EQUIVALENCE RELATIONS, QUOTIENTS, AND EXAMPLES

Ivo Terek

A quick summary on equivalence relations, quotient sets, basic properties, and some examples, and constructions.

1 Equivalence relations

Definition 1

Let *X* be a set. An **equivalence relation** \sim on *X* is a relation^a which is:

- (i) **reflexive**, that is, $x \sim x$ for all $x \in X$.
- (ii) **symmetric**, that is, $x \sim y$ implies $y \sim x$ for all $x, y \in X$.
- (iii) **transitive**, that is, $x \sim y$ and $y \sim z$ implies $x \sim z$ for all $x, y, z \in X$.

Example 1

On the set \mathbb{Z} , for each $m \in \mathbb{Z}$, say that $x \sim y$ if $m \mid (x - y)$. This relation is called **congruence modulo** m, and one writes $x \equiv y \pmod{m}$ or $x \equiv_m y$ instead of \sim .

Example 2

Let *X* be the set of students taking a certain math class together, and say that $x \sim y$ if *x* and *y* got the same score on the final exam.

Example 3 (Equivalence relations given by functions)

Let *X* and *Y* be sets and $f: X \to Y$ be a function. Say that $x \sim y$ if f(x) = f(y). The above example is a particular case of the situation described here, where *f* is the function "score on the final exam".

^aA subset \sim of *X* × *X*, where we write *x* \sim *y* to mean (*x*, *y*) ∈ \sim .

Example 4 (A tragic non-example)

Let X be the set of all people on planet Earth, and say that $x \sim y$ if x loves y. The fact that \sim is not symmetric is a huge source of drama and relationship problems. And the fact that \sim is not reflexive can be seen as a symptom of a disease called depression.

Definition 2

Let *X* be a set equipped with an equivalence relation \sim .

- (i) The **equivalence class** of an element $x \in X$ is the set $[x]_{\sim} \doteq \{y \in X \mid x \sim y\}$.
- (ii) The **quotient of** X **by** \sim is the set $X/_{\sim} \doteq \{[x] \mid x \in X\}$.
- (iii) The map $\pi: X \to X/_{\sim}$ given by $\pi(x) = [x]_{\sim}$ is called **quotient projection**.

Remark. Note that, simultaneously, we have $[x]_{\sim} \subseteq X$ and $[x]_{\sim} \in X/_{\sim}$.

Example 5

Consider again in \mathbb{Z} , congruence modulo $m \in \mathbb{Z}$. We have that the congruence class of each $k \in \mathbb{Z}$ is simply $k + m\mathbb{Z} = \{k + ma \mid a \in \mathbb{Z}\}$. The quotient set, denoted by $\mathbb{Z}/m\mathbb{Z}$, is the set

$$\mathbb{Z}/m\mathbb{Z} = \{0 + m\mathbb{Z}, 1 + m\mathbb{Z}, \dots, (m-1) + m\mathbb{Z}\}.$$

It has *m* elements.

Proposition 1

Let *X* be a set equipped with an equivalence relation \sim . Then:

- (a) Any two equivalence classes are either equal or disjoint.
- (b) The union of all equivalence classes equals *X*.

In other words, $X/_{\sim}$ is a **partition** of X.

Proof:

- (a) Take $x, y \in X$ and consider $[x]_{\sim}$, $[y]_{\sim} \in X/_{\sim}$. If $[x]_{\sim} \cap [y]_{\sim} = \emptyset$, there's nothing to prove. But if there is z in such intersection, then $x \sim z$ and $y \sim z$ together imply that $x \sim y$, meaning that $[x]_{\sim} = [y]_{\sim}$.
- (b) For each $x \in X$, we have $x \in [x]_{\sim}$.

So, equivalence relations give rise to partitions. The converse holds:

Proposition 2

Let X be a set and $\mathscr{P}=(P_{\alpha})_{\alpha\in A}$ be a partition of X. There is a unique equivalence relation \sim on X for which for all $x\in X$ and $\alpha\in A$, $x\in P_{\alpha}$ if and only if $[x]_{\sim}=P_{\alpha}$. In other words, $X/_{\sim}=\mathscr{P}$.

