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EQUIVALENCE RELATIONS, QUOTIENTS, AND
EXAMPLES

Ivo Terek

A quick summary on equivalence relations, quotient sets, basic properties, and
some examples, and constructions.

1 Equivalence relations

Definition 1

Let X be a set. An equivalence relation ~ on X is a relation” which is:
(i) reflexive, thatis, x ~ x for all x € X.
(ii) symmetric, thatis, x ~ y impliesy ~ x forall x,y € X.

(iii) transitive, thatis, x ~ y and y ~ z implies x ~ z forall x,y,z € X.

?A subset ~ of X x X, where we write x ~ y to mean (x,y) € ~.

Example 1

On the set Z, for each m € Z, say that x ~ y if m | (x —y). This relation is called
congruence modulo 1, and one writes x = y (mod m) or x =, y instead of ~.

Example 2

Let X be the set of students taking a certain math class together, and say that x ~ y
if x and y got the same score on the final exam.

Example 3 (Equivalence relations given by functions)

Let X and Y be sets and f: X — Y be a function. Say that x ~ y if f(x) = f(y).
The above example is a particular case of the situation described here, where f is
the function “score on the final exam”.
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Example 4 (A tragic non-example)

Let X be the set of all people on planet Earth, and say that x ~ y if x loves y. The
fact that ~ is not symmetric is a huge source of drama and relationship problems.
And the fact that ~ is not reflexive can be seen as a symptom of a disease called
depression.

Definition 2

Let X be a set equipped with an equivalence relation ~.
(i) The equivalence class of an element x € X is theset [x]. ={y € X | x ~ y}.
(ii) The quotient of X by ~ is the set X/ = {[x] | x € X}.

(iii) The map 7: X — X/~ given by 7r(x) = [x]~ is called quotient projection.

Remark. Note that, simultaneously, we have [x]. C X and [x]. € X/~.

Example 5

Consider again in Z, congruence modulo m € Z. We have that the congruence
class of each k € Z is simply k + mZ = {k+ ma | a € Z}. The quotient set,
denoted by Z/mZ, is the set

Z/mZ ={0+mZ,1+mZ,...,(m—1)+mZ}.

It has m elements.

Proposition 1
Let X be a set equipped with an equivalence relation ~. Then:
(a) Any two equivalence classes are either equal or disjoint.

(b) The union of all equivalence classes equals X.

In other words, X/~ is a partition of X.

Proof:

(a) Take x,y € X and consider [x]~, [y]~ € X/~. If [x]~ N [y]~ = O, there’s nothing
to prove. But if there is z in such intersection, then x ~ z and y ~ z together imply
that x ~ y, meaning that [x]. = [y]~.

(b) For each x € X, we have x € [x]~.

So, equivalence relations give rise to partitions. The converse holds:
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Proposition 2

Let X be a set and P = (Py),eca be a partition of X. There is a unique equivalence
relation ~ on X for which forall x € X and « € A, x € P, if and only if [x]. = D.
In other words, X/ = 2.

Proof: Let x € y if there is « € A such that x,y € P,. This ~ is reflexive because each
x € Xisinsome P,. Itis symmetric because x ~ y says that x and y are in some P,, soy
and x are in this same P,, leading to y ~ x. Finally, it is transitive because if x ~ y and
y € z, therearewa, p € Awithx,y € Pyand y,z € Pg—in particular y € P, N Pg #+ O
means that P, = Pg, so that x,z € P, leads to x ~ z. The rest is clear. O

Hence, there is a 1-1 correspondence between equivalence relations and partitions
of X. In particular, the partition corresponding to the equivalence relation given in
Example 3 is just the partition of X by inverse images under f of points in Y (called
fibers of f). We note that if ~ is any equivalence relation on X, then ~ arises from
this construction with the quotient projection 7 playing the role of f. This suggests we
should explore this in more detail.

Definition 3

Let X and Y be sets, and f: X — Y be a function. The set-kernel of f is the set

kers(f) = {(x,y) € Xx X | f(x) = f(y)};

Proposition 3 (Injectiveness equals trivial kernel — set-version)

Let X and Y be sets, and f: X — Y be a function. Then f is injective if and only if
kers(f) = A, where A = {(x,x) € X x X | x € X} is the diagonal of X.

Proof: Clearly A C ker(f) in all cases. If f is injective, then (x,y) € kers(f) implies
that f(x) = f(y), so x = y and thus kers(f) = A. Conversely, if such equality holds,
and we take x,y € X with f(x) = f(y), then (x,y) € A gives that x = y. O

Theorem 1

Let X be a set equipped with a equivalence relation ~, Y be a second set, and
f: X = Y. If fis constant along equivalence classes of ~, there is a unique func-
tion f: X/ — Y such that f or = f, where 7 is the quotient projection. In

particular, we have the equality Im(f) = Im(f) between images.

