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A QUICK NOTE ON ORTHOGONAL LIE ALGEBRAS
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EUCLIDEAN ALGEBRAS

Definition 1. The special orthogonal Lie algebra of dimension n ≥ 1 over R is defined as

so(n, R)
.
= {A ∈ gl(n, R) | A> + A = 0}.

It is a vector subspace of the space gl(n, R) of all n× n real matrices, and its Lie algebra
structure comes from the commutator of matrices, [A, B] .

= AB− BA.

For n = 1 we have so(1, R) = {0}, and for n = 2 we have so(2, R) ∼= R. So, from
here on, assume that n ≥ 3. On dimension n = 3, the first interesting case, we recall that
in the space R3 we have a cross product operation ×. Recall the double cross product
identity

x× (y× z) = 〈x, z〉y− 〈x, y〉z,

for any x, y, z ∈ R3, where 〈·, ·〉 denotes the usual inner product in R3. A simple way
to remember it is that x × (y × z) must be orthogonal to y × z, and so it should be
a linear combination of y and z. The only natural possibility for the coefficients of y
and z is the inner product of the remaining vectors, while the negative sign on the
z-coefficient accounts for skew-symmetry of ×. As a consequence:

Theorem 2. (R3,×) is a Lie algebra, which is isomorphic to so(3, R).

Proof: We have already mentioned that × is skew-symmetric. Moreover, the cyclic
sum over x, y and z of the double cross product identity vanishes, but this is the Jacobi
identity for (R3,×). Thus it is a Lie algebra. Now, given any x = (x1, x2, x3) ∈ R3, we
may consider the skew-symmetric linear operator x× _ : R3 → R3. Its matrix relative
to the standard basis of R3 is

Ax =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .

The map A : R3 → so(3, R) given by x 7→ Av is clearly a vector space isomorphism,
but it is also a Lie algebra isomorphism, as the relation [Ax,Ay] = Ax×y follows from a
straightforward computation, for all vectors x, y ∈ R3.

Remark. Note that kerAx = Rx for all non-zero x ∈ R3, and AL
x is never diagonaliz-

able, as its characteristic polynomial is t(t2 + ‖x‖2).
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Thus, we may treat so(3, R) as (R3,×). This works so nicely because the isomor-
phism given in the above proof turns out to be nothing more than the adjoint repre-
sentation of (R3,×). More precisely, we have that Ax = ad(x), for all x ∈ R3. This
allows us to quickly obtain several properties of so(3, R).

Proposition 3. so(3, R)′ = so(3, R). In particular, so(3, R) is not solvable nor nilpotent.

Proof: All the elements of the standard basis of R3 are obtained as cross products of
the remaining ones.

Remark. That so(3, R) is not nilpotent also follows from Engel’s theorem, as we have
already obtained the characteristic polynomials of all the Ax.

Proposition 4. The Cartan-Killing form of so(3, R) is given by κ = −2〈·, ·〉, and so so(3, R)
is semi-simple.

Proof: The double cross product formula may be recast as

ad(x) ◦ ad(y) = x⊗ y− 〈x, y〉IdR3 ,

and so we obtain that κ(x, y) = tr(ad(x) ◦ ad(y)) = 〈x, y〉 − 3〈x, y〉 = −2〈x, y〉, for all
x, y ∈ R3. Thus, κ = −2〈·, ·〉 is negative-definite. In particular, it is non-degenerate, so
Cartan’s Second Criterion now says that so(3, R) is semi-simple.

Remark. The fact that κ is negative-definite can be traced back to the fact that so(3, R)
is the Lie algebra of the compact Lie group SO(3, R) — compact Lie groups admit bi-
invariant Riemannian metrics, for which every ad(X) is a skew-symmetric map, thus
having all (complex) eigenvalues purely imaginary. It follows that the trace of the
composition of two such maps is never positive. Of course, this is true not only in
dimension 3, but for general n.

In any case, with a bit more of work, we can obtain something even better:

Theorem 5. so(3, R) is a simple Lie algebra.