Proof: Let $x \in y$ if there is $\alpha \in A$ such that $x, y \in P_{\alpha}$. This \sim is reflexive because each $x \in X$ is in some P_{α} . It is symmetric because $x \sim y$ says that x and y are in some P_{α} , so y and x are in this same P_{α} , leading to $y \sim x$. Finally, it is transitive because if $x \sim y$ and $y \in z$, there are $\alpha, \beta \in A$ with $x, y \in P_{\alpha}$ and $y, z \in P_{\beta}$ — in particular $y \in P_{\alpha} \cap P_{\beta} \neq \emptyset$ means that $P_{\alpha} = P_{\beta}$, so that $x, z \in P_{\alpha}$ leads to $x \sim z$. The rest is clear.

Hence, there is a 1-1 correspondence between equivalence relations and partitions of X. In particular, the partition corresponding to the equivalence relation given in Example 3 is just the partition of X by inverse images under f of points in Y (called **fibers** of f). We note that if \sim is any equivalence relation on X, then \sim arises from this construction with the quotient projection π playing the role of f. This suggests we should explore this in more detail.

Definition 3

Let *X* and *Y* be sets, and $f: X \to Y$ be a function. The **set-kernel** of *f* is the set

$$\ker_{s}(f) = \{(x, y) \in X \times X \mid f(x) = f(y)\};$$

Proposition 3 (Injectiveness equals trivial kernel — set-version)

Let *X* and *Y* be sets, and $f: X \to Y$ be a function. Then *f* is injective if and only if $\ker_{S}(f) = \Delta$, where $\Delta = \{(x, x) \in X \times X \mid x \in X\}$ is the diagonal of *X*.

Proof: Clearly $\Delta \subseteq \ker_s(f)$ in all cases. If f is injective, then $(x,y) \in \ker_s(f)$ implies that f(x) = f(y), so x = y and thus $\ker_s(f) = \Delta$. Conversely, if such equality holds, and we take $x, y \in X$ with f(x) = f(y), then $(x, y) \in \Delta$ gives that x = y.

Theorem 1

Let X be a set equipped with a equivalence relation \sim , Y be a second set, and $f\colon X\to Y$. If f is constant along equivalence classes of \sim , there is a unique function $\widetilde{f}\colon X/_{\sim}\to Y$ such that $\widetilde{f}\circ\pi=f$, where π is the quotient projection. In particular, we have the equality $\mathrm{Im}(f)=\mathrm{Im}(\widetilde{f})$ between images.

Proof: Define $\widetilde{f}([x]_{\sim}) \doteq f(x)$. This is well-defined as we assume that f is constant along equivalence classes of \sim , and it satisfies $\widetilde{f} \circ \pi = f$ by construction. Such relation implies that $\mathrm{Im}(f) = \mathrm{Im}(\widetilde{f})$ since π is surjective.

Remark. We say that f has **passed to the quotient**, and think of \widetilde{f} as f itself, not really as a different function.

Corollary 1 (First isomorphism theorem)

Let X and Y be sets and $f: X \to Y$ be a function. If \sim is defined via f, then there is a unique injective function $\widetilde{f}: X/_{\sim} \to Y$ such that $\widetilde{f} \circ \pi = f$, where $\pi\colon X \to X/_{\sim}$ is the quotient projection. In particular, we have the equality $\mathrm{Im}(f) = \mathrm{Im}(\widetilde{f})$ between images.

Remark. When f is surjective, this establishes that $X/_{\sim}$ is in bijection with Y.

Proof: The function \widetilde{f} exists and is unique in view of the previous theorem because f is constant on the equivalence classes of \sim , by definition of the latter. If we start from $\widetilde{f}([x]_{\sim}) = \widetilde{f}([y]_{\sim})$, then f(x) = f(y), which means that $x \sim y$, so $[x]_{\sim} = [y]_{\sim}$. Hence \widetilde{f} is injective.

2 On vector spaces

Let \mathbb{K} be a field, V be a \mathbb{K} -vector space, and W be a subspace of V. There is no harm in thinking that $\mathbb{K} = \mathbb{R}$ is the field of real numbers here, it makes no difference on what will happen next.

Definition 4

Let's say that two vectors $v, v' \in V$ are **congruent modulo** W, written simply as $v \equiv v' \pmod{W}$ or $v \equiv_W v'$, if $v - v' \in W$.

Lemma 1

 \equiv_W is an equivalence relation.

