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We start with a question: what do Differential Geometry, Algebraic Topol-
ogy, General Relativity and Quantum Mechanics have in common? Among other
things, all of them employ as tools certain objects called tensors.

Be it to define the curvature of pseudo-Riemannian manifolds, to state certain
results regarding the homology of CW-complexes (such as the Künneth formula),
to understand the celebrated Einstein’s field equations, or to describe the state
space of a composite quantum system, tensors will be there.

The goal of this text is to present a fast and basic introductions to tensors, min-
imizing the number of pre-requisites: for a good understanding of what’s about to
be done here, it is recommended a basic familiarity with the concepts of dual space
and dual basis, perhaps seen in a second Linear Algebra course. Moreover, we ex-
pect a certain “mathematical maturity” of the reader (which you probably already
have, if decided to study this topic seriously).

We start Section 1 defining tensors in vector spaces as certain multilinear maps.
We exhibit bases for tensor spaces by using a basis of the initial domain space,
and we also introduce Einstein’s summation convention (hopefully at the right
moment, to avoid bigger traumas).

In Section 2, we’ll see how to use a non-degenerate inner product to identify a
vector space with its dual in a natural way, via the so-called musical isomorphisms.
In particular, we’ll see how to use them to identify tensors of different types: such
identifications, expressed in terms of a basis, are nothing more than the famous
process of raising and lowering indices.

We will conclude the discussion in Section 3, where we briefly present an al-
gebraic approach to tensor products, to be characterized by a so-called universal
property; we also relate such approach with what was done in the previous two
sections.

Along the text you will encounter a few exercises, whose simple purpose is
help you lose the fear of tensors, and also to help you clarify some issues which
require your active participation (yes, get pen and paper).

Remark.

• The following short summary, as the numbers of theorems, propositions and
exercises mentioned all have hyperlinks, so that you can navigate through
the .pdf file by clicking on them. · ·^

*terekcouto.1@osu.edu
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• The diagrams in Section 3 were produced with the software xfig.

Contents

1 Multilinear maps 3

2 And what about when we have a scalar product? 15

3 The universal property 26

Are you ready? Let’s begin.
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1 Multilinear maps

Fix, once and for all, a finite-dimensional real vector space V, its dual space
V∗ .

= { f : V → R | f is linear}, and denote by Lin(V) the space of all linear
operators1 of V. For integers r, s ≥ 1, denote (V∗)r .

= V∗ × · · · ×V∗ (r times) and
also Vs .

= V × · · · ×V (s times).

Definition 1.1. A tensor of type (r, s) on V is a multilinear map T : (V∗)r ×Vs → R.
The set of tensors of type (r, s) on V will be denoted by Tr

s(V).

Remark.

• We’ll also say that T ∈ Tr
s(V) is r times contravariant and s times covariant.

The number r + s is called the rank or order of T. With operations defined
pointwise2, Tr

s(V) becomes a vector space.

• Note that T1
0(V) = V∗∗ ∼= V and that T0

1(V) = V∗. Recall that the identifi-
cation between V and V∗∗ is given by V 3 v 7→ v̂ ∈ V∗∗, where v̂ is defined
by v̂( f ) .

= f (v). The reasoning behind such definition of v̂ is simple: given
only v ∈ V and f ∈ V∗, there is only one reasonable way to produce a real
number.

Exercise 1.1. Show that V 3 v 7→ v̂ ∈ V∗∗ is indeed a linear isomorphism, in
case this is new for you.

Suggestion. Don’t forget to start verifying that for each v ∈ V, v̂ is indeed
an element of V∗∗ (this ensures that the codomain of our isomorphism will
be V∗∗).

We are thus justified in calling linear functionals covectors. Also, we set the
convention T0

0(V) = R.

• Sometimes we may encounter multilinear maps whose domains mix the or-
der between the V∗ and V factors. For example

T : V × (V∗)3 ×V2 ×V∗ → R,

and the set of all multilinear maps with such domain will be denoted by
T3 1

1 2 (V); contravariant indices above, and covariant indices below. Let’s call
those domains scrambled.

Example 1.2.

(1) The evaluation map δ : V∗ × V → R defined by δ( f , v) .
= f (v); We then have

δ ∈ T1
1(V).

1Linear transformations from V to itself.
2That is, (T + S)(v) .

= T(v) + S(v) and (λT)(v) .
= λT(v).
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(2) Given linear operators T, S ∈ Lin(V) and B ∈ T0
2(V), the (T, S)-pull-back of

B, (T, S)∗B : V × V → R is defined by (T, S)∗B(v, w)
.
= B(Tv, Sw); Then

(T, S)∗B ∈ T0
2(V).

(3) The determinant det : (Rn)n → R, which takes n vectors and gives as output
the determinant of the matrix obtained by placing all vectors in columns; Then
det ∈ T0

n(R
n).

(4) The trace tr : Mat(n, R) → R, which maps a matrix to its trace; We then have
tr ∈ T0

1
(
Mat(n, R)

)
.

(5) Given f , g ∈ V∗, the tensor product of f and g, denoted f ⊗ g : V × V → R, is
defined by ( f ⊗ g)(v, w)

.
= f (v)g(w); Then f ⊗ g ∈ T0

2(V).

(6) Given a vector v ∈ V and a covector f ∈ V∗, the tensor product of v and f ,
denoted v⊗ f : V∗ × V → R, is defined by (v⊗ f )(g, w)

.
= g(v) f (w); Then

v⊗ f ∈ T1
1(V).

Exercise 1.2. Make sure you understand that the examples above really are tensors.

In the literature, tensors are also described as “n-dimensional arrays of num-
bers”, that is, a sort of generalization of matrices. Let’s see how this idea is born:

Definition 1.3. Let B = (ei)
n
i=1 and B∗ = (ei)n

i=1 be dual bases for V and V∗. If
T ∈ Tr

s(V), the components of T relative to B are the numbers defined by

Ti1...ir
j1...js

.
= T(ei1 , . . . , eir , ej1 , . . . , ejs),

for all 1 ≤ i1, . . . , ir, j1, . . . , js ≤ n.

Remark.

• We will never consider bases of V and V∗ which are not dual, when comput-
ing the components of a given tensor. This is why we say that the compo-
nents of T are expressed relatively to B, without mentioning B∗ (which is in
fact determined by B). Thus:

Throughout the text, every time a basis B= (ei)
n
i=1 of V is declared,

assume also given the dual basis B∗ = (ei)n
i=1, with this notation.

• For a tensor with scrambled domain, such as T ∈ T2 1
3 (V), we’ll write its

components as Ti1i2 i3
j1 j2 j3

.
= T(ei1 , ei2 , ej1 , ej2 , ej3 , ei3). Keeping track of the

spaces between indices will be important when we start raising and lowering
indices in the next section, so we might as well start now.
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Example 1.4.

(1) Let δ be like in Example 1.2 (p. 3), and B = (ei)
n
i=1 be a basis for V. Thus, by

definition, we have

δi
j = δ(ei, ej) = ei(ej) =

{
1, if i = j,
0, if i 6= j.

The tensor δ is then called the Kronecker delta. Its components receive the same
name, for simplicity.

(2) Consider det ∈ T0
n(R

n). If B= (ei)
n
i=1 is a positive and orthonormal basis of

Rn (equipped with the usual inner product), we denote the components of det
by

εi1...in
.
= det(ei1 , . . . , ein)

=


1, if (i1, . . . , in) is an even permutation of (1, . . . , n)
−1, if (i1, . . . , in) is an odd permutation of (1, . . . , n)
0, else.

The components εi1...in are called the Levi-Civita permutation symbol.

Exercise 1.3. If B = (ei)
n
i=1 is a basis for V, show that v = ∑n

i=1 ei(v)ei and that
f = ∑n

i=1 f (ei)ei, for any v ∈ V and f ∈ V∗. Following the component notation
previously introduced in Definition 1.3 (p. 4), we may then write v = ∑n

i=1 viei
(where vi = ei(v)) and f = ∑n

i=1 fiei (where fi = f (ei)).

Suggestion. Verify that both sides of the equalities proposed give back the same
result when applied to a bases of V and V∗, for example, B and B∗ themselves.

Exercise 1.4. Given a basis B= (ei)
n
i=1 of V and following the notation in Example

1.2 (p. 3), compute:

(a) ((T, S)∗B)ij in terms of the components of B and the matrices (Ti
j)

n
i,j=1 and

(Si
j)

n
i,j=1 of T and S relative to B.

(b) (v⊗ f )i
j in terms of the components of v and f .

Proposition 1.5. Let B= (ei)
n
i=1 be a basis for V. Then

B⊗B∗
.
= {ei ⊗ ej | 1 ≤ i, j ≤ n}

is a basis for T1
1(V). In particular, dim T1

1(V) = n2.

