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Fix once and for all a real pseudo-Euclidean vector space (V,g) with indefinite
signature, i.e., g is not positive-definite nor negative-negative. This means that if the
signature of g is (iy,i_), we have iy, i_ > 1. We'll also write g = (-,-) whenever
convenient. Let € = {x € V\ {0} | (x,x) = 0} denote the lightcone of (V,g). On
@6, define a equivalence relation ~ by saying that u ~ v if v = Au for some non-zero
A € R, and consider the quotient E = €/.. Equivalently, E is the quotient of 6
under the linear action R* O 6 given by multiplication. Geometrically, E is the set
of all lightrays in (V, g), and it is called the Einstein manifold. This name is a historical
accident, and is unrelated to the notion of an Einstein manifold, where the Ricci tensor
is a constant multiple of the metric. The quotient projection 77: € — [E defines a
principal R*-bundle. Indeed, the action R* O 6 is free and the (enriched) action map
€ x R* — 6 x 6 is closed. Now, given L € [E, we may choose a non-zero u € L and
consider the derivative d7,: T,€ = u+ — T;E. The vertical spaces are the kernels
kerdrt, = Ru, which establishes that T; E = ut/Ru = L+ /L.

These identifications allow us to try and transfer geometric structures from (V, g)
or 6 to E, but the problem is that the isomorphism T, E = L1 /L is not natural, and
depends on a choice of non-zero vector u € L. Since the vector u is lightlike, the
scalar product g passes to the quotient TrE = u*/Ru as a scalar product g, and
has signature (p,q), where iy = p+1and i = g+ 1 (indeed, the degenerate met-
ric signature of the lightlike hyperplane u is (i — 1,i- —1,1), and modding out
Ru eliminates the degenerate dimension). However, this does not mean we have de-
tined a pseudo-Riemannian metric on E, as we'll see later that it is impossible to make
consistent choice of u’s for each L unless g has Lorentzian (or anti-Lorentzian) sig-
nature. To understand better what happens, consider a non-zero A € R, and let’s
show that g,, = A%gy on TLE. To wit: gy is the only scalar product in T;E for which
(dmy)*(gu) = g butif my: V — V is the multiplication by A, we have that mom) = 7,
leading to d7ty, o m) = drmy, so that

g = (d7mu)"(gu) = (dmyu 0 ma) " (gu) = (mp)*(d7mau)*(gu) = (d7mau) " (A%g0)-

But g = (dmy,)*(gry) as well, and (drry,)* is injective (because 7t is a submersion),
and thus g, = A%g,, as required. This means that we have defined a field of pointwise
conformal structures (i.e., inner products up to a positive scalar factor in each T} E)
on [E, and “smoothness” follows from the fact that 77: € — [E admits smooth local
sections: if ¢; and ¢, are two smooth local sections of 77, then we may write 1, = Ay,
with some local smooth function A, and the above says that on their common domain,
the conformal factor A? between the local pseudo-Riemannian metrics induced by 1,
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and ¢, is smooth. Of course, one may glue local representatives via partitions of unity
to obtain a global representative of the smooth conformal structure ¢ so defined.

Moving on, instead of considering the equivalence relation ~ previously defined,
one can define on € a second relation ~ by saying that x ~ y if y = Ax for some
positive A € R+. The quotient [E = 6/ is the set of all lightlike half-lines in (V, g).
Equivalently, E is the quotient of € under the linear action R~¢ ¢ € given by mul-
tiplication. The projection 77: € — [E defines a principal R~¢-bundle and everything
claimed for IE remains true for E as well. In particular, the identity map € — € in-
duces a two-fold covering map E — IE, which takes a lightlike half-line to the lightray
it spans. With this in place, to understand E it suffices to understand E, and for this
we’ll take an orthogonal decomposition V' = V. @ V_, where the restriction of g to
V. is positive-definite and to V_ is negative-definite (and hence dim V3. = iy). The
obvious map

X_

E 5 Rogx <X—+—) €SP x &
[P | |

is a diffeomorphism, with inverse
SP xST5 (uy,u_) > Rog(uy +u_) €E,

where 57 is the unit sphere of V. and 57 is the unit sphere of V_ (it is equipped with
the induced negative-definite round metric). Note that here we cannot replace E with
E, as the tentative map [E — SF x 57 would not be well-defined. However, on the
other direction, the sum map S” x 57 — V is an isometric immersion, which happens
to take values in € — and composing with 71, we obtain a two-fold covering map
SP x 89 — [E. The non-trivial deck transformation (u,,u_) +— (—uy,—u_) is an
isometry, so the metric in 57 x 51 passes to the quotient, giving a global representative
of €. Since the sectional curvatures of S” and 57 are constant and opposites, it follows
that S” x 57 is conformally flat (and hence the conformal structure ¢ on [E is flat). Now,
let’s conclude the discussion with two remarks regarding the Lorentz case.

* The bundle 7r: ‘€ — E is trivial if and only if g is Lorentzian or anti-Lorentzian.
Say that g is Lorentzian and write, with the above notation, V_ = Rw for a unit
timelike vector w € V, so that € 5 x — (Rx, (x,w)) € E x R* is a global trivial-
ization of 7r. Conversely, assume that g is not Lorentzian or anti-Lorentzian, but
that 77 defines a trivial bundle: since it is a line bundle, it is orientable, meaning
that if we choose a null plane Il C V, the orientation of € induces an orientation
of the tautological line bundle of the projective line PI1, which is a contradiction
(the total space of such tautological bundle is a Mdbius strip).

¢ Thebundle S? x 59 — E is trivial if and only if g is Lorentzian or anti-Lorentzian.
This happens since the total space of two-fold covering map over a connected
base space is disconnected if and only if the covering map is a trivial Z,-bundle,
and 5P x 51 is disconnected if and only if p = 0 (g is anti-Lorentzian) or g = 0 (g
is Lorentzian).
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