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1 The tautological line bundle E1 → PV

1.1 Setup, trivializations, and transition mappings

Given any (n + 1)-dimensional vector space V over a field K ∈ {R, C}, one may
form the tautological line bundle over the projective space PV, which assigns to each
point L ∈ PV the one-dimensional vector space L itself. In other words, the fiber over
L is L. Writing E1 for the total space of such a bundle, we have that

E1 =
⊔

L∈PV
L =

⋃
L∈PV

({L} × L) = {(L, v) ∈ PV ×V | v ∈ L}. (1.1)

Write π : E1 → PV for the projection given by π(L, v) = L. For every linear functional
f ∈ V∗ r {0}, we may construct a local trivialization χ f for E1 by noting that

the set U f = {L ∈ PV | f [L] = R} is open in PV, (1.2)

by definition of quotient topology, and defining

χ f : π−1[U f ]→ U f ×R by χ f (L, v) = (L, f (v)), (1.3)

whose inverse is the mapping

χ−1
f : U f × R → π−1[U f ] defined by χ−1

f (L, λ) = (L, λx/ f (x)),
where a nonzero element x ∈ Lr {0} (so L = Kx) is chosen at will.

(1.4)

To see that the choice of x in (1.4) does not matter, observe that replacing x with any
multiple µx, µ ∈ Kr {0}, it follows that λ(µx)/ f (µx) = λµx/(µ f (x)) = λx/ f (x), by
linearity of f .

Each restriction {L} × L 3 (L, v) 7→ f (v) ∈ R of χ f in (1.3) is a linear isomorphism
due to L ∈ U f , and so {(U f , χ f )} f∈V∗r{0} is an atlas of trivializations for E1. We
proceed to describe its transition functions. To do so, we consider a second linear
functional h ∈ V∗ r {0} such that U f ∩Uh 6= ∅, as well as the composition

χ f ◦ χ−1
h : (U f ∩Uh)×R→ (U f ∩Uh)×R, (1.5)
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easily computed – by (1.4) – as

(χ f ◦ χ−1
h )(L, λ) = χ f

(
L,

λx
h(x)

)
=

(
L, f

(
λx

h(x)

))
=

(
L,

f (x)
h(x)

λ

)
. (1.6)

The ratio f (x)/h(x), however, does not depend on the choice of x ∈ L r {0}, but
instead only on the line L itself. Therefore the transition functions

g f h : U f ∩ Uh → GL1(K) = K× are given by g f h(L) = f (x)/h(x),
where a nonzero element x ∈ L r {0} (so L = Kx) is chosen at will.

(1.7)

1.2 Manifold-charts for E1

Now, we recall that for any smooth vector bundle E→ M, charts for E can be built
from charts for M together with trivializations for E. The situation for the tautolog-
ical line bundle E1 → PV considered here is particularly nice, as PV admits an atlas
{(U f , ϕ f )} f∈V∗r{0} whose domains are the same sets U f defined in (1.2). Namely, we
have that

each ϕ f : U f → f−1(1) is given by ϕ f (L) = x/ f (x), where
a nonzero element x ∈ L \ {0} (so L = Kx) is chosen at will.

(1.8)

See Figure 1 for a geometric interpretation.

0

L

f−1(1)ker f

ϕ f (L)

V

Figure 1: Hyperplane-valued coordinate charts for PV.

The corresponding charts for E1 will be given by the compositions

π−1[U f ] U f ×R f−1(1)×R

ψ f

χ f ϕ f×IdR

(1.9)

More precisely, we have that

ψ f : π−1[U f ] → f−1(1) × R is given by ψ f (L, v) = (x/ f (x), f (v)),
where a nonzero element x ∈ L r {0} (so L = Kx) is chosen at will.

(1.10)
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We may again consider a second linear functional h ∈ V∗r {0} such that U f ∩Uh 6= ∅,
and directly compute the chart transitions

ψ f ◦ ψ−1
h : ψh[π

−1[U f ] ∩ π−1[Uh]]→ ψ f [π
−1[U f ] ∩ π−1[Uh]]. (1.11)

Before doing so, observe that ψ f [π
−1[U f ] ∩ π−1[Uh]] = ( f−1(1) r ker h) × R – and

similarly for ψh[π
−1[U f ] ∩ π−1[Uh]] = (h−1(1)r ker f ) ×R – are disconnected. For

instance,
the connected components of f−1(1) r ker h are the two
intersections f−1(1) ∩ h−1(0, ∞) and f−1(1) ∩ h−1(−∞, 0).