Proof: Let’s start by checking that B⊗B∗ is linearly independent. Suppose that
we have

n

∑
i,j=1

ai
jei ⊗ ej = 0.
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Our goal is to show that all the coefficients ai
j vanish. Evaluating both sides of this

equality in the pair (ek, e`), we obtain

0 =

(
n

∑
i,j=1

ai
jei ⊗ ej

)
(ek, e`) =

n

∑
i,j=1

ai
j(ei ⊗ ej)(ek, e`)

=
n

∑
i,j=1

ai
je

k(ei)ej(e`) =
n

∑
i,j=1

ai
jδ

k
iδ

j
`

= ak
`,

as wanted.
And to see that B⊗B∗ spans T1

1(V), consider T ∈ T1
1(V). By Exercise 1.3, we

have:

T( f , v) = T

(
n

∑
i=1

f (ei)ei,
n

∑
i=1

ej(v)ej

)
=

n

∑
i,j=1

f (ei)ej(v)T(ei, ej)

=
n

∑
i,j=1

Ti
j f (ei)ej(v) =

n

∑
i,j=1

Ti
j(ei ⊗ ej)( f , v)

=

(
n

∑
i,j=1

Ti
jei ⊗ ej

)
( f , v),

for all f ∈ V∗ and v ∈ V, whence T = ∑n
i,j=1 Ti

jei ⊗ ej, as wanted.

Exercise 1.5. Let (e1, e2) be a basis for R2 (not necessarily the standard one) and
T .
= e1 ⊗ e1 + e2 ⊗ e2.

(a) Show that T cannot be written in the form v1 ⊗ v2, for any v1, v2 ∈ R2.

(b) Find v1, v2, w1, w2 ∈ R2 such that T = v1 ⊗ v2 + w1 ⊗ w2, but v1 ⊗ v2 and
w1 ⊗w2 are not multiples of e1 ⊗ e1 and e2 ⊗ e2.

So, a tensor T of type (1, 1) can be represented by a matrix (Ti
j)

n
i,j=1, just like an

operator T ∈ Lin(V). This should make us suspect of the existence of an isomor-
phism T1

1(V) ∼= Lin(V). The great thing about this is that not only such isomor-
phism exists, but that it is natural (in the sense that it does not depend on a choice
of basis for V).

Theorem 1.6. The map Ψ : Lin(V) → T1
1(V) given by Ψ(T)( f , v) .

= f (T(v)) is a
linear isomorphism.

Proof: The verification that indeed Ψ(T) ∈ T1
1(V) is the Exercise 1.6 to come. To

see that Ψ is an isomorphism, we’ll use a basis B= (ei)
n
i=1 for V.
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To do so, it suffices to see that if Ti
j are the components of Ψ(T) relative to B,

then

Ψ(T) =
n

∑
i,j=1

Ti
jei ⊗ ej e

T(ej) =
n

∑
i=1

ei(Tej)ei =
n

∑
i=1

Ψ(T)(ei, ej)ei =
n

∑
i=1

Ti
jei.

In other words, the matrix of the linear operator relative to B and the components
of the associated tensor are the same thing.

Exercise 1.6. Verify that in the above proof we have Ψ(T) ∈ T1
1(V).

Via this isomorphism, it makes sense to talk about the trace and the determinant
of a tensor of type (1, 1). Unlike the trace, the determinant is not easily generalized
for higher order tensor. So, we will focus on the trace:

Proposition 1.7. There is a unique linear map tr 1
1 : T1

1(V)→ R such that

tr 1
1(v⊗ f ) = f (v),

for all f ∈ V∗ and v ∈ V. The operation tr 1
1 is usually called a contraction.

Proof: Let’s see how this map should work in terms of a basis B = (ei)
n
i=1 for V.

Given T ∈ T1
1(V), we have

tr 1
1(T) = tr 1

1

(
n

∑
i,j=1

Ti
jei ⊗ ej

)
=

n

∑
i,j=1

Ti
jtr

1
1(ei ⊗ ej)

=
n

∑
i,j=1

Ti
je

j(ei) =
n

∑
i,j=1

Ti
jδ

j
i =

n

∑
i=1

Ti
i.

Naturally, we would like to define tr 1
1(T)

.
= ∑n

i=1 Ti
i, where (Ti

j)
n
i,j=1 are the com-

ponents of T relative to a basis for V. But then we are required to show that this
definition does not depend on the choice of basis. That is, if B̃ = (ẽi)

n
i=1 is an-

other basis for V (with the corresponding dual basis with upper indices also un-
derstood), we have to show that ∑n

i=1 Ti
i = ∑n

i=1 T̃i
i holds.

This is done by applying Exercise 1.3 (p. 5) once more:

n

∑
i=1

Ti
i =

n

∑
i=1

T(ei, ei) =
n

∑
i=1

T

(
n

∑
j=1

ei(ẽj)ẽ
j,

n

∑
k=1

ẽk(ei)ẽk

)

=
n

∑
i,j,k=1

ei(ẽj)ẽ
k(ei)T(ẽj, ẽk) =

n

∑
j,k=1

T̃ j
k ẽk

(
n

∑
i=1

ei(ẽj)ei

)

=
n

∑
j,k=1

T̃ j
k ẽk(ẽj) =

n

∑
j,k=1

T̃ j
kδk

j =
n

∑
j=1

T̃ j
j,

as desired.
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Remark.

• The notation tr 1
1 will become clearer when we discuss contraction for tensors

of general type (r, s), soon.

• Observe that, following the notation used in Theorem 1.6 (p. 6), we indeed
have tr 1

1(T) = tr (Ψ(T)), where the second tr of course denotes the usual
trace of linear operators.

• In the same fashion, there is a unique linear maps tr1
1 : T1

1 (V) → R such that
tr1

1( f ⊗ v) = f (v). We will see in Section 2 that in the presence of a non-
degenerate scalar product 〈·, ·〉 in V, tr1

1 is equivalent to tr 1
1.

For the first time we needed to relate components of a tensor relative to differ-
ent bases. This ends up being important in Physics, where problems are usually
dealt with in terms of different coordinate systems. For tensors of type (1, 1), we
have the:

Proposition 1.8. Let T ∈ T1
1(V) and consider bases B = (ei)

n
i=1 and B̃ = (ẽi)

n
i=1 for

V. If

ẽj =
n

∑
i=1

ai
jei and ej =

n

∑
i=1

bi
jẽi,

then

T̃i
j =

n

∑
k,`=1

bi
ka`jT

k
`.

Proof: Straightforward computation:

T̃i
j = T(ẽi, ẽj) = T

(
n

∑
k=1

bi
kek,

n

∑
`=1

a`je`

)
=

n

∑
k,`=1

bi
ka`jT

k
`.

Exercise 1.7. Assume the notation above.

(a) Show that we indeed have ẽi = ∑n
k=1 bi

kek and that ei = ∑n
j=1 ai

jẽ
j.

Suggestion. Use Exercise 1.3 (p. 5).

(b) Show that the matrices (ai
j)

n
i,j=1 and (bi

j)
n
i,j=1 are inverses.

Suggestion. Do substitutions and apply the definition of matrix product, ver-
ifying that ∑n

k=1 ai
kbk

j = ∑n
k=1 bi

kak
j = δi

j.

(c) Mostre that if T ∈ T1
2(V), then T̃i

jk = ∑n
`,p,q=1 bi

`a
p
ja

q
kT`

pq. Can you guess what
will happen for general tensors T ∈ Tr

s(V)? Spoiler: Theorem 1.14 (p. 14, to
come).
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The above exercise actually tells us several things about how tensors behave
under base change. In particular, it says that the dual basis transforms in the “op-
posite” direction of the initial basis. One can use this to argue and justify the names
“contravariant/covariant” mentioned before.

Now that we are used to tensors of type (1, 1), we will see that the adaptations
for the (r, s) case require almost no effort at all. We start with the general defini-
tion of the tensor product ⊗ operation, mentioned briefly in items (5) and (6) of
Example 1.2, p. 3):

Definition 1.9. The tensor product of T ∈ Tr
s(V) and S ∈ Tr′

s′(V) is the tensor
T ⊗ S ∈ Tr+r′

s+s′(V) defined by

(T ⊗ S)( f 1, . . . , f r+r′ , v1, . . . , vs+s′)
.
= T( f 1, . . . , f r, v1, . . . , vs)S( f r+1, . . . , f r+r′ , vs+1, . . . , vs+s′).

Exercise 1.8.

(a) Show that ⊗ is associative.

(b) Give an example (when r = r′ and s = s′) showing that ⊗ is not, in general,
commutative.

(c) Show that if B= (ei)
n
i=1 is a basis for V, then

(T ⊗ S)
i1...ir+r′

j1...js+s′
= Ti1...ir

j1...js S
ir+1...ir+r′

js+1...js+s′
.

(d) Besides the result from the item above, we see that ⊗ really does behave like a
product: show that if T1, T2, T ∈ Tr

s(V), S1, S2, S ∈ Tr′
s′(V) and λ ∈ R, then:

• (T1 + λT2)⊗ S = T1 ⊗ S + λ(T2 ⊗ S);

• T ⊗ (S1 + λS2) = T ⊗ S1 + λ(T ⊗ S2).

Remark. One can also define the tensor product of tensors with scrambled do-
mains, providing arguments and feeding the tensors in order until there are no
arguments left, also unscrambling the domains. For example, if T ∈ T1 1

2 (V) and
S ∈ T2

1(V), we can define T ⊗ S ∈ T4
3(V) by

(T ⊗ S)( f 1, f 2, f 3, f 4, v1, v2, v3) = T( f 1, v1, v2, f 2)S( f 3, f 4, v3).

Such definition gives us the reasonable relation

(T ⊗ S)i1i2i3i4
j1 j2 j3

= Ti1 i2
j1 j2

Si3i4
j3

.