Proof: Let i� so(3, R) be an ideal. Our goal is to show that the dimension of i cannot
be 1 or 2. We proceed by cases.

• The dimension of i cannot be 1. By contradiction, if we have i = Rv for some
non-zero vector v ∈ R3, we may choose any non-zero w ∈ v⊥ and use that i is
an ideal to write v×w = λv for some λ ∈ R. Thus λv is both proportional and
orthogonal to the non-zero vector v, leading to λv = 0 and thus λ = 0. Now,
v × w = 0 says that v and w are both proportional and orthogonal, which is
impossible as both vectors are non-zero.

• The dimension of i cannot be 2. By contradiction, if {v1, v2} is a basis for i, using
that i is an ideal gives that v1 × v2 ∈ i ∩ i⊥ = {0}, but v1 × v2 = 0 contradicts
linear independence of {v1, v2}.
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Remark. The above proof in fact shows the stronger statement: so(3, R) does not even
have bidimensional subalgebras.

The strategy for dealing with so(n, R) for arbitrary n ≥ 3 is, in general, pretty
different. For that, we’ll use exterior algebra instead of cross products to do it. This
generalization is to be expected, as (R3,×) satisfies the universal property of (R3)∧2.
Recall that given any vector space V, the exterior power V∧k is the space generated
by all k-blades v1 ∧ · · · ∧ vk, where v1, . . . , vk ∈ V and ∧ multilinear and alternating.
We also have that v1 ∧ · · · ∧ vk = 0 if and only if {v1, . . . , vk} is linearly dependent.
Moreover, if V is equipped with an inner product 〈·, ·〉, V∧2 may be identified with
so(V, 〈·, ·〉).

Theorem 6. so(n, R) is simple, unless n = 4.

Proof: Let i� so(n, R) be a non-zero ideal. Our goal is to show that i = so(n, R). So,
take a non-zero matrix A ∈ so(n, R) and write it as

A = λ1e1 ∧ e2 + λ2e3 ∧ e4 + · · ·+ λre2r−1 ∧ e2r

for some r ≥ 1, where (e1, . . . , en) is a positive orthonormal basis of Rn, and the co-
efficients λ1, . . . , λr ∈ R are non-zero real scalars1. Since i is an ideal, we get that the
expression on the right side of the above is in i for any positive orthonormal basis of
Rn. Let’s show that unless n = 4, the minimal possible r for a non-zero element of i is
r = 1. This will be enough to conclude that i = so(n, R) because so(n, R) is generated
by 2-blades of orthonormal vectors.

• If n is odd. There is a vector ek which does not appear in the expression for
A. Since flipping signs e1 7→ −e1 and ek 7→ −ek is an orientation preserving
orthogonal map, we have that −λ1e1 ∧ e2 + λ2e3 ∧ e4 + · · · + λre2r−1 ∧ e2r ∈ i.
Adding that to A, we obtain that 2λ2e3 ∧ e4 + · · ·+ 2λre2r−1 ∧ e2r ∈ i.

• If n is even and n 6= 4. Similarly to what was done above, we have that the
reflection e1 7→ −e1 and e3 7→ −e3 is an orientation preserving orthogonal map,
so we get that −λ1e1 ∧ e2 − λ2e3 ∧ e4 + · · ·+ λre2r−1 ∧ e2r ∈ i. Adding that to A,
we have that 2λ3e5 ∧ e6 + · · ·+ 2λre2r−1 ∧ e2r ∈ i.

In any case we obtain, by rescaling, that x ∧ y ∈ i for all x, y ∈ Rn, and so i = so(n, R)
as wanted.

