are
Ricci-flat metrics. When restricting this functional to the space of unit volume metrics, the
critical points are Einstein metrics.
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