Exercise 1.9. Define T ⊗ S ∈ T3
5(V) for T ∈ T1

3(V) and S ∈ T2
2(V), and write its

components in terms of the components of T and S.

Page 9



A mini-course on tensors Ivo Terek

With this, we can generalize Proposition 1.5 (p. 5):

Proposition 1.10. Let B= (ei)
n
i=1 be a basis for V. Then

B⊗r ⊗ (B∗)⊗s .
= {ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs | 1 ≤ i1, . . . , ir, j1, . . . , js ≤ n}

is a basis for Tr
s(V). In particular, dim Tr

s(V) = nr+s.

Proof: To see that B⊗r ⊗ (B∗)⊗s is linearly independent, consider the linear com-
bination

n

∑
i1,...,ir,j1,...,js=1

ai1...ir
j1...jr ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs = 0.

Evaluate both sides of the equality in (ek1 , · · · , ekr , e`1 , · · · , e`s) and use the defini-
tion of tensor product to obtain

n

∑
i1,...,ir,j1,...,js=1

ai1...ir
j1...jr e

k1(ei1) · · · e
kr(eir)e

j1(e`1) · · · e
js(e`s) = 0.

Simplifying, it follows that

n

∑
i1,...,ir,j1,...,js=1

ai1...ir
j1...jr δ

k1
i1
· · · δkr

ir δ
j1
`1
· · · δjs

`s
= 0,

whence we get ak1...kr
`1...`s

= 0. The indices were arbitrary, so we conclude that
B⊗r ⊗ (B∗)⊗s is linearly independent.

Now we’ll see that B⊗r⊗ (B∗)⊗s spans Tr
s(V). Indeed, if T ∈ Tr

s(V), we claim
that

T =
n

∑
i1...ir,j1,...,js=1

Ti1...ir
j1...js ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs .

To wit, it suffices to see that both sides give the same result when evaluated in
a basis of the domain space (V∗)r × Vs. So, consider arbitrary indices and the
(r + s)-uple (ek1 , · · · , ekr , e`1 , · · · , e`s). Evaluating in such (r + s)-uple, in the left-
hand side we obtain Tk1...kr

`1...`s
, by definition, and on the right-hand side we also

get Tk1...kr
`1...`s

, by a similar computation done (with Kronecker deltas) to verify the
linear independence of B⊗r ⊗ (B∗)⊗s.

Exercise 1.10. Assume the notation from the above proposition.

(a) Show that

T =
n

∑
i1...ir,j1,...,js=1

Ti1...ir
j1...js ei1 ⊗ · · · ⊗ eir ⊗ ej1 ⊗ · · · ⊗ ejs

directly, computing T( f 1, . . . , f r, v1, . . . , vs) for arbitrary entries, mimicking the
case (r, s) = (1, 1) done in the proof of Proposition 1.5 (p. 5).
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(b) Compare carefully the proofs of propositions 1.5 (p. 5) and 1.10 and convince
yourself that no original idea was employed here (except maybe from what
was suggested in item (a)).

Remark (Einstein’s convention). To avoid writing unpleasant things such as, for
example, ∑n

i1...ir,j1,...,js=1 · · · , we will adopt the following convention, due to Ein-
stein:

• Usually an agreement is made about the ranges of the indices, and different
ranges will correspond to different alphabets. For example, a, b and c will
range from 1 to n, i, j and k from 1 to 3, greek letters as µ, ν and λ from 0
to 4 (common in General Relativity, to express the components of the metric
tensor of a spacetime as gµν), etc..

• All the summation symbols are omitted, being understood that if the same
index appears in a monomial expression once above and once below, we’re
actually summing the expression over that index. For example:

– v = ∑n
i=1 viei becomes v = viei and f = ∑n

i=1 fiei becomes f = fiei.

– tr 1
1(T) = ∑n

i=1 Ti
i becomes tr 1

1(T) = Ti
i.

– T̃i
j = ∑n

k,`=1 bi
ka`jT

k
` becomes T̃i

j = bi
ka`jT

k
`.

– Ai = ∑n
j=1 Bi

jC
j becomes Ai = Bi

jC
j.

– ∑n
i=1 Ai

ji becomes Ai
ji and ∑n

k=1 ai
kbk

j = δi
j becomes ai

kbk
j = δi

j.

• One must pay attention to which indices are “free” and which ones are not.
It is the same situation when we have dummy variables in definite integrals
or summations themselves. For example, we have that

viei = vjej = vkek = · · · ,

etc., but note that in those situations, the repeated indices indeed appear once
above and once below. That said, expressions such as vivi or vi + ui are not
compatible with Einstein’s convention, and in the rare cases one cannot avoid
them, the solution is to use the summation symbol explicitly.

• In this setting, the action of the Kronecker delta consists in switching the
index being summed by the remaining index in the delta. For example,
δi

jv
j = vi, also δi

jδ
k
`Aj` = Aik, etc..

• When performing substitutions, one must be careful to avoid repeating
dummy indices. For example, if pi = ai

jv
j and vj = bj

iw
i, it is not correct

to write pi = ai
jb

j
iw

i. Note that the index i appears three times in the left-

hand side. The correct would be to identify that in vj = bj
iw

i, the index i is
a dummy. So, we may write vj = bj

kwk and substitute pi = ai
jb

j
kwk, without

conflicts (observe the double summation implied).
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Exercise 1.11.

(a) Suppose that vi = ai
jw

j and that (bi
j)

n
i,j=1 is the inverse matrix of (ai

j)
n
i,j=1.

Show that wi = bi
jv

j.

Suggestion. Multiply both sides of vi = ai
jw

j by bk
i and, after simplifying,

rename k→ i.

(b) Simplify:

• δi
jδ

j
kδk

i.

• ε1jk`δ
j
2δk

4δ`3.

• δi
jviuj.

• δ2
jδ

j
kvk.

• δ3
jδ

j
1;

• εi3kδi
pvk.

(c) The Kronecker delta and the Levi-Civita symbol are very particular tensors,
which after certain identifications (to be seen in Section 2), may be identified
with tensors whose components are, in adequate bases, δij and εi

jk, assuming

the same values as δi
j and εijk (revisit Example 1.4, p. 5). Show that

εi
jkεk

`m = δi
`δjm − δi

mδj`.

Suggestion. Be patient and analyse cases, this is a “combinatorics” problem.
Observe that there are no summations on the right-hand side, only on the left-
hand side.

(d) Redo Exercise 1.7 (p. 8) using Einstein’s convention.

(e) (Challenge) Show that if n = (n1, n2, n3) ∈ R3 is a unit vector,

Nij .
= δij − ε

ij
knk + ninj e M j

i
.
= δij + ε

j
i knk,

then NijM k
j = 2δik.

Suggestion. Again, the numerical values of δij and δij are the same of δi
j, and

similarly for ε
ij

k, ε
j

i k and εijk. By item (c), we have that ε
ij

rεk
j s = δi

sδ
k
r − δikδrs.

Moreover, ε k
j sn

jns = 0 (why?), and n being a unit vector says that δrsnrns = 1.

We will adopt Einstein’s convention from here on.
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Back to tensors. The same argument given in the proof of Proposition 1.10 (p.
10) allows us to find bases for tensor spaces with scrambled domains. For example:

Exercise 1.12. Let B= (ei)
n
i=1 be a basis for V. Show that

B∗ ⊗B⊗B∗
.
= {ei ⊗ ej ⊗ ek | 1 ≤ i, j, k ≤ n}

is a basis for the space T1
1 1(V), with operations defined pointwise. In particular,

dim T1
1 1(V) = n3.

In general, all the spaces of tensors for a given order are isomorphic, no matter
how the domains might be scrambled. It is possible to exhibit such isomorphisms
without choosing bases for V and V∗, once we have a non-degenerate scalar prod-
uct 〈·, ·〉 on V. We will see how this works in Section 2.

In Proposition 1.7 (p. 7), we introduced the contraction tr 1
1 : T1

1(V) → R. For
tensors of type (r, s), the contraction we will define from tr 1

1 produces not a real
number, but yet another tensor:

Definition 1.11. Let r, s ≥ 1. The contraction in the a-th contravariant slot and b-th
covariant slot is the map tr a

b : Tr
s(V)→ Tr−1

s−1(V) given by

tr a
b(T)( f 1, . . . , f r−1, v1, . . . , vs−1)

.
=

.
= tr 1

1
(
T( f 1, . . . , f a−1, •, f a, . . . , f r−1, v1, . . . , vb−1, •, vb, . . . , vs)

)
.

Remark. The • notation indicates exactly which arguments remain free. For ex-
ample, if T ∈ T1

1(V) and f ∈ V∗ is fixed, T( f , •) denotes the element of T0
1(V)

given by V 3 v 7→ T( f , v) ∈ R.

Essenially, we freeze all possible arguments so to obtain a tensor of type (1, 1),
and then we apply the usual tr 1

1 contraction.

Example 1.12. Fix a basis B= (ei)
n
i=1 for V.

(1) If δ : V∗ × V → R is given by δ( f , v) = f (v), like in Example 1.2 (p. 3), then
tr 1

1(δ) = δi
i = n.