Proof: Define f([x]~) = f(x). This is well-defined as we assume that f is constant
along equivalence classes of ~, and it satisfies f o T = f by construction. Such relation

implies that Im(f) = Im(f) since 7 is surjective. O

Remark. We say that f has passed to the quotient, and think of fas f itself, not really
as a different function.
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Corollary 1 (First isomorphism theorem)

Let X and Y be setsand f: X — Y be a function. If ~ is defined via f, then there is
a unique injective function f: X/ — Y suchthat fomr = f, where 7: X — X/ +

is the quotient projection. In particular, we have the equality Im(f) = Im(f)
between images.

Remark. When f is surjective, this establishes that X/ is in bijection with Y.

Proof: The function fexists and is unique in view of the previous theorem because f
is constant on the equivalence classes of ~, by definition of the latter. If we start from

f([x]~) = f([y]~), then f(x) = f(y), which means that x ~ y, so [x]~ = [y]~. Hence

f is injective. O

2 On vector spaces

Let K be a field, V be a K-vector space, and W be a subspace of V. There is no
harm in thinking that K = RR is the field of real numbers here, it makes no difference
on what will happen next.

Definition 4

Let’s say that two vectors v,v' € V are congruent modulo W, written simply as
v=7 (modW)orv=po, ifv—0v €W.

Lemma 1

=y is an equivalence relation.

Proof:

* =y is reflexive because forallv € V,v —v = 0 € W says that v = .

e =y is symmetric because if v = v/, then v/ —v = —(v —v') € W says that
v/ =w v, as W is closed under taking opposites.

e =y is transitive because if v =y v’ and v’ = v”, then
-0 =@w-v)+ (W -0v")eW

says that v = v”, as W is closed under addition.

Note that the equivalence class of v € V is the translate
v+W={v+w|weW}

Since we started with a vector space V, it would make sense to ask whether the quo-
tient set V/—,,, simply denoted by V /W, can be made into a vector space.
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Proposition 4

The maps +: V/W x V/Wand -: Kx V/W — V /W defined by

(+W)+ (@' +W)=(v+9)+W and A-(v+W)=(Av)+ W

are well-defined and turn V /W into a vector space.

Proof: If v1 = v} and v, =w v}, let’s show that (v1 + vp) =w (v} + v5). Indeed, we
have that
(v1+02) — (0] +05) = (v —v)) + (v —vy) €W

because W is closed under addition. So + is well-defined on V/W. As for scalar
multiplication, keeping the above notation and assumptions, let’s just show that the
equivalence Av; = Av] holds. This happens because

Avp — Av) = Aoy —0)) €W,

as W is closed under scalar multiplication. Hence - is well-defined on V /W. As for the
algebraic axioms that + and - must satisfy, they’re all trivial consequences of the fact
that the axioms already hold for the operations on V. For example:

O+W)+ @ +W)=@0+)+ W= (v +0)+ W= (' + W)+ (v+ W),
so + is commutative on V/W. The zero vector is, obviously, 0 + W. [l

Remark. V/{0} =V (viav— v+ {0})and V/V = {0+ V}.

Corollary 2

The quotient projection 7r: V' — V /W is a surjective linear map with kernel W.

Proof: By design. ]

Remark. If one already knows the rank-nullity theorem, applying it to 7t yields the
dimension relation dimV = dim W + dim(V/W). When the dimensions are finite,
it makes sense to write dim(V/W) = dimV — dim W. If one does not want to as-
sume (for the sake of the presentation) that the rank-nullity theorem holds yet, we’ll
establish it with quotients in what follows.

As a consequence of what we have seen before, abstractly, we have the:

Theorem 2 (First isomorphism theorem)

Let T: V — W be alinear map. Then T passes to the quotient as an injective linear
map T: V/kerT — W, showing that V /ker T = Im(T).
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Corollary 3

Write V = W & W' for some complementary subspace W' to W. Then V/W = W'.
In particular, dim V = dim W + dim(V /W).

Proof: Since V. = W @& W/, we have two projection operators pry,: V. — W and
pry: V. — W'. Applying the first isomorphism theorem to pry, (which is surjec-
tive with kernel W) yields V/W = W’. The dimension relation follows from the di-
rect sum decomposition, which implies that dim V = dim W + dim W/, and we use
dim W' = dim(V/W). O

Remark. Note that pr,, morally corresponds to 7t|y. The restriction of a surjective
linear map to any subspace complementary to its kernel is, in fact, an isomorphism.

In practice, it is good to know how to find bases for quotient spaces.

Proposition 5 (Quotient basis algorithm)

Assume that (eq,...,e,) is a basis for V which is adapted to W, in the sense that
the subcollection (ey, ..., e) is a basis for W (in other words, we complete a basis
for W to a basis for V). Then

(ki1 +W,...,en +W)

is a basis for V/W.

