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ON TOTAL SPACES OF
TAUTOLOGICAL LINE BUNDLES

Ivo Terek

1 The tautological line bundle E; — PV

1.1 Setup, trivializations, and transition mappings

Given any (n + 1)-dimensional vector space V over a field K € {R,C}, one may
form the tautological line bundle over the projective space PV, which assigns to each
point L € PV the one-dimensional vector space L itself. In other words, the fiber over
Lis L. Writing E; for the total space of such a bundle, we have that

Er= || L= U ({L} xL)={(Lv) e PV xV |v e L}. (1.1)
LePV LePV

Write 7: E; — PV for the projection given by 7(L,v) = L. For every linear functional
f € V¥~ {0}, we may construct a local trivialization x s for E; by noting that

the set Us = {L € PV | f[L] = R} is open in PV, (1.2)
by definition of quotient topology, and defining

xp: 7 U] = Up x Rby xs(L,v) = (L, f(0), 13)
whose inverse is the mapping

thl: Uf x R — 7 ![Uy] defined by inl(L,A) = (L, Ax/f(x)),

1.4
where a nonzero element x € L\ {0} (so L = Kx) is chosen at will. 14

To see that the choice of x in (1.4) does not matter, observe that replacing x with any
multiple ux, u € K\ {0}, it follows that A(ux)/ f (ux) = Aux/(uf(x)) = Ax/f(x), by
linearity of f.

Each restriction {L} x L 3 (L,v) — f(v) € R of xs in (1.3) is a linear isomorphism
due to L € Uy, and so {(Uyf, Xf)}fev+ oy is an atlas of trivializations for E;. We
proceed to describe its transition functions. To do so, we consider a second linear
functional i € V* \ {0} such that U N U} # &, as well as the composition

xrox, ' (UpNUy) xR — (UpNUy) X R, (1.5)
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easily computed — by (1.4) —as

(xrox, I(LA) = xy (L%> = (L,f <%)) = (L,%A)- (1.6)

The ratio f(x)/h(x), however, does not depend on the choice of x € L~ {0}, but
instead only on the line L itself. Therefore the transition functions

g UpNU, — GLi(K) = K* are given by gg,(L) = f(x)/h(x),

where a nonzero element x € L\ {0} (so L = Kx) is chosen at will. (1.7)

1.2 Manifold-charts for E;

Now, we recall that for any smooth vector bundle E — M, charts for E can be built
from charts for M together with trivializations for E. The situation for the tautolog-
ical line bundle E; — PV considered here is particularly nice, as PV admits an atlas
{(Uys, ¢f) } fev=- 0y Whose domains are the same sets Uy defined in (1.2). Namely, we
have that

each ¢s: Uy — f~1(1) is given by ¢f(L) = x/f(x), where (1.8)
anonzero element x € L\ {0} (so L = Kx) is chosen at will. '

See Figure 1 for a geometric interpretation.
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Figure 1: Hyperplane-valued coordinate charts for PV.

The corresponding charts for E; will be given by the compositions

xId
U] — X Uy x R —2, £71(1) xR (1.9)

\/

¥r

More precisely, we have that

Pr: ﬂ_l[uf] — f_l(l) x R is given by ¢f(L/U) = (x/f(x), f(v)), (1.10)
where a nonzero element x € L\ {0} (so L = Kx) is chosen at will. '
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We may again consider a second linear functional 1 € V* \. {0} such that U N U}, # &,
and directly compute the chart transitions

prowy, gl UA N A U] = gl U0 W] (1)
Before doing so, observe that 1,Df[ Hu na U]l = (f71(1) N kerh) x R — and
similarly for ¢, [~ [{Uf] N 7w [Uy]] = (h7'(1) \ ker f) x R - are disconnected. For

instance,
the connected components of f~1(1) \ kerh are the two
intersections f~1(1) Nh=1(0,00) and f~1(1) Nh~1(—c0,0).