(2) If B ∈ T1
2(V) is given by B = Bi

jkei ⊗ ej ⊗ ek, we have two possible contrac-
tions. Namely:

tr 1
1(B) = Bi

ikek and tr 1
2(B) = Bi

jie
j.

(3) If W ∈ T2
3(V) is given by W = W ij

k`mei ⊗ ej ⊗ ek ⊗ e` ⊗ em, we have 2 · 3 = 6
possible contractions (all of them order 3 tensors). Some of them are

tr 1
1(W) = W ij

i`mej ⊗ e` ⊗ em,

tr 1
2(W) = W ij

kimej ⊗ ek ⊗ em, and

tr 2
3(W) = W ij

k`jei ⊗ ek ⊗ e`.
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Exercise 1.13. Find the remaining contractions tr 1
3(W), tr 2

1(W) and tr 2
2(W).

Once the above examples are understood, the statement of the general case is
not surprising (it is actually an automatic corollary of Proposition 1.7, p. 7):

Proposition 1.13. Let B= (ei)
n
i=1 be a basis for V and T ∈ Tr

s(V). So given 1 ≤ a ≤ r
and 1 ≤ b ≤ s, we have

(tr a
b(T))

i1...ir−1
j1...js−1

= Ti1...ia−1kia ...ir−1
j1...jb−1kjb ...js−1

.

In an analogous way to what we did previously when discussing tensors of
type (1, 1), let’s see how the components of a general tensor behave under base
change:

Theorem 1.14. Let T ∈ Tr
s(V) and consider bases B= (ei)

n
i=1 and B̃= (ẽi)

n
i=1 for V.

If ẽj = ai
jei and ej = bi

jẽi, then

T̃i1...ir
j1...js = bi1

k1
· · · bir

kr
a`1

j1
· · · a`s

js T
k1...kr

`1...`s
.

Remark. One way to think of this transformation law is in terms of the (ai
j)

n
i,j=1,

bearing in mind that (bi
j)

n
i,j=1 is the inverse matrix (we saw that on Exercise 1.7,

p. 8): for each covariant (lower) index, an a term contributes, while for each con-
travariant (upper) index, a b term contrbutes. That is, “co” terms correspond to the
“direct” coefficient matrix, and “contra” terms to its inverse.

Proof: It is almost automatic, from Exercise 1.7 (p. 8) and Einstein’s convention:

T̃i1...ir
j1...js = T(ẽi1 , . . . , ẽir , ẽj1 , . . . , ẽjs)

= T(bi1
k1

ek1 , . . . , bir
kr

ekr , a`1
j1

e`1 , . . . , a`s
js e`s)

= bi1
k1
· · · bir

kr
a`1

j1
· · · a`s

js T(e
k1 , . . . , ekr , e`1 , . . . , e`s)

= bi1
k1
· · · bir

kr
a`1

j1
· · · a`s

js T
k1...kr

`1...`s
.
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2 And what about when we have a scalar product?

We know what a positive-definite inner product in a vector space is. The con-
dition that such product is positive-definite may be weakened without loss of rel-
evant algebraic properties for what we’re doing here. Let’s register this in the
following definition, using the language we have established so far:

Definition 2.1. A (pseudo-Euclidean) scalar product on V is a tensor 〈·, ·〉 ∈ T0
2(V)

satisfying:

(i) 〈x, y〉 = 〈y, x〉 for all x, y ∈ V. That is, 〈·, ·〉 is symmetric.

(ii) if 〈x, y〉 = 0 for all y ∈ V, then necessarily x = 0. That is, 〈·, ·〉 is non-
degenerate.

If instead of (ii), the stronger condition

(iii) 〈x, x〉 > 0 for all non-zero x ∈ V,

holds, then 〈·, ·〉 is called an (Euclidean, positive-definite) inner product on V.

Remark. Note that (iii) does imply (ii) – it suffices to take y = x. In more general
setting, such a scalar product 〈·, ·〉 is also called a metric tensor.

We fix from here on a scalar product 〈·, ·〉 on V.

Since 〈·, ·〉 is a tensor, in particular we knoow what are its components relative to
a basis B= (ei)

n
i=1 of V: gij

.
= 〈ei, ej〉. The conditions imposed in the definition of

〈·, ·〉 will give us good properties of such components. Namely:

• Condition (i) ensures that the matrix (gij)
n
i,j=1 is symmetric;

• Condition (ii) ensures that the matrix (gij)
n
i,j=1 is non-singular (that is, has an

inverse).

The inverse matrix of (gij)
n
i,j=1 is usually denoted by (gij)n

i,j=1. The advantages
of having a scalar product start when we use it to obtain new natural identifications
(which do not depend on any choice of basis for V).

Exercise 2.1. Simplify:

• δi
jgkigj`δk

`.

• ε1`mgijgjkδ1
kδ`2δm

3 .

Let’s begin by properly identifying V with its dual V∗, using 〈·, ·〉:

Proposition 2.2 (Musical isomorphisms).

(i) The flat map [ : V → V∗ defined by v[(w)
.
= 〈v, w〉 is an isomorphism.
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(ii) Given f ∈ V∗, there is a unique f ] ∈ V such that f (v) = 〈 f ], v〉, for all v ∈ V.
Thus, it is well defined the sharp map ] : V∗ → V, which is the inverse isomorphism
of flat.

Proof: Clearly [ is linear. Since V has finite dimension, it suffices to show that
[ is injective. But if v ∈ ker [, we have 〈v, w〉 = 0 for all w ∈ V. Since 〈·, ·〉 is
non-degenerate, it follows that v = 0. So [ is an isomorphism, and we denote its
inverse by ].

The next natural step is to analyze how those musical isomorphisms are ex-
pressed in terms of a basis:

Proposition 2.3. Let B = (ei)
n
i=1 be a basis for V. Suppose that v = viei ∈ V and

f = fiei ∈ V∗. So v[ = viei and f ] = f iei, where

vi = gijvj and f i = gij f j.

Remark.

• Note the abuses of notation (v[)i = vi and ( f ])i = f i.

• The product 〈·, ·〉 is used to raise and lower the indices of the components of
v and f . Such operation is common in Physics and Geometry. Note also the
similarity of the action of the coefficients gij and gij with the Kronecker delta.

• This justify the name “musical isomorphisms”: the [ lowers the pitch of a
scale (lowers the indices of the components of v, vi → vi), while the ] raises
the pitch of a scale (raises the indices of the components of f , fi → f i).

• Mnemonic: vectors have “sharp tips” (sharp↗), so f ] is always a vector.

Proof: On one hand, the equality v[(ej) = 〈v, ej〉 reads as vjej(ei) = 〈vjej, ei〉, that
is, vi = gjivj = gijvj, as desired. On the other hand, f (ej) = 〈 f ], ej〉 becomes
fiei(ej) = 〈 f iei, ej〉, whence f j = gij f i. Multiplying everything by gkj (and sum-
ming over j, of course3), we have

gkj f j = gkjgij f i = δk
i f i = f k,

and renaming k→ i gives us that f i = gij f j, exactly as stated.

Proposition 2.4. Let B= (ei)
n
i=1 be a basis for V. So

(ei)[ = gijej and (ei)] = gijej.

Proof: Let’s check the first one. As ei = δ
j
iej, the previous proposition gives us

that
(ei)[ = gjkδk

ie
j = gjiej = gijej,

as desired.
3Some texts call that “contracting against gkj”.
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Exercise 2.2.

(a) Make sure you understood the computations done using Einstein’s convention
in the last two proofs.

(b) Verify that (ei)] = gijej, completing the previous proof.

Changing gears a bit, what we have just now amounts to using 〈·, ·〉 to identify
T0

1(V) and T1
0(V). This can be done to identify Tr

s(V) with Tr′
s′(V), provided

r + s = r′ + s′. Let’s see some low order cases, to begin with.

Proposition 2.5. The map ]1 : T0
2(V) → T1

1(V) given by T]1( f , v) .
= T( f ], v) is an

isomorphism.

Proof: Clearly ]1 is linear, and since dim T0
2(V) = dim T1

1(V), it suffices to see
that ]1 is injective. Let B= (ei)

n
i=1 be a basis for V. Note that

(T]1)i
j = T]1(ei, ej) = T((ei)], ej) = T(gikek, ej) = gikT(ek, ej) = gikTkj.

If T]1 = 0, then gikTkj = 0. Multiplying everything by g`i, we have

0 = g`igikTkj = δk
`Tkj = T`j,

and from the arbitrariety of indices it follows that T = 0.

Remark. Instead of writing (T]1)i
j = gikTkj every time, we usually write just

Ti
j = gikTkj, just like we have been doing with vectors and covectors.

Exercise 2.3.

(a) Show that the map [1 : T2
0(V) → T1

1(V) defined by T[1
( f , v) .

= T( f , v[) is an
isomorphism.

(b) In case you have already not checked this while doing item (a), verify also that
Ti

j = gjkTik.

Exercise 2.4.

(a) Show that [1,2 : T2
0(V) → T0

2(V) given by T[1,2
(v, w) = T(v[, w[) is an iso-

morphism.

(b) In case you have already not checked this while doing item (a), verify also that
Tij = gikgj`Tk`.

With that in hands, we could think that we have exhausted all the possible
identifications between order 2 tensors. But let’s not forget about tensors with
scrambled domains:
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Proposition 2.6. The map ]1
[1

: T1
1 (V)→ T1

1(V) given by

T]1
[1
( f , v) = T( f ], v[)

is an isomorphism.