Proof:

- \equiv_W is reflexive because for all $v \in V$, $v v = 0 \in W$ says that $v \equiv_W v$.
- \equiv_W is symmetric because if $v \equiv_W v'$, then $v' v = -(v v') \in W$ says that $v' \equiv_W v$, as W is closed under taking opposites.
- \equiv_W is transitive because if $v \equiv_W v'$ and $v' \equiv_W v''$, then

$$v - v'' = (v - v') + (v' - v'') \in W$$

says that $v \equiv_W v''$, as W is closed under addition.

Note that the equivalence class of $v \in V$ is the translate

$$v + W = \{v + w \mid w \in W\}.$$

Since we started with a vector space V, it would make sense to ask whether the quotient set $V/_{\equiv_W}$, simply denoted by V/W, can be made into a vector space.

Proposition 4

The maps $+: V/W \times V/W$ and $\cdot: \mathbb{K} \times V/W \to V/W$ defined by

$$(v+W)+(v'+W)\doteq (v+v')+W$$
 and $\lambda\cdot (v+W)\doteq (\lambda v)+W$

are well-defined and turn V/W into a vector space.

Proof: If $v_1 \equiv_W v_1'$ and $v_2 \equiv_W v_2'$, let's show that $(v_1 + v_2) \equiv_W (v_1' + v_2')$. Indeed, we have that

$$(v_1 + v_2) - (v_1' + v_2') = (v_1 - v_1') + (v_2 - v_2') \in W$$

because W is closed under addition. So + is well-defined on V/W. As for scalar multiplication, keeping the above notation and assumptions, let's just show that the equivalence $\lambda v_1 \equiv_W \lambda v_1'$ holds. This happens because

$$\lambda v_1 - \lambda v_1' = \lambda (v_1 - v_1') \in W,$$

as W is closed under scalar multiplication. Hence \cdot is well-defined on V/W. As for the algebraic axioms that + and \cdot must satisfy, they're all trivial consequences of the fact that the axioms already hold for the operations on V. For example:

$$(v+W) + (v'+W) = (v+v') + W = (v'+v) + W = (v'+W) + (v+W),$$

so + is commutative on V/W. The zero vector is, obviously, 0 + W.

Remark. $V/\{0\} \cong V$ (via $v \mapsto v + \{0\}$) and $V/V = \{0 + V\}$.

Corollary 2

The quotient projection $\pi: V \to V/W$ is a surjective linear map with kernel W.

Proof: By design.

Remark. If one already knows the rank-nullity theorem, applying it to π yields the dimension relation dim $V = \dim W + \dim(V/W)$. When the dimensions are finite, it makes sense to write $\dim(V/W) = \dim V - \dim W$. If one does not want to assume (for the sake of the presentation) that the rank-nullity theorem holds yet, we'll establish it with quotients in what follows.

As a consequence of what we have seen before, abstractly, we have the:

Theorem 2 (First isomorphism theorem)

Let $T: V \to W$ be a linear map. Then T passes to the quotient as an injective linear map $\widetilde{T}: V/\ker T \to W$, showing that $V/\ker T \cong \operatorname{Im}(T)$.

Corollary 3

Write $V = W \oplus W'$ for some complementary subspace W' to W. Then $V/W \cong W'$. In particular, dim $V = \dim W + \dim(V/W)$.

Proof: Since $V = W \oplus W'$, we have two projection operators $\operatorname{pr}_W \colon V \to W$ and $\operatorname{pr}_{W'} \colon V \to W'$. Applying the first isomorphism theorem to $\operatorname{pr}_{W'}$ (which is surjective with kernel W) yields $V/W \cong W'$. The dimension relation follows from the direct sum decomposition, which implies that $\dim V = \dim W + \dim W'$, and we use $\dim W' = \dim(V/W)$.

Remark. Note that $pr_{W'}$ morally corresponds to $\pi|_{W'}$. The restriction of a surjective linear map to any subspace complementary to its kernel is, in fact, an isomorphism.

In practice, it is good to know how to find bases for quotient spaces.

Proposition 5 (Quotient basis algorithm)

Assume that $(e_1, ..., e_n)$ is a basis for V which is adapted to W, in the sense that the subcollection $(e_1, ..., e_k)$ is a basis for W (in other words, we complete a basis for W to a basis for V). Then

$$(e_{k+1} + W, \ldots, e_n + W)$$

is a basis for V/W.