With this in place, we compute ¢ o gt (WL (1) Nker f) x R — (f1(1) \kerh) x R
as

(1.12)

((pf x Idg) o xf) 0 ((qoh x Idg) o xn) ™ (1, )
= (¢f xIdg) o x50 x;," o (@ x Idr) ' (1, A)
= (¢f xIdg) o (xgox; ") o (¢, " x Idr)(u,A)
= (g x 1dr) o (xs 0 x, ") (Ku, A) (113)

S ((Pf x IdR) (Ku, Af(u))

where on () we use (1.6) with x = u together with h(u) = 1. Writing F = ¢ o !
for simplicity, we have that dF, ,): kerh X R — ker f x R is given by

proy;, H(u,A) =

—
~—

w
aF(e,8) = (P2 )+ ap(w)). (114
At this point, it makes no sense to ask ourselves whether F is orientation-preserving
or orientation-reversing, as our charts for PV are not valued in R".

1.3 Intrinsic orientability?

Provided V itself is real and oriented, there is a way to assign orientations for
ker f and kerh, and thus proceed with the discussion. To do it, fix a volume form
O € [V*]M0H+1D) {0}, and consider a basis B = (vy,...,v,) for ker f. The linear func-
tional Q(vy,...,04,+): V — R vanishes on ker f, and therefore induces a nonzero —
due to linear independence of B — functional Qg : V /ker f — R, as does f itself, say
j?: V/ker f — R. As V/ker f is one-dimensional, we have that Qg = txj? for some
scalar x € R\ {0}. We will say that B is positive or negative according to whether
« is positive or negative, respectively. Observe that while ker f = ker (Af) for ev-
ery A € R~ {0}, the orientation will change if A < 0, so that the choice of “gauge”
functional realizing a hyperplane as its kernel does matter.

One strategy would be to assume from here on that K = R and that a volume form
Q) for V is fixed, and verify whether dF, ,) takes positive bases for ker’ x R onto
positive bases for ker f x IR, but this sounds very unpleasant to do.
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1.4 Coordinate computations

We assume that V = R"*! and write RP" = P(R"*!). Instead of considering
the full atlases { (U, xf) } rev+ joy and {(Uy, ¢f) } fev= g0} of trivializations for E; and
charts for RP", respectively, we let f range over the set {7,..., T, } of coordinate
projections 7t;: R"*! — R, and write simply Uj = Ux; and xj = Xn;, for 0 < j < n.
In particular, deleting the j-th coordinate describes an (affine) isomorphism between

each hyperplane 77]._1 (1) and R".

Whenever x = (xo,...,x;) € R""1 <\ {0}, we will write [xg : - - - : x4] = Rx € RP"
for the so-called homogeneous coordinates of Rx. With this notation in place, the domains
U; - see (1.2) — become

ul:{[xoxn]elRPn|xl7éO}, OSZSTI, (115)

while the charts (1.8) now read

~

X0 Xi—1 Xi41 Xn
U — RY, ; D ==, ..., , e, — . 1.16
it U, gl i) = (22,0, 50502 g

The trivializations x; for E; —cf. (1.3) — are given by
xi: U] = U x R, Xi([xo: - xu], (0o, ..., 00)) = ([x0: -+ x4],0;), (1.17)

with transition maps g;;: U; N U; — GL1(R) = R* given by
gi]'([X() Lo Xn]) = — (1.18)

according to (1.7). The manifold-charts for E;, defined in (1.10), simply reduce to the
mappings ;: 771 [U;] — R"™, given by

X Xi_ X; X
il[xo: - xu], (Vo, ..., 00)) = <;°x—1x—+17@> (1.19)

Finally, to describe the transition maps computed in (1.13), for i < j, start noting that

gD][u, N U]] = ]RZ‘#O and (pi[ui N LI]] = Z_l#o (1.20)

are disconnected (compare it with (1.12)) so that ¢; o gbj_lz ]RZ 20 % R — IR?1 20 % R is

given by

(ioy; ) (b, tu,s) =
= lpi([tl Do t]'_l 3 t]' D tn] (tls,. . .,t]-_ls,s, t]'S,. . .,tnS)) (1.21)

The Jacobian matrix of 1; o ¢!

