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In this write-up, we’ll describe the Lie algebra structure induced on g × h by a
semidirect product Lie group structure on G× H, by essentially elaborating on some
details of the computation outlined in https://math.stackexchange.com/a/3378604/
118056. We will start by recalling some relevant definitions.

Definition 1

Let G be a Lie group with Lie algebra g.

(i) The conjugation by g is the map CG
g : G → G given by CG

g (ĝ) = gĝg−1.

(ii) The adjoint representation of G is the homomorphism AdG : G → GL(g)
given by AdG(g) = d(CG

g )e.

(iii) The adjoint representation of g is the homomorphism adg : g→ gl(g) given
by adg = d(AdG)e.

Theorem 1

Let G be a Lie group with Lie algebra g. Then the Lie bracket on g satisfies that

[X, X̂]g = adXX̂ (0.1)

for all X, X̂ ∈ g

Definition 2

Let G and H be Lie groups and ρ : G → Aut(H) be a homomorphism. The semidi-
rect product G nρ H of G and H under ρ is the manifold G× H equipped with the
product given by

(g, h)(ĝ, ĥ) = (gĝ, h ρ(g)ĥ), (0.2)

for all (g, h), (ĝ, ĥ) ∈ G× H.

Remark. If ρ is understood, we’ll write Gn H instead of Gnρ H. Note that the identity
element of GnH is (eG, eH), and that inverses are given by (g, h)−1 = (g−1, ρ(g−1)h−1)
for every (g, h) ∈ Gn H. Moreover, note that {eG}×H is a normal subgroup of Gn H
(thus justifying why this notation is used, as opposed to G o H). As we will see in the
next computations, it is convenient to regard ρ as a bihomomorphism ρ : G× H → H.
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Proposition 1

The conjugations in G, H, and G n H are related via

CGnH
(g,h) (ĝ, ĥ) =

(
CG

g (ĝ), CH
h (ρ(g)ĥ) h ρ(CG

g (ĝ))h−1
)

, (0.3)

for every (g, h), (ĝ, ĥ) ∈ G n H.

Proof: Compute:

CGnH
(g,h) (ĝ, ĥ) = (g, h)(ĝ, ĥ)(g, h)−1

= (gĝ, h ρ(g)ĥ)(g−1, ρ(g−1)h−1)

=
(

gĝg−1, h ρ(g)ĥ ρ(gĝ)(ρ(g−1)h−1)
)

=
(

gĝg−1, h ρ(g)ĥ h−1h ρ(gĝg−1)h−1
)

=
(

CG
g (ĝ), CH

h (ρ(g)ĥ) h ρ(CG
g (ĝ))h−1

)
.

(0.4)

Proposition 2

The adjoint representations of G, H, and G n H are related via

AdGnH
(g,h) (Ŷ, Ẑ) =

(
AdG

g (Ŷ), AdH
h (d(ρ(g, ·))eH Ẑ) + h d(ρ(·, h−1))eGAdG

g (Ŷ)
)

, (0.5)

for all (g, h) ∈ G n H and (Ŷ, Ẑ) ∈ g× h, where by h d(ρ(·, h−1))eGAdG
g (Ŷ) we

understand the result of applying the derivative at eH of the left translation by
h ∈ H to the element d(ρ(·, h−1))eGAdG

g (Ŷ) ∈ h.

Proof: We freeze (g, h) in (0.3), and differentiate it with respect to (ĝ, ĥ) at (eG, eH), in
the direction of (Ŷ, Ẑ). The first component evidently is AdG

g (Ŷ) and, for the second
one, we use the product rule, noting that setting ĝ = eG in h ρ(CG

g (ĝ))h−1 yields eH,
and setting ĥ = eH in CH

h (ρ(g)ĥ) yields eG. In other words, we just need to differentiate
the expressions CH

h (ρ(g)ĥ) and h ρ(CG
g (ĝ))h−1 separately. The conclusion follows.

Proposition 3

The adjoint representations of g, h, and gn h (the Lie algebra of G n H) are related
via

adgnh
(Y,Z)(Ŷ, Ẑ) =

(
adg

YŶ, adh
ZẐ + dρ(eG,eH)(Y, Ẑ)− dρ(eG,eH)(Ŷ, Z)

)
, (0.6)

for all (Y, Z), (Ŷ, Ẑ) ∈ gn h.
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Proof: In a similar fashion to what was done in the previous computation, we freeze
(Ŷ, Ẑ) in (0.5), and differentiate it with respect to (g, h) at (eG, eH), in the direction of
(Y, Z). Again, the first component trivially equals adg

YŶ. There are two terms to be
discussed here, both relying on the idea that a full derivative may be written as a sum
of partial derivatives and in the product rule.

• AdH
h (d(ρ(g, ·))eH Ẑ). Differentiating this yields two terms. To compute the first,

we may set h = eH and differentiate the remaining expression, d(ρ(g, ·))eH Ẑ (as
AdH

eH
= Idh), at g = eG and in the direction of Y, to obtain dρ(eG,eH)(Y, Ẑ). As for

the second term, we may set g = eG and differentiate the remaining expression
at h = eH in the direction of Z. However, d(ρ(eG, ·))eH is already the zero map.

• h d(ρ(·, h−1))eGAdG
g (Ŷ). Using the product rule together with the same principle

as the above point, we see that differentiating this expression yields three terms.
To compute the first, setting g = eG and the second h equal to eH yields zero, as
d(ρ(·, eH))eG is already the zero map. For the second term, we set g = eG and
the first h equal to eH, so that differentiating d(ρ(·, h−1))eGŶ at h = eH in the
direction of Z yields −dρ(eG,eH)(Ŷ, Z), in view of the chain rule together with the
fact that the derivative of the inversion map H 3 h 7→ h−1 ∈ H at h = eH is
−Idh. Lastly, setting h = eH to try and differentiate the remaining expression
with respect to g also gives us zero (again because d(ρ(·, eH))eG is the zero map).

With this in place, the conclusion follows.

Now, Theorem 1 gives us how to compute Lie brackets in gn h:

Corollary 1

The Lie bracket in gn h is given by

[(Y, Z), (Ŷ, Ẑ)]gnh =
(
[Y, Ŷ]g, [Z, Ẑ]h + Y · Ẑ− Ŷ · Z

)
, (0.7)

for all (Y, Z), (Ŷ, Ẑ) ∈ gn h, where the multiplication · is a shorthand for dρ(eG,eH).

Let’s conclude the discussion by noting how (0.7) suggests the definition of a semidi-
rect product of (abstract) Lie algebras. It suffices to remember that the Lie algebra of
Aut(H) equals the algebra der(h) of derivations of h when H is connected and simply
connected. Replacing ρ : G → Aut(H) with its derivative ρ∗ : g→ der(h), we have:

Definition 3

Let g and h be Lie algebras, and let ρ∗ : g → der(h) be a homomorphism. The
semidirect product gnρ∗ h of g and h under ρ∗ is the vector space g× h equipped
with the Lie bracket given by

[(Y, Z), (Ŷ, Ẑ)]gnρ∗h =
(
[Y, Ŷ]g, [Z, Ẑ]h + ρ∗(Y)(Ẑ)− ρ∗(Ŷ)(Z)

)
, (0.8)

for all (Y, Z), (Ŷ, Ẑ) ∈ gnρ∗ h.
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