Proof: Note that π sends $(e_1, \ldots, e_k, e_{k+1}, \ldots, e_n)$ to

$$(0+W,\ldots,0+W,e_{k+1}+W,\ldots,e_n+W).$$

Since π is surjective, the above set spans V/W (even though it is linearly dependent, as it has zeros, which must be removed). It remains to show that the surviving vectors $(e_{k+1} + W, \dots, e_n + W)$ are linearly independent in V/W. This is done as follows: start with $a_{k+1}, \dots, a_n \in \mathbb{K}$ such that

$$a_{k+1}(e_{k+1}+W)+\cdots+a_n(e_n+W)=0+W.$$

The goal is to show that $a_{k+1} = \cdots = a_n = 0$. Reorganize this linear combination, using the definition of quotient operations, as

$$(a_{k+1}e_{k+1} + \cdots + a_ne_n) + W = 0 + W,$$

so that $a_{k+1}e_{k+1} + \cdots + a_ne_n \in W$. This means that there are $b_1, \ldots, b_k \in \mathbb{K}$ such that

$$a_{k+1}e_{k+1} + \cdots + a_ne_n = b_1e_1 + \cdots + b_ke_k$$

simply because (e_1, \ldots, e_k) is a basis for W. Now linear independence of the original basis for V together with the relation

$$-b_1e_1 - \cdots - b_ke_k + a_{k+1}e_{k+1} + \cdots + a_ne_n = 0$$

implies that $b_1 = \cdots = b_k = a_{k+1} = \cdots = a_n = 0$, as required.

Remark. The result still holds for infinite bases, with the same argument. Namely, the procedure for finding a basis for V/W goes as follows: start with a basis for W, complete it to a basis for V, apply π to everyone. The surviving elements in the quotient will form a basis for it. Alternatively, based on the previous result, one can just take any basis for a subspace of V complementary to W, and project it using π — the resulting collection of vectors will necessarily be a basis for V/W.

The next two results are also quick consequences of the first isomorphism theorem:

Theorem 3 (Second isomorphism theorem)

Let $W_1, W_2 \subseteq V$ be subspaces. Then

$$\frac{W_1+W_2}{W_1}\cong\frac{W_2}{W_1\cap W_2}.$$

Proof: The linear map $W_2 \to (W_1 + W_2)/W_1$ taking $w_2 \mapsto w_2 + W_1$ is surjective (take $v + W_1 \in (W_1 + W_2)/W_1$, write $v = w_1 + w_2$ with $w_1 \in W_1$ and $w_2 \in W_2$, and note that $w_2 \mapsto v + W_1$) and has kernel $W_1 \cap W_2$.

Theorem 4 (Third isomorphism theorem)

Let $Z \subseteq W \subseteq V$ be a chain of subspaces. Then

$$\frac{V/Z}{W/Z} \cong \frac{V}{W}.$$

Proof: The linear map $V/Z \to V/W$ taking $v+Z \mapsto v+W$ is well-defined, surjective, and has kernel W/Z.

2.1 Duals and annihilators

Let *V* be a vector space. Recall that

$$V^* = \{f \colon V \to \mathbb{K} \mid f \text{ is linear}\}\$$

is the **dual space** to V. If $(e_1, ..., e_n)$ is a basis for V, then the linear functionals $e^1, ..., e^n : V \to \mathbb{K}$ defined by setting $e^i(e_j) = \delta^i_j$ for all i, j = 1, ..., n for a basis for V^* . Now let W be a subspace of V.

Definition 5

The **annihilator** (or polar space) of W, denoted either by Ann(W) or W° , is defined by $W^{\circ} = \{ f \in V^* \mid f[W] = 0 \}$. In other words, $f \in W^{\circ}$ if and only if f(w) = 0 for all $w \in W$.

Clearly W° is a subspace of V^* . To understand it better, let's start with some geometric intuition. There is a natural evaluation pairing $V^* \times V \ni (f,v) \mapsto f(v) \in \mathbb{K}$. Symmetry doesn't quite make sense, but people usually think of this as an "inner product" taking elements from different spaces, and even write f(v) as $\langle f,v \rangle$ (this is particularly common in quantum mechanics). The point is that W° is what the "orthogonal complement" of W is supposed to be. But talking about "orthogonal complements" doesn't really make sense, as V is not actually equipped with an inner product. So W° pays the price for our little transgression and is exiled to V^* — it cannot naturally live in V without a metric. It has properties similar to orthogonal complements.