Proof: Like in Proposition 2.5 (p. 17), it suffices to show that ]1
[1

is injective. Let’s
do this again using a basis B= (ei)

n
i=1 for V. We have:

Ti
j = T]1

[1
(ei, ej) = T((ei)], (ej)[) = T(gikek, gj`e`) = gikgj`T `

k .

If T]1
[1
= 0, then gikgj`T `

k = 0. Multiplying all by gpigqj, we obtain

0 = gpigqjgikgj`T `
k = δk

pδ
q
`T

`
k = T q

p ,

and the arbitrariety of indices gives us that T = 0.

Remark.

• In the previous proof, multiplying everything by gpigqj was not just some
deus ex machina – this is precisely “what was missing” to make the necessary
Kronecker deltas appear, to conclude the argument, also being careful to not
repeat dummy indices (i.e., that is why we needed new indices p and q). This
is hopefully clear, in case you did exercises 2.3 and 2.4 (p. 17).

• All the facets of a given tensor end up being represented by the same kernel
letter, in our case, T. In which space T lives depends on the position of the
indices (alternatively, on its arguments), and on the context.

• Raising and lowering indices of the Kronecker delta and the Levi-Civita sym-
bol by using a positive-definite inner product, we conclude the numerical
equalities δi

j = δij = δij = δ i
j , as well as εi

jk = εijk = εijk for the Levi-Civita
symbol, justifying the notation adopted in Exercise 1.11 (p. 12). For example,
εi

jk = δi`ε`jk.

Let’s then register the general case:

Theorem 2.7. If r + s = r′+ s′, then we have a natural identification Tr
s(V) ∼= Tr′

s′(V).

Remark. There are plenty of isomorphisms between those spaces. For example,
one could lower all the contravariant indices, obtaining isomorphisms of both
spaces with T0

r+s(V).

In the previous section, we have seen a generalization of the concept of trace:
the contraction between contravariant and covariant indices. Combining that with
musical isomorphisms will allow us to define contractions between indices of the
same type, such as tr a,b e tr a,b. Let’s see next how to do this, again starting with
low order cases to gain intuition:
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Definition 2.8.

(i) The covariant contraction is the map tr 1,2 : T0
2(V)→ R given by

tr 1,2(T)
.
= tr 1

1(T
]1),

where ]1 : T0
2(V) → T1

1(V) is the isomorphism given in Proposition 2.5
(p. 17).

(ii) The contravariant contraction is the map tr 1,2 : T2
0(V)→ R given by

tr 1,2(T) .
= tr 1

1(T[1
),

where [1 : T2
0(V)→ T1

1(V) is the isomorphism given in Exercise 2.3 (p. 17).

Exercise 2.5. Show that if T is a order 2 tensor and B = (ei)
n
i=1 is a basis for V,

then Ti
i = T i

i .

Remark. In general Ti
j 6= T j

i . This exercise shows that we could also have “trans-

ferred” all the situation to T1
1 (V) instead and used the map tr1

1, briefly mentioned
in Section 1.

Proposition 2.9. Let B= (ei)
n
i=1 be a basis for V.

(a) If T ∈ T0
2(V), then tr 1,2(T) = gijTij.

(b) If T ∈ T2
0(V), then tr 1,2(T) = gijTij.

Proof: Note that Ti
i = gijTij = gijTij.

Corollary 2.10. Let T ∈ Lin(V) be a linear operator. Defining a tensor T̃ ∈ T0
2(V) by

T̃(x, y) = 〈T(x), y〉, we have that tr (T) = tr 1,2(T̃).

Remark. The content of this corollary is the fact that tr (T) does not depend on the
choice of scalar product. In other words, another process to compute the trace of T
is to choose some scalar product 〈·, ·〉 on V, define the associated T̃, and then apply
the contraction tr 1,2.

Exercise 2.6. Complete the details of the proof of Proposition 2.9 (p. 19), in case
you’re not convinced. Also show the previous corollary.

Example 2.11. Suppose that B = (ei)
n
i=1 is an orthonormal basis for V. When 〈·, ·〉

is not necessarily positive-definite, “orthonormal” means that 〈ei, ej〉 = 0 if i 6= j,
and for every 1 ≤ i ≤ n we have εi

.
= 〈ei, ei〉 ∈ {−1, 1}. That is, in matrix form4 we

have (gij)
n
i,j=1 = diag(ε1, . . . , εn) and, in particular, (gij)n

i,j=1 = (gij)
n
i,j=1. It follows

that:
4The quantity of negative εi’s is the same for every orthonormal basis of V. This (perhaps non-

trivial) result is known as Sylvester’s Law of Inertia).
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1. If T ∈ T0
2(V), then tr 1,2(T) = ∑n

i=1 εiT(ei, ei).

2. If T ∈ T2
0(V), then tr 1,2(T) = ∑n

i=1 εiT(ei, ei).

Recall that the generalized trace tr a
b : Tr

s(V) → Tr−1
s−1(V) was a map reducing

the order of a given tensor by 2. This will remain true here:

Definition 2.12. Let a ≤ b be non-negative integers.

(i) Let s ≥ 2. The covariant contraction on the indices a and b is the map
tr a,b : Tr

s(V)→ Tr
s−2(V) defined by:

tr a,b(T)( f 1, . . . , f r, v1, . . . , vs−2)
.
=

.
= tr 1,2

(
T( f 1, . . . , f r, v1, . . . , •, . . . , •, . . . , vs−2)

)
,

where the •s are placed in the a-th and b-th covariant slots.

(ii) Let r ≥ 2. The contravariant contraction on the indices a and b is the map
tr a,b : Tr

s(V)→ Tr−2
s (V) defined by:

tr a,b(T)( f 1, . . . , f r−2, v1, . . . , vs)
.
=

.
= tr 1,2(T( f 1, . . . , •, . . . , •, . . . , f r−2, v1, . . . , , vs)

)
,

where the •s are places in the a-th and b-th contravariant slots.

Example 2.13. Fix a basis B= (ei)
n
i=1 for V.

(1) Since 〈·, ·〉 ∈ T0
2(V), it makes sense to compute tr 1,2(〈·, ·〉). Proposition 2.9

(p. 19) gives us that tr 1,2(〈·, ·〉) = gijgij = gjigij = δ
j
j = n.

(2) If det ∈ T0
n(R

n) and 〈·, ·〉 is the standard inner product in Rn, then the trace
tr a,b(det) is the zero tensor, for all choices of a and b, as det is totally skew-
symmetric.

(3) If v, w ∈ V, then tr 1,2(v⊗w) = 〈v, w〉. Indeed, by Proposition 2.9 we have

tr 1,2(v⊗w) = gij(v⊗w)ij = gijviwj = 〈v, w〉.

(4) Similarly to the previous item, if f , g ∈ V∗ are covectors, we have the relation
tr 1,2( f ⊗ g) = 〈 f ], g]〉. To wit, in coordinates we have:

tr 1,2( f ⊗ g) = gij( f ⊗ g)ij = gij figj

= gijgik f kgj`g` = δi
`gik f kg`

= gk` f kg` = 〈 f ], g]〉.
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Exercise 2.7. Since we mentioned the quantity 〈 f ], g]〉, let’s define a new prod-
uct 〈·, ·〉∗ : V∗ × V∗ → R by 〈 f , g〉∗ .

= 〈 f ], g]〉. Show that 〈·, ·〉∗ is a non-
degenerate scalar product in V∗, which is positive-definite if 〈·, ·〉 is. What
are its components, in terms of the (gij)

n
i,j=1?

Note that T0
2(V

∗) = T2
0(V), so who we call “vectors” or “covectors” actually

depends on which space we started with.

(5) If W ∈ T2
3(V) is given (in terms of a basis) by W = W ij

k`mei⊗ ej⊗ ek⊗ e`⊗ em,
like in Example 1.12 (p. 13), we have that tr 1,2(W) ∈ T0

3(V) is given by

tr 1,2(W) = gijW
ij
k`mek ⊗ e` ⊗ em.

We can also compute tr 1,3(W) ∈ T2
1(V):

tr 1,3(W) = gkmW ij
k`mei ⊗ ej ⊗ e`.

Exercise 2.8. What is tr 1,2(W) ∈ T2
1(V)?

In a similar way done in Proposition 1.13 (p. 14), we register the coordinate
expressions for the general contractions:

Proposition 2.14. Let B= (ei)
n
i=1 be a basis for V and T ∈ Tr

s(V).

(i) If s ≥ 2, then
(tr a,b(T))

i1...ir
j1...js−2

= gk`Ti1...ir
j1...k...`...js−2

.

(ii) If r ≥ 2, then
(tr a,b(T))i1...ir−2

j1...js = gk`T
i1...k...`...ir

j1...js .

The indices indicated in red on T are in the a-th and b-th slots.

The next two exercises have the goal to make sure you got used enough to the
sort of manipulations we have been doing so far:

Exercise 2.9 (A taste of Geometry). A tensor R ∈ T0
4(V) is called curvature-like if it

satisfies

(i) R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z);

(ii) R(x, y, z, w) = R(z, w, x, y).