1The complex eigenvalues of a skew-symmetric operator A in an Euclidean vector space (V, 〈·, ·〉)
are necessarily purely imaginary. The real and imaginary parts of an associated complex eigenvector
(in the complexified VC) span an A-invariant plane in V. Restricted to this plane, our skew-symmetric
operator acts as a rotation, as the complex number λi is identified with the matrix(

0 −λ
λ 0

)
,

so the expression A = λ1e1 ∧ e2 + λ2e3 ∧ e4 + · · ·+ λre2r−1 ∧ e2r says that Ae1 = λ1e2, Ae2 = −λ1e1,
and so on. Note that the assumption that 〈·, ·〉 is positive-definite is crucial to diagonalize A over C.
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When n = 4, the argument given in the second bullet above fails, since by adding A
to the modified operator would give the zero operator, and so one could not conclude
that the minimal r could be reduced. In fact, e1 ∧ e2 + e3 ∧ e4 spans the ideal of self-dual
operators and e1 ∧ e2 − e3 ∧ e4 spans the ideal of anti-self-dual operators, and it turns
out that so(4, R) ∼= so(3, R)⊕ so(3, R).

Corollary 7. so(n, R)′ = so(n, R) for all n 6= 4. In particular, so(n, R) is not solvable nor
nilpotent.

Proof: so(n, R)′ is a non-zero ideal of so(n, R).

Remark. Of course, the above is true replacing so(n, R) by any simple Lie algebra g.

COMMENTS ABOUT LORENTZIAN ALGEBRAS

Definition 8. The special pseudo-orthogonal Lie algebra of dimension n ≥ 1 and index ν
over R is defined as

soν(n, R)
.
= {A ∈ gl(n, R) | A>Idn−ν,ν + Idn−ν,ν A = 0},

where Idn−ν,ν = Idn−ν ⊕ (−Idν). Again, it is a vector subspace of the space gl(n, R)
of all n× n real matrices, and its Lie algebra structure comes from the commutator of
matrices, [A, B] .

= AB− BA.

Remark. Our convention for Idn−ν,ν reflects the choice of convention (+ · · ·+− · · · −)
for indefinite products. We may always assume that ν ≤ bn/2c, by switching the sign
of the metric if needed.

Let’s focus on the case ν = 1, i.e., on the case where our scalar product instead
of being Euclidean, are Lorentzian. Again, the dimensions n = 1 and n = 2 are
completely uninteresting. For dimension n = 3, we use the natural cross product ×L
in Lorentz-Minkowski space L3 = R3

1, defined in a similar way to the usual cross
product×, but flipping the sign of the timelike component. Namely, if (e1, e2, e3) is the
standard basis of L3, one has that

e1 ×L e2 = −e3, e2 ×L e3 = e1 and e3 ×L e1 = e2,

with an arbitrary x ×L y being computed from the above via bilinearity and skew-
symmetry of ×L. The Lorentzian version of the double cross product formula is

x×L (y×L z) = −〈x, z〉Ly + 〈x, y〉Lz,

for all x, y, z ∈ L3. With this in place, the situation here mirrors what happened in the
Euclidean case:
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Theorem 9. (L3,×L) is a Lie algebra, which is isomorphic to so1(3, R).

Proof: Again, we have that×L is skew-symmetric and the cyclic sum over x, y and z of
the Lorentzian double cross product identity vanishes, establishing the Jacobi identity
for (L3,×L). Thus it is a Lie algebra. As before, given any x = (x1, x2, x3) ∈ L3, we
may consider the (Lorentzian) skew-symmetric map x×L _ : L3 → L3, whose matrix
relative to the standard basis of L3 is

AL
x =

 0 −x3 x2
x3 0 −x1
x2 −x1 0

 .

And the map AL : L3 → so1(3, R) given by x 7→ AL
x is the desired Lie algebra isomor-

phism, as a quick computation shows that the relation [AL
x ,AL

y] = AL
x×Ly still holds for

all x, y ∈ L3 (even though, a priori, one might fear the appearance of a minus sign due
to some sort of causal character interference).

Remark. Again, the kernel of AL
x is just kerAL

x = Rx for all non-zero x ∈ L3. But this
time, the characteristic polynomial of AL

x is t(t2 − 〈x, x〉L), from where we see that:

• If x is spacelike, AL
x is diagonalizable (to wit, the timelike plane x⊥ cuts the light-

cone of L3 along two lightrays, which are the eigenspaces of AL
x ).