Proposition 6

- (a) $\dim W^* + \dim W^\circ = \dim V^*$ (when $\dim V < \infty$, we can drop the duals).
- (b) $(W_1 + W_2)^{\circ} = W_1^{\circ} \cap W_2^{\circ}$.
- (c) $(W_1 \cap W_2)^\circ = W_1^\circ + W_2^\circ$.

Proof:

- (a) The map $V^* \to W^*$ given by $f \mapsto f|_W$ is linear, surjective (why?), and has kernel W° . By the rank-nullity theorem, we have dim $V^* = \dim W^\circ + \dim W^*$.
- (b) If f annihilates both W_1 and W_2 , and hence sums of elements in W_1 and W_2 , so this shows that $W_1^\circ \cap W_2^\circ \subseteq (W_1 + W_2)^\circ$. Conversely, use that taking \circ reverses inclusions (why?), so $W_1 \subseteq W_1 + W_2$ implies that $(W_1 + W_2)^\circ \subseteq W_1^\circ$, similarly for W_2 , so we may take the intersection to obtain $(W_1 + W_2)^\circ \subseteq W_1^\circ \cap W_2^\circ$, as required.
- (c) Exercise.

Corollary 4

 $W^* \cong V^*/W^\circ$.

With this in place, let's see how to find bases for annihilators (at least in the finite-dimensional case).

Proposition 7

Assume that $(e_1, ..., e_n)$ is a basis for V which is adapted to W, in the sense that the subcollection $(e_1, ..., e_k)$ is a basis for W (in other words, we complete a basis for W to a basis for V). If $(e^1, ..., e^n)$ denotes the dual basis in V^* , then $(e^{k+1}, ..., e^n)$ is a basis for W° .

Proof: If i = k + 1, ..., n, since $e^i(e_j) = 0$ for j = 1, ...k, and those span W, it follows that e^i annihilates W. In other words, $e^{k+1}, ..., e^n \in W^\circ$. They are linearly independent, because they are part of a larger basis. To see that they actually span W° , one can either argue that the dimension of W° is equal to n - k (so a maximal linearly independent set is a basis) or, directly take $f \in V^*$, write it as $f = \sum_{i=1}^n f_i e^i$ (with the coefficients $f_1, ..., f_n \in \mathbb{K}$), and use that $f \in W^\circ$ if and only if $f_1 = \cdots = f_k = 0$, so f is indeed a linear combination of the remaining functionals $e^{k+1}, ..., e^n$.

3 On groups

Let G be a group and H be a subgroup of G. We write e for the identity element¹.

Definition 6

Let's say that two elements $g, g' \in G$ are **congruent modulo** H, written simply as $g \equiv g' \pmod{H}$ or $g \equiv_H g'$, if $(g')^{-1}g \in H$.

Lemma 2

 \equiv_H is an equivalence relation.

Proof:

- \equiv_H is reflexive because for all $g \in G$, $g^{-1}g = e \in H$ says that $g \equiv_H g$.
- \equiv_H is symmetric because if $g \equiv_H g'$, then $g^{-1}g' = ((g')^{-1}g)^{-1} \in H$ says that $g' \equiv_H g$, as H is closed under taking inverses.
- \equiv_H is transitive because if $g \equiv_H g'$ and $g' \equiv_H g''$, then

$$(g'')^{-1}g = (g'')^{-1}g'(g')^{-1}g \in H$$

says that $g \equiv_H g''$, as H is closed under multiplication.

Note that the equivalence class of $g \in G$ is the translate (in the group setting, called a **coset**)

$$gH = \{gh \mid h \in H\}.$$

Since we started with a group G, it would make sense to ask whether the quotient set $G/_{\equiv_H}$, simply denoted by G/H, can be made into a group. Unlike what happened with vector spaces, this is not guaranteed, and we need a stronger assumption on the subgroup H.

¹The letter *e* is from German, *einselement*.

Definition 7

A subgroup H of G is called **normal in G** — this is written $H \triangleleft G$ — if for all $g \in G$ and $h \in H$, we have $ghg^{-1} \in H$.

Remark. If *G* is abelian, then every subgroup is normal. In particular, this applies when we have a vector space *V* considered as an abelian group with addition of vectors — vector subspaces are additive subgroups, and thus normal. There are nonabelian groups whose subgroups are all normal. These are called **Hamiltonian groups** (the name is unrelated to Hamiltonian dynamics and symplectic geometry). Here's one example: $Q_8 = \{1, \pm i, \pm j, \pm k\}$, with operations summarized by $i^2 = j^2 = k^2 = -1$ and ij = k, jk = i and ki = j.