(iii) R(x, y, z, ·) + R(y, z, x, ·) + R(z, x, y, ·) = 0;

Suppose that V has a scalar product 〈·, ·〉.
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(a) Show that:

tr 1,2(R) = tr 3,4(R) = 0,
tr 2,4(R) = tr 1,3(R) and
tr 1,4(R) = tr 2,3(R) = −tr 1,3(R).

That is, it suffices to know tr 1,3(R) to actually know all possible contractions
of R.

Suggestion. How are symmetries (i) and (ii) described in coordinates?

(b) Show that R0 : V4 → R defined by

R0(x, y, z, w)
.
= 〈y, z〉〈x, w〉 − 〈x, z〉〈y, w〉

is a curvature-like tensor. It is called the fundamental curvature of 〈·, ·〉.

(c) If R is a curvature-like tensor, since 〈·, ·〉 is non-degenerate, it is well defined
a map R : V3 → V such that R(x, y, z, w) = 〈R(x, y)z, w〉. The Ricci tensor
associated to R is Ric ∈ T0

2(V), given by

Ric(x, y) .
= tr (R(·, x)y).

Show that for the fundamental curvature R0 of 〈·, ·〉, the relation

Ric0(x, y) = (n− 1)〈x, y〉

holds.

Remark. It is usual in Geometry to write simply R(x, y)z instead of R(x, y, z).
This is not a mistake.

(d) The scalar curvature associated to R is defined by S .
= tr 1,2(Ric). For the

fundamental curvature R0 of 〈·, ·〉, use the previous item and conclude that
S0 = n(n− 1).

Remark. Some curiosities:

• In the definition of a curvature-like tensor, actually symmetries (i) and (iii)
together imply symmetry (ii)! That is, condition (ii) is superfluous. The stan-
dard argument for this is known as “Milnor’s octahedron”.

• Moreover, it is possible to show that the subspace R(V) ⊆ T0
4(V) formed by

the curvature-like tensors on V has dimension dimR(V) = n2(n2 − 1)/12.

Exercise 2.10. Let T, S ∈ T0
2(V). The Kulkarni-Nomizu product of T and S is defined

as

(T©∧ S)(x, y, z, w)
.
=

.
= T(x, z)S(y, w) + T(y, w)S(x, z)− T(x, w)S(y, z)− T(y, z)S(x, w).
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(a) Verify that T©∧ S ∈ T0
4(V) and that it satisfies symmetries (i) and (ii) from the

definition of a curvature-like tensor.

(b) Show that if T and S are symmetric, then T©∧ S also satisfies symmetry (iii),
and thus is a curvature-like tensor.

(c) Suppose that V has a scalar product 〈·, ·〉. Show that

tr 1,3(T©∧ S) = tr 1,2(T)S + tr 1,2(S)T − tr 2,3(S⊗ T)− tr 2,3(T ⊗ S).

(d) Suppose that V has a scalar product 〈·, ·〉. Show that

〈·, ·〉 ©∧ 〈·, ·〉 = −2R0,

where R0 is the fundamental curvature of 〈·, ·〉.

Before we proceed to Section 3 to discuss some Algebra, let’s see how to use
the language of tensors to establish in a simple way some formulas with the cross
product in R3. Suppose until the end of this section that V = R3 and that 〈·, ·〉
is the standard inner product. We begin with a coordinate-free definition of cross
product:

Definition 2.15. Let v, w ∈ R3. The cross product of v and w is the unique vector
v×w ∈ R3 such that 〈v×w, x〉 = det(v, w, x), for all x ∈ R3.

Lemma 2.16. Let B = (ei)
3
i=1 be a positive and orthonormal basis for R3. So we have

(v×w)i = εi
jkvjwk, where εi

jk is the Levi-Civita symbol (seen in Example 1.4, p. 5 and
in Exercise 1.11, p. 12) .

Proof: Making x = ei in the definition of v×w, on one side we have

〈v×w, ei〉 = 〈(v×w)jej, ei〉 = (v×w)jδji = (v×w)i.

On the other side:

det(v, w, ei) = det(vjej, wkek, ei) = vjwkεjki = εijkvjwk.

Thus (v × w)i = εijkvjwk. Raising the index i on both sides, we conclude the
proof.

Remark. With this you can write the expression for v×w explicitly and convince
yourself that the definition given here coincides with the definition you learned as
a child.

An example of application for this expression is the following:

Proposition 2.17. Let v, w, z ∈ R3. Then

(v×w)× z = 〈z, v〉w− 〈z, w〉v.
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Proof: We can proceed at the coordinate level, using a positive and orthonormal
basis for R3 and Exercise 1.11 (p. 12). We have:

((v×w)× z)i = εi
jk(v×w)jzk

= εi
jkε

j
`mv`wmzk

= εi
kjε

j
m`v

`wmzk

= (δi
mδk` − δi

`δkm)v`wmzk

= δi
mδk`v`wmzk − δi

`δkmv`wmzk

= δk`zkv`wi − δkmzkwmvi

= 〈z, v〉wi − 〈z, w〉vi,

as wanted.

Corollary 2.18 (Jacobi identity). Let v, w, z ∈ R3. Then

(v×w)× z + (w× z)× v + (z× v)×w = 0.

Exercise 2.11. Show the Jacobi identity.

Such manipulations also allow us to establish some identities regarding dif-
ferential operators, such as gradient, curl and divergence. If can = (ei)

3
i=1 is the

standard basis and ∇ = (∂1, ∂2, ∂3) is the usual derivative vector, recall that if
ϕ : R3 → R is smooth and F : R3 → R3 is a smooth vector field in R3, then

grad ϕ = ∇ϕ = (∂1ϕ, ∂2ϕ, ∂3ϕ),

div F = 〈∇, F〉 = ∂1F1 + ∂2F2 + ∂3F3 e

curl F = ∇× F = ε
ij

k∂jFkei.

Proposition 2.19. Let ϕ : R3 → R be smooth. Then curl grad ϕ = 0.

Proof: It suffices to note that (curl grad ϕ)i = ε
ij

k∂j∂k ϕ. Since the indices j and k
are dummy, we have that

ε
ij

k∂j∂k ϕ = εik
j∂k∂j ϕ = εik

j∂j∂k ϕ,

using in the last step that second order partial derivatives commute. On the other
hand, since the Levi-Civita symbol is skew-symmetric, we get

ε
ij

k∂j∂k ϕ = −εik
j∂j∂k ϕ.

Thus ε
ij

k∂j∂k ϕ = 0.

Exercise 2.12. Make a similar argument (paying attention to dummy indices) and
show that if F : R3 → R3 is a smooth vector field in R3, then div curl F = 0.
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Proposition 2.20. Let F : R3 → R3 be a smooth vector field in R3. Then

curl curl F = grad(div F)−∇2F,

where ∇2F denotes the (vector) Laplacian of F.

Proof: Let’s proceed just like in Proposition 2.17 (p. 23), using the identity seen in
Exercise 1.11 (p. 12) with the correct index balance. We have that:

(curl curl F)i = ε
ij

k∂j(rot F)k

= ε
ij

k∂jε
k`

m∂`Fm

= ε
ij

kεk`
m∂j∂`Fm

= (δi`δ
j
m − δi

mδj`)∂j∂`Fm

= δi`δ
j
m∂j∂`Fm − δi

mδj`∂j∂`Fm

= δi`∂j∂`Fj − δj`∂j∂`Fi

= δi`∂`(div F)− δj`∂j∂`Fi

= (grad(div F))i − (∇2F)i

= (grad(div F)−∇2F)i,

as wanted.

Exercise 2.13. Let F, G : R3 → R3 be smooth vector fields in R3.

(a) Show that div(F ×G) = 〈curl F, G〉 − 〈curl G, F〉.

(b) Show that

curl(F ×G) = 〈G,∇〉F + (div G)F − 〈F,∇〉G− (div F)G,

where 〈F,∇〉G denotes the differential operator F1∂1 + F2∂2 + F3∂3 acting com-
ponentwise in G, etc..

(c) Show that

grad〈F, G〉 = 〈G,∇〉F + 〈F,∇〉G− (curl F)×G− (curl G)× F.

Page 25



A mini-course on tensors Ivo Terek

3 The universal property

There is another approach to tensors, usually prefered by algebraist, in Math-
ematics. Let’s briefly discuss it and relate it with everything we have done so far.
Let V and W be two finite-dimensional vector spaces, until the end of the text.

Definition 3.1. A tensor product of V and W is a pair (T,⊗), where T is a vector
space and ⊗ : V ×W → T is a bilinear map satisfying the following universal
property: given any real vector space Z and any bilinear map B : V ×W → Z,
there is a unique linear map B̂ : T→ Z such that B̂ ◦ ⊗ = B. In other words, the
following diagram can always be uniquely completed:

Z

T

B

B̂
⊗

V ×W

Figure 1: The universal property of (T,⊗).

Remark.

• Usually one writes ⊗ instead of ⊗. We use the notation ⊗ for pedagogical
reasons, until we establish the necessay isomorphisms to identify ⊗ with the
actual operation ⊗ studied in the previous sections.

• In this setting, we’ll say that B̂ is a linearization of B (via ⊗).