(1.12)

With this in place, we compute ψ f ◦ψ−1
h : (h−1(1)rker f )×R→ ( f−1(1)rker h)×R

as

ψ f ◦ ψ−1
h (u, λ) = ((ϕ f × IdR) ◦ χ f ) ◦ ((ϕh × IdR) ◦ χh)

−1(u, λ)

= (ϕ f × IdR) ◦ χ f ◦ χ−1
h ◦ (ϕh × IdR)

−1(u, λ)

= (ϕ f × IdR) ◦ (χ f ◦ χ−1
h ) ◦ (ϕ−1

h × IdR)(u, λ)

= (ϕ f × IdR) ◦ (χ f ◦ χ−1
h )(Ku, λ)

(∗)
= (ϕ f × IdR) (Ku, λ f (u))

=

(
u

f (u)
, λ f (u)

)
(1.13)

where on (∗) we use (1.6) with x = u together with h(u) = 1. Writing F = ψ f ◦ ψ−1
h

for simplicity, we have that dF(u,λ) : ker h×R→ ker f ×R is given by

dF(u,λ)(w, ξ) =

(
f (u)w− f (w)u

f (u)2 , ξ f (u) + λ f (w)

)
. (1.14)

At this point, it makes no sense to ask ourselves whether F is orientation-preserving
or orientation-reversing, as our charts for PV are not valued in Rn.

1.3 Intrinsic orientability?

Provided V itself is real and oriented, there is a way to assign orientations for
ker f and ker h, and thus proceed with the discussion. To do it, fix a volume form
Ω ∈ [V∗]∧(n+1) r {0}, and consider a basis B = (v1, . . . , vn) for ker f . The linear func-
tional Ω(v1, . . . , vn, ·) : V → R vanishes on ker f , and therefore induces a nonzero –
due to linear independence of B – functional ΩB : V/ker f → R, as does f itself, say
f̃ : V/ker f → R. As V/ker f is one-dimensional, we have that ΩB = α f̃ for some
scalar α ∈ R r {0}. We will say that B is positive or negative according to whether
α is positive or negative, respectively. Observe that while ker f = ker (λ f ) for ev-
ery λ ∈ R r {0}, the orientation will change if λ < 0, so that the choice of “gauge”
functional realizing a hyperplane as its kernel does matter.

One strategy would be to assume from here on thatK = R and that a volume form
Ω for V is fixed, and verify whether dF(u,λ) takes positive bases for ker h × R onto
positive bases for ker f ×R, but this sounds very unpleasant to do.
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1.4 Coordinate computations

We assume that V = Rn+1 and write RPn = P(Rn+1). Instead of considering
the full atlases {(U f , χ f )} f∈V∗r{0} and {(Uϕ, ϕ f )} f∈V∗r{0} of trivializations for E1 and
charts for RPn, respectively, we let f range over the set {π0, . . . , πn} of coordinate
projections πj : Rn+1 → R, and write simply Uj = Uπj and χj = χπj , for 0 ≤ j ≤ n.
In particular, deleting the j-th coordinate describes an (affine) isomorphism between
each hyperplane π−1

j (1) and Rn.

Whenever x = (x0, . . . , xn) ∈ Rn+1 r {0}, we will write [x0 : · · · : xn] = Rx ∈ RPn

for the so-called homogeneous coordinates of Rx. With this notation in place, the domains
Uj – see (1.2) – become

Ui = {[x0 : · · · : xn] ∈ RPn | xi 6= 0}, 0 ≤ i ≤ n, (1.15)

while the charts (1.8) now read

ϕi : Ui → Rn, ϕi([x0 : · · · : xn]) =

(
x0

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn

xi

)
. (1.16)

The trivializations χi for E1 – cf. (1.3) – are given by

χi : π−1[Ui]→ Ui ×R, χi([x0 : · · · : xn], (v0, . . . , vn)) = ([x0 : · · · : xn], vi), (1.17)

with transition maps gij : Ui ∩Uj → GL1(R) = R× given by

gij([x0 : · · · : xn]) =
xi

xj
, (1.18)

according to (1.7). The manifold-charts for E1, defined in (1.10), simply reduce to the
mappings ψi : π−1[Ui]→ Rn+1, given by

ψi([x0 : · · · : xn], (v0, . . . , vn)) =

(
x0

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn

xi
, vi

)
. (1.19)

Finally, to describe the transition maps computed in (1.13), for i < j, start noting that

ϕj[Ui ∩Uj] = Rn
ti 6=0 and ϕi[Ui ∩Uj] = Rn

tj−1 6=0 (1.20)

are disconnected (compare it with (1.12)) so that ψi ◦ ψ−1
j : Rn

ti 6=0×R→ Rn
tj−1 6=0×R is

given by

(ψi ◦ ψ−1
j )(t1, . . . , tn, s) =

= ψi([t1 : · · · : tj−1 : 1 : tj : · · · : tn], (t1s, . . . , tj−1s, s, tjs, . . . , tns))

=

(
t1

ti
, . . . ,

ti−1

ti
,

ti+1

ti
, . . . ,

tj−1

ti
,

1
ti

,
tj

ti
, . . . ,

tn

ti
, tis
)

.