Proposition 8

If $H \triangleleft G$, then $\cdot: G/H \times G/H \rightarrow G/H$ given by

$$(gH) \cdot (g'H) \doteq (gg')H$$

is well-defined and turns G/H into a group.

Proof: Exercise/maybe later. Note that the identity of G/H is eH and that inverses are given by $(gH)^{-1} = g^{-1}H$.

Remark. Many properties for G pass to G/H. For example, if G is abelian, so will be G/H. Also note that $G/\{e\} \cong G$ (via $g \mapsto g\{e\}$) and $G/G = \{eG\}$.

Replacing linear maps with group homomorphisms, we can mimic much of what was done before.

Corollary 5

The quotient projection π : $G \to G/H$ is a surjective group homomorphism with kernel H.

Theorem 5 (First isomorphism theorem)

Let $\varphi \colon G \to H$ be a group homomorphism. Then φ passes to the quotient as an injective group homomorphism $\widetilde{\varphi} \colon G/\ker \varphi \to H$, so that $G/\ker \varphi \cong \operatorname{Im}(\varphi)$.

To proceed, recall that given two subsets $A, B \subseteq G$, we may consider the set of all products, $AB = \{ab \mid a \in A, b \in B\}$. When we take A and B to be subgroups of G, AB might still not be a subgroup! However, AB is a subgroup of G if A and B are both subgroups AB and at least one of them is normal in G.

Theorem 6 (Second isomorphism theorem)

Let H_1 , $H_2 \triangleleft G$ be normal subgroups. Then

$$\frac{H_1H_2}{H_1} \cong \frac{H_2}{H_1 \cap H_2}.$$

Proof: The homomorphism $H_2 \to (H_1H_2)/H_1$ taking $h_2 \mapsto h_2H_1$ is surjective (take $gH_1 \in (H_1H_2)/H_1$, write $g = h'_2h'_1$ with $h'_1 \in H_1$ and $h'_2 \in H_2$ — we're using normality to write the product in the reverse order with possibly different elements — and note that $h'_2 \mapsto gH_1$) and has kernel $H_1 \cap H_2$.

Theorem 7 (Third isomorphism theorem)

Let $K \triangleleft H \triangleleft G$ be a chain of normal subgroups with $K \triangleleft G$ as well^a. Then

$$\frac{G/K}{H/K} \cong \frac{G}{H}.$$

 ${}^aK \triangleleft H$ and $H \triangleleft G$ do not necessarily imply $K \triangleleft G$, so this has to be explicitly assumed. Example?

Proof: The homomorphism $G/K \to G/H$ taking $gK \mapsto gH$ is well-defined, surjective, and has kernel H/K.

3.1 The commutant subgroup

Let G be a group. The **commutator** of two elements $a, b \in G$ is defined to be the element $[a, b] \doteq aba^{-1}b^{-1} \in G$. The reason for the name commutator is obvious: the commutator equals e if and only if ab = ba. So this is measuring how far a and b are from commuting. If G is abelian, all the commutators are trivial, so this would be uninteresting. The set $\{[a, b] \mid a, b \in G\}$ of commutators is *not* a subgroup of G. But we write [G, G] for the subgroup generated by such set. We call [G, G] the **commutant subgroup** of G. Explictly, elements of [G, G] are finite strings

$$a_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\cdots a_kb_ka_k^{-1}b_k^{-1}$$

of commutators. To see that $[G, G] \triangleleft G$, it suffices to check that conjugating a single commutator yields a commutator.

Exercise 1

Show that for all $g, a, b \in G$, we have $g[a, b]g^{-1} = [gag^{-1}, gbg^{-1}]$.

So, it makes sense to consider the quotient G/[G,G].

Proposition 9 (Abelianization of *G*)

The quotient G/[G,G] is always abelian.

Proof: Let $a[G,G], b[G,G] \in G/[G,G]$. Then

$$(a[G,G])(b[G,G])(a[G,G])^{-1}(b[G,G])^{-1}=(aba^{-1}b^{-1})[G,G]=e[G,G],$$

where the very last equal sign uses $aba^{-1}b^{-1} \in [G, G]$, implies that

$$(a[G,G])(b[G,G]) = (b[G,G])(a[G,G]),$$

as required. \Box