That is, a tensor product of V and W is a vector space equipped with a map
⊗ which universally linearizes all bilinear maps defined in V ×W. Such tensor
product actually acts as a “translator”, converting bilinear maps B into linear maps
B̂ which are, in a certain sense, equivalents to B, and ⊗ is the dictionary.

The issue with this definition is that it is not clear, a priori, whether a tensor
product between two given spaces even exists to begin with. Or if it is unique.
As it is frequent in Mathematics, verifying uniqueness is easier than verifying the
existence:

Proposition 3.2. Let (T1,⊗1) and (T2,⊗2) be two tensor products of V and W. Then
there exists a linear isomorphism Φ : T1 → T2 such that Φ ◦ ⊗1 = ⊗2.
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Φ

V ×W

⊗2⊗1

T2T1

Figure 2: Uniqueness of the tensor product up to isomorphism.

Proof: Since ⊗2 : V ×W → T2 is bilinear, the universal property of (T1,⊗1) will
give us a unique linear map Φ : T1 → T2 such that Φ ◦ ⊗1 = ⊗2.

V ×W T2
⊗2

T1

Φ
⊗1

Figure 3: The existence of Φ.

To see that this Φ is already the desired isomorphism, we need to exhibit its
inverse, running the same proof “backwards”: since ⊗1 : V ×W → T1 is bilinear,
the universal property of (T2,⊗2) gives us a unique linear map Ψ : T2 → T1 such
that Ψ ◦ ⊗2 = ⊗1.

V ×W

T2

⊗2

Ψ

T1
⊗1

Figure 4: The existence of Ψ.

Now we have to check that this Ψ is indeed the inverse of Φ. For this end, we’ll
use the uniqueness part of those universal properties. Let’s explore the universal
property of (T1,⊗1) for the bilinear map ⊗1 : V ×W → T1. Clearly IdT1 : T1 → T1
satisfies IdT1 ◦ ⊗1 = ⊗1, but on the other hand

(Ψ ◦Φ) ◦ ⊗1 = Ψ ◦ (Φ ◦ ⊗1) = Ψ ◦ ⊗2 = ⊗1,
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so that Ψ ◦Φ = IdT1 .

V ×W

T1

⊗1

⊗2
T1

IdT1

V ×W

T1

⊗1

⊗2
T1

Ψ ◦Φ

Figure 5: Proving that Ψ ◦Φ = IdT1 .

Similarly, one shows that Φ ◦Ψ = IdT2 .

And for our psychological comfort, we should show the existence of a tensor
product of V and W. We’ll employ a slightly more general construction:

Example 3.3 (Free vector space). Let S be a non-empty set and consider the col-
lection F(S) of the functions f : S → R such that f (s) 6= 0 only for finitely many
elements s ∈ S. The operations of addition and scalar multiplication in F(S), de-
fined pointwise, make it a vector space. For each a ∈ S, define δa : S → R by
δa(x) = 1 if x = a and 0 otherwise.

Exercise 3.1. Show that {δa | a ∈ S} is a basis for F(S).

Moreover, the map S 3 s 7→ δs ∈ {δa | a ∈ S} is a bijection, and so we identify
a with δa, for each a ∈ S. So we have proven that given any non-empty set S, there
is a vector space with S as a basis.

To exhibit a tensor product of V and W, we consider the quotient of F(V ×W)
by the subspace F0 spanned by the elements of the form

(v1 + v2, w)− (v1, w)− (v2, w),
(v, w1 + w2)− (v, w1)− (v, w2),

(λv,w)− λ(v, w) e
(v, λw)− λ(v, w).

Suppose that ⊗ : V ×W → F(V ×W)/F0 is the function assigning to each (v, w)
its class v ⊗ w in F(V ×W)/F0. Such quotient gives us the relations

(v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

(λv) ⊗ w = λ(v ⊗ w) = v ⊗ (λw).

Compare them with the Exercise 1.8 (p. 9). Finally:
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Proposition 3.4. The pair (F(V ×W)/F0,⊗) is a tensor product of V and W.

Proof: By construction, ⊗ is bilinear. Let Z be a real vector space and take a bilin-
ear map B : V ×W → Z. Since V ×W is a basis for F(V ×W), there is a unique
linear extension B̃ : F(V×W)→ Z of B. But as B is bilinear, B̃ vanishes on the ele-
ments of F0, and thus passes to the quotient as a linear map B̂ : F(V×W)/F0 → Z,
satisfying B̂(v⊗w) = B(v, w), as wanted.

This way, we denote V ⊗ W = (F(V ×W)/F0,⊗). But once the existence
of V ⊗ W is establish, we never need to worry about the its construction again.
Before proceeding, we note two important details:

• A generic element of V ⊗ W is not necessarily of the form v ⊗ w for certain
v ∈ V and w ∈W, but it is instead a sum of elements of this form (then called
decomposable, or pure tensors).

• To define linear maps in V ⊗ W, we necessarily have to use the universal
property. This is made clear by the quotient construction given above, for ex-
ample, but the issue is that a given element of V ⊗ W may be represented in
more than one way. In other words, it may be expressed as two sum, of dif-
ferent elements. The universal property ensures that all of those possibilities
were considered at the same time.

With this in mind, the identification we’re looking for is given in the following:

Proposition 3.5. The map

B : V ×W → Lin2(V∗ ×W∗, R)

given by B(v, w)( f , g) .
= f (v)g(w) induces an isomorphism

V⊗W ∼= Lin2(V∗ ×W∗),

where Lin2(V∗ ×W∗, R) = {T : V∗ ×W∗ → R | T is bilinear}.

Definition 3.6. Let V1, . . . , Vp be vector space. A tensor product of V1, . . . , Vp is a
pair (T,⊗), where T is a vector space and

⊗ : V1 × · · · ×Vp → T

is a multilinear map satisfying the following universal property: given any vector
space Z and any multilinear map

B : V1 × · · · ×Vp → Z,

there is a unique linear map B̂ : T→ Z such that B̂ ◦ ⊗ = B. In other words, the
following diagram can always be uniquely completed:
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Z

T

B̂

V1 × · · · ×Vp
B

⊗

Figure 6: The universal property of (T,⊗), again.

It is the same history as before: a tensor product universally linearizes all mul-
tilinear maps, using a single map ⊗ as a dictionary. The philosophy behind all the
ideas given so far will not change.

Exercise 3.2. Let V1, . . . , Vp be vector spaces, and (T1,⊗1) and (T2,⊗2) be two ten-
sor products of V1, . . . , Vp. Show that there is a linear isomorphism Φ : T1 → T2
such that Φ ◦ ⊗1 = ⊗2.

Regarding the existence of a tensor product in this setting, we again consider
a quotient of the form F(V1 × · · · × Vp)/F0, where F0 is the subspace spanned
by certain elements, to make the quotient projection restricted to V1 × · · · × Vp
multilinear.

Exercise 3.3. Try to describe the subspace F0 when p = 3.

And, as before, one can show that the tensor product of V1, . . . , Vp so defined,
denoted by

⊗p
i=1 Vi or V1⊗ · · · ⊗Vp, is isomorphic to the space of multilinear maps

from V∗1 × · · · × V∗p to R. In the case where V1 = · · · = Vp = V, we can simply
write V⊗p =

⊗p
i=1 Vi =

⊗p V. With this notation, we then conclude that

Tr
s(V) = V⊗r ⊗ (V∗)⊗s.

Exercise 3.4. Write T1 2
2 (V) and T2

1 3(V) as tensor products of V and V∗, in the
correct order.

To conclude the discussion, let’s see a couple of other applications of the uni-
versal property:

Proposition 3.7 (Commutativity). Let V and W be vector spaces. Then we have that
V ⊗W ∼= W ⊗V.

Proof: By now, it should be reasonably clear that the map we’re looking for is
B̂ : V ⊗W → W ⊗V given by B̂(v⊗w) = w⊗ v. To define it rigorously, consider
B : V ×W → W ⊗ V given by B(v, w) = w⊗ v. Since B is bilinear, the universal
property of V ⊗W will give us B̂.
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B

B̂

V ×W W ⊗V

⊗

V ⊗W

Figure 7: Formalizing B̂(v⊗w) = w⊗ v.

To show that B̂ is an isomorphism, we repeat the same argument “backwards”
to define its inverse.

Exercise 3.5. Define formally the inverse of B̂.

Suggestion. Do not forget to use the uniqueness of linearizations given by the
universal property to ensure that the inverse you have defined indeed works, just
like what we have done in Proposition 3.2 (p. 26).

⊗

W ×V

W ⊗V

V ⊗W

Figure 8: Hint.

We also have the:

Proposition 3.8 (Associativity). Let V1, V2 and V3 be vector spaces. Then

(V1 ⊗V2)⊗V3
∼= V1 ⊗V2 ⊗V3.

Proof: We want to construct the map taking (v1 ⊗ v2) ⊗ v3 to v1 ⊗ v2 ⊗ v3, and
the idea for that is to use universal properties “backwards”. Fixed v3 ∈ V3, define
Φv3 : V1 × V2 → V1 ⊗ V2 ⊗ V3 by Φv3(v1, v2)

.
= v1 ⊗ v2 ⊗ v3. Note that Φv3 is

bilinear, so the universal property of V1 ⊗V2 yields a linear map

Φ̂v3 : V1 ⊗V2 → V1 ⊗V2 ⊗V3

satisfying Φ̂v3(v1 ⊗ v2) = v1 ⊗ v2 ⊗ v3.
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⊗
Φ̂v3

V1 ⊗V2 ⊗V3
Φv3

V1 ×V2

V1 ⊗V2

Figure 9: The first step.