• If x is lightlike, then AL
x is nilpotent, by Cayley-Hamilton. More precisely, making

y = x in the the Lorentzian double cross product formula gives that (AL
x)

2 6= 0,
so t3 is in fact the minimal polynomial of AL

x . It is also not hard to see that if
y ∈ L3 is orthogonal to x (i.e., y lies in the lightlike plane containing x), then
x ×L y is always proportional to x, vanishing when y is lightlike (hence itself2

proportional to x) and being lightlike when y is spacelike.

• If x is timelike, then AL
x is never diagonalizable, just as in the Euclidean case (this

is hinted at by the fact that the spacelike plane x⊥ has trivial intersection with
the lightcone of L3).

So, treating so1(3, R) as (L3,×L), we may repeat the strategy adopted in the be-
ginning of this note to obtain properties of so1(3, R). The same argument given in the
Euclidean case gives us the:

Proposition 10. so1(3, R)′ = so1(3, R). In particular, so1(3, R) is not solvable nor nilpo-
tent.

Using causal characters, we see the first striking difference between the algebras
so(3, R) and so1(3, R):

Proposition 11. so1(3, R) is not simple, and the non-trivial ideals of (L3,×L) are precisely
the lightlike planes in L3.

2In any Lorentzian vector space, two lightlike vectors are orthogonal if and only if they are propor-
tional.
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Proof: Fix a non-zero v ∈ L3 and consider the line Rv. We argue that Rv is never
an ideal. If v is spacelike or timelike, take a spacelike w ∈ L3 orthogonal to v, so
that v ×L w has the “opposite” causal type of v, and thus cannot be in Rv. If v is
lightlike, take a lightlike w ∈ L3 with 〈v, w〉L = 1, so that v ×L w is spacelike, and
again cannot be in Rv. Now consider a plane Π in L3, passing through the origin. If Π
is spacelike or timelike, the cross product of any two vectors in a basis for Π will have
the “opposite” causal type of Π, and thus cannot be in Π. The last thing to verify is
that all lightlike planes are ideals. This was done in the previous remark.

In view of the previous result, the next best thing we could ask ourselves is whether
so1(3, R) is semi-simple.

Proposition 12. The Cartan-Killing form of so1(3, R) is given by κ = 2〈·, ·〉L, and so
so1(3, R) is semi-simple.

Proof: Like before, we have that

ad(x) ◦ ad(y) = −x⊗ y + 〈x, y〉LIdL3 ,

and so we obtain that κ(x, y) = tr(ad(x) ◦ ad(y)) = −〈x, y〉L + 3〈x, y〉L = 2〈x, y〉L,
for all x, y ∈ L3. Thus, κ = 2〈·, ·〉L is non-degenerate. The conclusion follows from
Cartan’s Second Criterion.

Remark. Despite κ being non-degenerate in this case, we see that it is indefinite. This
can be traced back to the fact that so1(3, R) is the Lie algebra of the Lorentz group
O1(3, R), which is non-compact — this is easily seen, for example, by noting that
O1(3, R) contains unbounded 1-parameter subgroups consisting of Lorentz boosts.

We’ll conclude the discussion by giving another identification of so1(3, R) with a
better known algebra. Namely, we’ll show that there is a two-fold (homomorphic)
covering map SL(2, R)→ SO1(3, R), which will then imply that sl(2, R) ∼= so1(3, R).

For that, the approach will be mostly coordinate-free. Let Π be a plane equipped
with an area form α ∈ (Π∗)∧2, and consider the three dimensional space V = (Π∗)�2.
In other words, elements of V may be seen as symmetric bilinear forms τ : Π×Π→ R.
One quadratic form one would like to consider on V, in some sense, is det τ. However,
this does not make sense without any extra structure, and this is where the area form
enters the fray. One defines Q : V → R by setting Q(τ) = det[τ]B, where B= (e1, e2)

is any basis for Π with α(e1, e2) = 1. To see that this is well-defined, let B̃ = (ẽ1, ẽ2)
be another basis for Π with α(ẽ1, ẽ2) = 1. This condition means that if we write
ẽj = ∑2

i=1 ai
jei, then the change of basis matrix A = (ai

j)
2
i,j=1 is in SL(2, R). Taking

determinants on both sides of the relation [τ]
B̃

= A>[τ]BA, well-definedness of Q
follows, where by [τ]B we mean the Gram matrix (τ(ei, ej))

