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In this write-up, we’ll describe the Lie algebra structure induced on g x h by a
semidirect product Lie group structure on G x H, by essentially elaborating on some
details of the computation outlined in https://math.stackexchange.com/a/3378604/
118056. We will start by recalling some relevant definitions.

Definition 1

Let G be a Lie group with Lie algebra g.
(i) The conjugation by g is the map Cg : G = G given by Cg (8) = g8 .

(ii) The adjoint representation of G is the homomorphism Ad®: G — GL(g)
given by Ad“(g) = d(CS)..

(iii) The adjoint representation of g is the homomorphism ad?: g — gl(g) given
by ad® = d(Ad°)..

Theorem 1

Let G be a Lie group with Lie algebra g. Then the Lie bracket on g satisfies that
(X, X]y = adxX (0.1)

forall X,X € g

Definition 2

Let G and H be Lie groups and p: G — Aut(H) be a homomorphism. The semidi-
rect product G X, H of G and H under p is the manifold G x H equipped with the
product given by

(&1 (§ 1) = (88 hp(g)h), (0.2)
forall (g, h),($,h) € G x H.

Remark. If p is understood, we’'ll write G X H instead of G X, H. Note that the identity
element of G x H is (eg, ey ), and that inverses are given by (¢,h) ™! = (¢~ 1, p(g" )™ 1)
for every (g,h) € G x H. Moreover, note that {eg} x H is a normal subgroup of G x H
(thus justifying why this notation is used, as opposed to G x H). As we will see in the
next computations, it is convenient to regard p as a bihomomorphism p: G x H — H.
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Proposition 1

The conjugations in G, H, and G x H are related via
Citig i) = (S @), ol np(c(@)n), 03)

for every (g, h), (§,h) € G x H.

Proof: Compute:

Cloy (&) = (g, 1) (8, 1) (g, 1)~

& hp(@h)(g (g )

(2887 hp()hp(32)(o(s™)H ™)) (0.4)
(ggg Lhp()hh hp(ggg )
(cS (

Chl(p(2)h) hp(CE()1").

(
= (88

Proposition 2

The adjoint representations of G, H, and G x H are related via

Adﬁghﬁl (Y,2)

(Ad(V), Ad} (d(p(g,))en2) + d(p(- 7)) A (V) , (05)

for all (g,h) € Gx Hand (Y,Z) € g x b, where by hd(p(~,h_1))eGAdg(Y) we
understand the result of applying the derivative at ey of the left translation by
h € H to the element d(po(-, k1)), AdG( ) €h.

Proof: We freeze (g, h) in (0.3), and differentiate it with respect to (¢,h) at (e, ey), in

the direction of (Y, Z). The first component evidently is Adg (Y) and, for the second
one, we use the product rule, noting that setting ¢ = eg in h p(CgG (8))h~ 1! yields ey,
and setting i = ey in C[(p(g)h) yields eg. In other words, we just need to differentiate
the expressions Cf (o(g)/t) and I p(Cg (¢))h ! separately. The conclusion follows. [J

Proposition 3

The adjoint representations of g, b, and g x h (the Lie algebra of G x H) are related
via
adl) (1,2) = (adgff, ad)Z + dp(o o) (Y, 2) — dp(EG,EH)(Y/,Z)> . (0.6)

forall (Y,Z),(Y,Z) € gx b.
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Proof: In a similar fashion to what was done in the previous computation, we freeze
(Y,Z) in (0.5), and differentiate it with respect to (g, ) at (e, ex), in the direction of
(Y,Z). Again, the first component trivially equals ad§Y. There are two terms to be
discussed here, both relying on the idea that a full derivative may be written as a sum
of partial derivatives and in the product rule.

e Ad{(d(p(g,-))e,Z). Differentiating this yields two terms. To compute the first,
we may set i = ey and differentiate the remaining expression, d(o(g, -))e, Z (as
Adi = Idp), at ¢ = e and in the direction of Y, to obtain dp(, ¢,,) (Y, 7). As for
the second term, we may set ¢ = e and differentiate the remaining expression
at h = ey in the direction of Z. However, d(p(eg, -) e, is already the zero map.

o hd(p(-,h1))e. Adg (Y). Using the product rule together with the same principle
as the above point, we see that differentiating this expression yields three terms.
To compute the first, setting ¢ = e and the second h equal to ey yields zero, as
d(p(-,en))e. is already the zero map. For the second term, we set g = e and
the first h equal to ep, so that differentiating d(p(-,h1))..Y at h = ey in the
direction of Z yields —dp, ) (Y, Z), in view of the chain rule together with the
fact that the derivative of the inversion map H > h + h™! € Hath = ey is
—Idy. Lastly, setting h = ey to try and differentiate the remaining expression
with respect to g also gives us zero (again because d(p(-, epr) ), is the zero map).

With this in place, the conclusion follows. O

Now, Theorem 1 gives us how to compute Lie brackets in g x b:

Corollary 1
The Lie bracket in g X h is given by

(Y, Z2),(Y,2)|gut = (Y, Y]g, [Z,Z)y +Y-Z - Y- Z), (0.7)

forall (Y, Z),(Y,Z) € g x b, where the multiplication - is a shorthand for dP (e en)-
Let’s conclude the discussion by noting how (0.7) suggests the definition of a semidi-
rect product of (abstract) Lie algebras. It suffices to remember that the Lie algebra of
Aut(H) equals the algebra det(h) of derivations of h when H is connected and simply
connected. Replacing p: G — Aut(H) with its derivative p,: g — der(h), we have:

Definition 3

Let g and b be Lie algebras, and let p: g — der(h) be a homomorphism. The
semidirect product g X, b of g and h under p. is the vector space g x h equipped
with the Lie bracket given by

(Y, 2), (Y, D)]gwpty = (Y, Y]g [Z, 2]y + 0 (Y)(2) = p(Y)(Z)),  (0.8)

forall (Y,Z),(Y,Z) € g xp, b.
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