Thus, it is well-defined the map Φ : (V1 ⊗V2)×V3 → V1 ⊗V2 ⊗V3 given by

Φ(v1 ⊗ v2, v3)
.
= v1 ⊗ v2 ⊗ v3.

But since Φ̂v3 is linear, we have that Φ is bilinear, and so the universal property of
(V1 ⊗V2)⊗V3 gives a linear map Φ̂ : (V1 ⊗V2)⊗V3 → V1 ⊗V2 ⊗V3 satisfying

Φ̂((v1 ⊗ v2)⊗ v3) = v1 ⊗ v2 ⊗ v3.

⊗

V1 ⊗V2 ⊗V3

Φ̂

(V1 ⊗V2)⊗V3

(V1 ×V2)×V3
Φ

Figure 10: Concluding the definition of Φ̂.

The construction of the inverse map is simpler and requires a single step: define
Ψ : V1 ×V2 ×V3 → (V1 ⊗V2)⊗V3 by

Ψ(v1, v2, v3)
.
= (v1 ⊗ v2)⊗ v3.

Since Ψ is trilinear, the universal property of V1 ⊗V2 ⊗V3 finally gives us a linear
map Ψ̂ : V1 ⊗V2 ⊗V3 → (V1 ⊗V2)⊗V3 satisfying

Ψ̂(v1 ⊗ v2 ⊗ v3) = (v1 ⊗ v2)⊗ v3.
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⊗

V1 ×V2 ×V3

V1 ⊗V2 ⊗V3

(V1 ⊗V2)⊗V3
Ψ

Ψ̂

Figure 11: Defining the inverse Ψ̂.

Clearly Φ̂ and Ψ̂ are inverses, which establishes the desired isomorphism.

Practice some writing:

Exercise 3.6. Let V1, V2 and V3 be vector spaces. Show that

V1 ⊗ (V2 ⊗V3) ∼= V1 ⊗V2 ⊗V3.

In general, this associativity holds for the tensor product of finitely many vector
spaces. Note that there is no ambiguity then in writing Tr

s(V) = V⊗r ⊗ (V∗)⊗s.

Exercise 3.7. Let V1, W1, V2 and W2 be vector spaces, and take T : V1 → W1 and
S : V2 → W2 two linear maps. Show that there is a unique linear transformation
T ⊗ S : V1 ⊗V2 →W1 ⊗W2 such that

(T ⊗ S)(v1 ⊗ v2) = T(v1)⊗ S(v2),

for all v1 ∈ V1 and v2 ∈ V2.

Remark.

• This indicates how to generalize the tensor product defined in Section 1 to
multilinear maps with codomains more complicated than R. Bear in mind
that R⊗p ∼= R, for all p.

• One can also show that if B1, B2, C1 and C2 are bases for V1, V2, W1 and W2,
respectively (with dimensions n1, n2, m1 and m2), and [T]B1,C1 = A = (ai

j)

and [S]B2,C2 = B = (bi
j), then

[T ⊗ S]B1⊗B2,C1⊗C2 ≡ A⊗ B .
=

 a1
1B · · · a1

n1
B

... . . . ...
am1

1 B · · · am1
n1 B

 .

The matrix A⊗ B is called the Kronecker product of A and B. Such product has
some interesting properties. For example, if A and B are square matrices of
orders n and m, respectively, then we have the identity5

det(A⊗ B) = (det A)m(det B)n.
5Yes, the order of A is the exponent of det B and vice-versa. This is not a mistake.
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There are further universal properties than the one seen for the tensor product
here. Let’s see an example:

Definition 3.9 (Complexification). Let V be a real vector space. A complexification of
V is a pair (VC, ι), where VC is a complex vector space and ι : V → VC is a R-linear
map satisfying the following universal property: given any complex vector space
Z and a R-linear map T : V → Z, there is a unique C-linear map TC : VC → Z such
that TC ◦ ι = T. In other words, the following diagram can always be uniquely
completed:

ZV
T

TC

ι

VC

Figure 12: The universal property of (VC, ι).

The next result and its proof should not be surprising by now:

Proposition 3.10. Let V be a real vector space, and (VC1, ι1) and (VC2, ι2) be two com-
plexifications of V. Then there is a C-linear isomorphism Φ : VC1 → VC2 such that
Φ ◦ ι1 = ι2.

Φ

ι2

VC2

V

VC1

ι1

Figure 13: The uniqueness of the complexification up to isomorphism.

Proof: The proof is similar to what we did for Proposition 3.2 (p. 26). Since
ι2 : V → VC2 is R-linear, the universal property of (VC1, ι1) will give us a unique
C-linear map Φ : VC1 → VC2 such that Φ ◦ ι1 = ι2.
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V
ι2

Φ

VC2

ι1

VC1

Figure 14: Defining Φ.

Similarly, using that ι1 : V → VC1 is R-linear, the universal property of (VC2, ι2)
will give us a unique C-linear map Ψ : VC2 → VC1 such that Ψ ◦ ι2 = ι1.

V

VC2

ι2

Ψ

ι1
VC1

Figure 15: Defining Ψ.

Then Φ and Ψ are inverses.

V
ι1

VC1

VC1

ι1

IdVC1

V
ι1

VC1

VC1

ι1

Ψ ◦Φ

Figure 16: Proving that Ψ ◦Φ = IdVC1
.

Similarly, we show that Φ ◦Ψ = IdVC2
.

Remark. The sort of argument given above works, in general, for proving the
uniqueness (up to isomorphism) of any object characterized by a universal prop-
erty.
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Exercise 3.8. The following objects also have universal properties. Look them up:

(a) The direct sum
⊕

i∈I Vi of a family (Vi)i∈I of vector spaces.

(b) The direct product ∏i∈I Vi of a family (Vi)i∈I of vector spaces.

(c) The quotient V/W of a vector space V by a subspace W.

(d) The free vector space F(S) over a non-empty set S (seen in Example 3.3, p. 28).

Universal properties also appear in several other areas of Mathematics. They are
studied rigorously in Category Theory.

Fortunately, the construction of complexifications is easier. One of the most
usual constructions, which you might already know, is outlined in the:

Exercise 3.9. Let V be a real vector space. Define in the cartesian product V × V
the following multiplication by complex scalar:

(a + bi)(u, v) .
= (au− bv, bu + av).

(a) With this multiplication and the usual addition performed componentwise,
show that V ×V is a complex vector space. Note that (u, v) = (u, 0) + i(0, v).
This way, we write V ⊕ iV .

= V ×V.

Remark. If you feel comfortable doing it, you might as well identify u ≡ (u, 0)
and iv ≡ (0, v), and start writing (u, v) = u + iv, just like you were working
in C. As a matter of fact, this construction applied to V = R indeed gives C.

(b) Show that if (vi)
n
i=1 is a R-basis for V, then ((vi, 0))n

i=1 is a C-basis for V ⊕ iV.
Thus dimC(V ⊕ iV) = dimR V.

(c) If ι : V → V ⊕ iV is given by ι(u) = (u, 0), show that (V ⊕ iV, ι) satisfies the
universal property of the complexification.

(d) Bonus: suppose that 〈·, ·〉 is a scalar product on V. Show that

〈u1 + iv1, u2 + iv2〉C
.
= 〈u1, u2〉+ 〈v1, v2〉+ i(〈v1, u2〉 − 〈u1, v2〉)

is a hermitian and sesquilinear6 product on V ⊕ iV, that is, it is linear in the first
entry, anti-linear in the second entry, and it satisfies 〈z, w〉C = 〈w, z〉C.

Several properties of complexifications can be proven via the uniqueness given
by the universal property characterizing them. For instance:

Exercise 3.10. Let (VC, ι) be a complexification of V. Show that if Z is a complex
vector space, T, S : V → Z are R-linear and λ ∈ R, then:

(a) (T + S)C = TC + SC;

6Better than linear, weaker than bilinear: 1.5-linear.
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(b) (λT)C = λTC.

Another way to explicitly construct complexification is via tensor products:

Proposition 3.11. The pair (C⊗V, 1⊗ _) is a complexification of V.

Proof: Before anything else, note that the multiplication by complex scalar defined
by µ(λ⊗ v) .

= (µλ)⊗ v turns C⊗V into a complex vector space. And clearly the
map

V 3 v ι7−→ 1⊗ v ∈ C⊗V

is R-linear. So, let Z be a complex vector space, and take a R-linear map T : V → Z.
Define T̃ : C×V → Z by T̃(λ, v) .

= λT(v).

ZC×V
T̃

TC

⊗

C⊗V

Figure 17: Constructing TC via the propriedade universal of C⊗V.

Since T̃ is R-bilinear, there is a unique R-linear map TC : C⊗V → Z such that

TC(λ⊗ v) = λT(v),

for all λ ∈ C and v ∈ V. In particular, TC(ι(v)) = T(v), and thus the only thing
left to show is that TC is actually C-linear. But

TC(µ(λ⊗ v)) = TC((µλ)⊗ v) = (µλ)T(v) = µ(λT(v)) = µTC(λ⊗ v),

as wanted.
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