;s best described in particular cases.
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In RPY, g0 ¢, (t,s) = (1/t,1s) has

_ -1/t 0 _
d(woosvll)(t,s):[ s/ t}, detd(oopy )(ts) = —-.  (1.22)
In RP?, we have
1t
-1 2
t,t =|—,=1
Yooty (t,t,s) (tl'fl’ 15)
1 ty 1
lPOOlPZ (tl,tz,S): t_’t_’tls (123)
1 b
_ t1 1
lljl o IPQ 1(t11 tZ/S) - (t_ll t_/ tZS) ’
2 f2
with Jacobians
-1/ 0 0 —t/t2 1/t 0 1/ta —t1/t5 0
—t/88 1/t 0|, |[-1/8 0 0, 0 -1/5 0]. (1.24)
S 0 #H S 0 t 0 S tr

The Jacobian determinant of the single transition mapping listed for RP! changes
sign on its domain R* x R, while the three Jacobian determinants listed for RP? are
all negative. This seems to suggest that whether the total space of E; — RP" is an orientable
manifold or not depends on the parity of n.

2 The line bundles E,

Still with the setup of the previous section, and noting that tensor products of one-
dimensional vector spaces are again one-dimensional, the following generalization
becomes natural: let d > 0 and assign to each point L € PV, the tensor power line L%,
Write E; for the total space of such a bundle, so that

Esj= || L9 = |J {L} x L9 = {(L,®) e PV x V*¥ | © € L¥}, (2.1)
LePV LePV

and 7: E; — PV for the projection given by 77(L,®) = L. Clearly E; = (E;)®¢, so
the structure of E; is derived from the one in E;. Similarly, one may define E_; by
assigning to each point L € PV the dual line L*, thus making sense of E; for d < 0.
Namely, the fiber of E; over L when d < 0 is simply [L*]®l4l. When d = 0, we obtain
the trivial line bundle PV x R — PV as L®? = R by default.

Ford > 0 and L € PV, note that if x € L~ {0}, then x®¢ € L®¥ \ {0}, so we may
consider dth tensor power 4 of any linear functional f € V* \ {0} with f[L] = R,
characterized by f®4(x®4) = f(x)¢, inducing an isomorphism between L®? and R.

When d < 0, replace L with L* and switch the roles of f and x in the previous
paragraph, regarding x as an element of L** instead.
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With the setup of the previous section, it now follows that the transition maps
g Up N U, — GL1(R) = IR are given by

@d (,®d x)4 x d
gmm(L) = i@dgx@@d; = igxid = (f( )) , (2.2)

where x € L\ {0} is chosen at will, as usual.

As a toy problem, we consider E; — RRP!. When is the manifold E; orientable?
Does the answer depend on d? Mimicking what was done in (1.13) and incorporating
dth powers on (1.18), we have that

wopr (05) = yullt: 1, 15,9 = (3,5 23)
so that
. ~-1/£ 0
dpooyi s = | L 4

has determinant equal to —t1-2_ S0, whenever d is even, the sign of such determinant
is constant (so that E; is orientable), but changes signs when d is odd (so that E; is
non-orientable).

3 And on Grassmannians?

Consider instead the Grassmannian manifold of k-dimensional subspaces of V,
Gry(V). There is a tautological vector bundle of rank k over E; — Gry(V), whose fiber
over a point W € Gr(V) is W itself. If d € Z, one may again consider E; — Gry (V)
by assigning to W the vector space W® (where for d < 0 we understand that W is
replaced with W* and d with —d). What can be said about the total space of such a
bundle?
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