2
i,j=1. To avoid unimodular

bases, one must pay the price and normalize the expression defining Q in an adequate
way. Namely, one may also write

Q(τ) =
det[τ](v1,v2)

α(v1, v2)2 ,

where (v1, v2) is any basis for Π — the square in the denominator is crucial to maintain
well-definedness. Clearly Q is a quadratic form.
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Proposition 13. Q induces a Lorentzian scalar product 〈〈·, ·〉〉 on V.

Proof: Fix once and for all a unimodular basis B = (e1, e2) for Π. Then we simply
have that

[τ]B =

(
a b
b c

)
=⇒ Q(τ) = ac− b2.

With suggestive notation, polarizing Q we obtain

〈〈τ1, τ2〉〉 =
1
2

d
dt

∣∣∣∣
t=0

(
(a1 + ta2)(c1 + tc2)− (b1 + tb2)

2
)
=

a1c2 + a2c1

2
− b1b2.

From the above expression, it’s clear that 〈〈·, ·〉〉 is Lorentzian.

Remark. With the notation above: the a-axis and c-axis are both lightlike, and the
b-axis is timelike.

To understand better the geometry of (V, 〈〈·, ·〉〉), we consider the group of unimod-
ular automorphisms Aut(Π, α)

.
= {T ∈ GL(Π) | T∗α = α}. Each linear map T : Π → Π

induces a pull-back map T∗ : V → V, via (T∗τ)(v, w) = τ(Tv, Tw).

Theorem 14. For any T ∈ Aut(Π, α), we have that T∗ ∈ SO(V, 〈〈·, ·〉〉). Moreover, the map
Aut(Π, α)→ SO(V, 〈〈·, ·〉〉) given by T 7→ T∗ is a two-fold homomorphic covering.

Remark. Once a basis for Π has been chosen and fixed, we get isomorphisms

Aut(Π, α) ∼= SL(2, R) and SO(V, 〈〈·, ·〉〉) ∼= SO1(3, R),

and hence a two-fold covering SL(2, R) → SO1(3, R). It induces, via derivatives, an
isomorphism sl(2, R) ∼= so1(3, R).

Proof: Pick a unimodular basis B for Π and note that if τ ∈ V, we have the relation
[T∗τ]B = [T]>B[τ]B[T]B. Now take the determinant of both sides to conclude that
Q(T∗τ) = Q(τ). By polarization, T∗ preserves 〈〈·, ·〉〉. With this, we have that the
map Aut(Π, α) → SO(V, 〈〈·, ·〉〉) is now defined. Clearly it is smooth and a group
homomorphism. To argue that the kernel of this map is {±IdΠ}, assume that for
all τ ∈ V, we have [τ]B = [T]>B[τ]B[T]B. Then, in purely matricial terms, our goal
amounts to showing that if det A = 1 and S = A>SA for every symmetric matrix S,
then A = ±Id2. Choosing S = Id2, we immediately obtain that A ∈ SO(2, R). Then
writing

A =

(
a −b
b a

)
, with a2 + b2 = 1,

we have that

S =

(
1 0
0 0

)
=⇒ a2 = 1 and b = 0.

It follows that this map is surjective3. Finally, a surjective Lie group homomorphism
with discrete kernel is a covering map, concluding the argument.

3A Lie group homomorphism F : G → H between connected groups with small enough kernel, i.e.,
such that dim ker F ≤ dim G− dim H, is surjective: F has constant rank, and the rank-nullity theorem
gives that F is a submersion. Thus F is open and F[G] is an open connected subgroup of H — hence
F[G] = H.
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