(1.21)

The Jacobian matrix of ψi ◦ ψ−1
j is best described in particular cases.
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In RP1, ψ0 ◦ ψ−1
1 (t, s) = (1/t, ts) has

d(ψ0 ◦ ψ−1
1 )(t, s) =

[
−1/t2 0

s t

]
, det d(ψ0 ◦ ψ−1

1 )(t, s) = −1
t

. (1.22)

In RP2, we have

ψ0 ◦ ψ−1
1 (t1, t2, s) =

(
1
t1

,
t2

t1
, t1s

)
ψ0 ◦ ψ−1

2 (t1, t2, s) =
(

t2

t1
,

1
t1

, t1s
)

ψ1 ◦ ψ−1
2 (t1, t2, s) =

(
t1

t2
,

1
t2

, t2s
)

,

(1.23)

with Jacobians
−1/t2

1 0 0

−t2/t2
1 1/t1 0

s 0 t1

 ,


−t2/t2

1 1/t1 0

−1/t2
1 0 0

s 0 t1

 ,


1/t2 −t1/t2

2 0

0 −1/t2
2 0

0 s t2

 . (1.24)

The Jacobian determinant of the single transition mapping listed for RP1 changes
sign on its domain R× ×R, while the three Jacobian determinants listed for RP2 are
all negative. This seems to suggest that whether the total space of E1 → RPn is an orientable
manifold or not depends on the parity of n.

2 The line bundles Ed

Still with the setup of the previous section, and noting that tensor products of one-
dimensional vector spaces are again one-dimensional, the following generalization
becomes natural: let d > 0 and assign to each point L ∈ PV, the tensor power line L⊗d.
Write Ed for the total space of such a bundle, so that

Ed =
⊔

L∈PV
L⊗d =

⋃
L∈PV
{L} × L⊗d = {(L, Θ) ∈ PV ×V⊗d | Θ ∈ L⊗d}, (2.1)

and π : Ed → PV for the projection given by π(L, Θ) = L. Clearly Ed = (E1)
⊗d, so

the structure of Ed is derived from the one in E1. Similarly, one may define E−1 by
assigning to each point L ∈ PV the dual line L∗, thus making sense of Ed for d < 0.
Namely, the fiber of Ed over L when d < 0 is simply [L∗]⊗|d|. When d = 0, we obtain
the trivial line bundle PV ×R→ PV as L⊗0 = R by default.

For d > 0 and L ∈ PV, note that if x ∈ L r {0}, then x⊗d ∈ L⊗d r {0}, so we may
consider dth tensor power f⊗d of any linear functional f ∈ V∗ r {0} with f [L] = R,
characterized by f⊗d(x⊗d) = f (x)d, inducing an isomorphism between L⊗d and R.

When d < 0, replace L with L∗ and switch the roles of f and x in the previous
paragraph, regarding x as an element of L∗∗ instead.
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With the setup of the previous section, it now follows that the transition maps
g f h : U f ∩Uh → GL1(R) = R× are given by

g f h(L) =
f⊗d(x⊗d)

h⊗d(x⊗d)
=

f (x)d

h(x)d =

(
f (x)
h(x)

)d

, (2.2)

where x ∈ L r {0} is chosen at will, as usual.

As a toy problem, we consider Ed → RP1. When is the manifold Ed orientable?
Does the answer depend on d? Mimicking what was done in (1.13) and incorporating
dth powers on (1.18), we have that

ψ0 ◦ ψ−1
1 (t, s) = ψ0([t : 1], (ts, s)⊗d) =

(
1
t

, tds
)

, (2.3)

so that

d(ψ0 ◦ ψ−1
1 )(t, s) =

[
−1/t2 0

dtd−1s td

]
(2.4)

has determinant equal to −td−2. So, whenever d is even, the sign of such determinant
is constant (so that Ed is orientable), but changes signs when d is odd (so that Ed is
non-orientable).

3 And on Grassmannians?

Consider instead the Grassmannian manifold of k-dimensional subspaces of V,
Grk(V). There is a tautological vector bundle of rank k over E1 → Grk(V), whose fiber
over a point W ∈ Grk(V) is W itself. If d ∈ Z, one may again consider Ed → Grk(V)
by assigning to W the vector space W⊗d (where for d < 0 we understand that W is
replaced with W∗ and d with −d). What can be said about the total space of such a
bundle?
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