Proof: Note that 77 sends (eq, ..., ek €xi1,--.,6n) tO
0+W,...,0+W, e 1 +W,...,en +W).

Since 7t is surjective, the above set spans V/W (even though it is linearly dependent,
as it has zeros, which must be removed). It remains to show that the surviving vectors
(exr1+W,..., en+ W) arelinearly independent in V /W. This is done as follows: start
with ag,4,...,a, € Ksuch that

g (ee1 + W)+ +an(en + W) =0+ W.

The goal is to show that a;,1 = --- = a, = 0. Reorganize this linear combination,
using the definition of quotient operations, as

(Aksr€x01+ -+ anen) + W =04+W,
so that g 1exy 1 + - - - +aye, € W. This means that there are by, ..., by € K such that
Agy1€ky1 + - -+ aney = biey +-- -+ bkek,

simply because (e, ..., ¢x) is a basis for W. Now linear independence of the original
basis for V together with the relation

—biey — -+ — byex + A 1ees1 o+ aney =0

implies that by = - - - = by = ay41 = - - - = a, = 0, as required. [
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Remark. The result still holds for infinite bases, with the same argument. Namely,
the procedure for finding a basis for V/W goes as follows: start with a basis for W,
complete it to a basis for V, apply 7 to everyone. The surviving elements in the quo-
tient will form a basis for it. Alternatively, based on the previous result, one can just
take any basis for a subspace of V complementary to W, and project it using 7 — the
resulting collection of vectors will necessarily be a basis for V/W.

The next two results are also quick consequences of the first isomorphism theorem:

Theorem 3 (Second isomorphism theorem)

Let Wy, Wo C V be subspaces. Then

W1+W22 W,
W, WinWy

Proof: The linear map W, — (Wj + W,) /W taking wy — w; + Wi is surjective (take
v+ W; € (Wy + W,) /Wy, write v = wy + wp with w; € Wy and wy, € W,, and note
that w, — v + Wj) and has kernel W; N W. O

Theorem 4 (Third isomorphism theorem)

Let Z C W C V be a chain of subspaces. Then
v/iZ V

W/Z W’

Proof: Thelinearmap V/Z — V /W taking v + Z — v+ W is well-defined, surjective,
and has kernel W/ Z. O

2.1 Duals and annihilators
Let V be a vector space. Recall that
V*={f:V - K| fislinear}

is the dual space to V. If (eq,...,ey) is a basis for V, then the linear functionals
el,...,e": V — K defined by setting el(e]-) = (5]1. foralli,j = 1,...,n for a basis for
V*. Now let W be a subspace of V.

Definition 5

The annihilator (or polar space) of W, denoted either by Ann(W) or W°, is de-
fined by W° = {f € V* | f[W] = 0}. In other words, f € W° if and only if
f(w) =0forallw € W.
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Clearly W° is a subspace of V*. To understand it better, let’s start with some geo-
metric intuition. There is a natural evaluation pairing V* x V 3 (f,v) — f(v) € K.
Symmetry doesn’t quite make sense, but people usually think of this as an “inner prod-
uct” taking elements from different spaces, and even write f(v) as (f, v) (this is partic-
ularly common in quantum mechanics). The point is that W* is what the “orthogonal
complement” of W is supposed to be. But talking about “orthogonal complements”
doesn’t really make sense, as V' is not actually equipped with an inner product. So W°
pays the price for our little transgression and is exiled to V* — it cannot naturally live
in V without a metric. It has properties similar to orthogonal complements.

Proposition 6

(@) dim W* 4 dim W° = dim V* (when dim V' < oo, we can drop the duals).
(b) (Wy 4+ Wp)° = Wy nWy.
(© (WinWz)® =Wy +Wy.

Proof:

(@) The map V* — W* given by f + f| is linear, surjective (why?), and has kernel
We°. By the rank-nullity theorem, we have dim V* = dim W° 4 dim W*.

(b) If f annihilates both W; and W;, and hence sums of elements in W; and W5, so
this shows that Wy N W5 C (W; + W;)°. Conversely, use that taking ° reverses
inclusions (why?), so Wy C W; + W, implies that (W; 4+ W,)° C Wy, similarly for
W,, so we may take the intersection to obtain (W7 + W,)° C Wy NW3, as required.

(c) Exercise.

Corollary 4
W* = V*/We.

With this in place, let’s see how to find bases for annihilators (at least in the finite-
dimensional case).

Proposition 7

Assume that (eq, ..., e, ) is a basis for V which is adapted to W, in the sense that the
subcollection (e, ..., ex) is a basis for W (in other words, we complete a basis for
W to a basis for V). If (¢!,...,¢") denotes the dual basis in V*, then (ek“, ool
is a basis for W°.
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Proof: If i = k+1,...,n,since ¢'(¢j) = 0 for j = 1,...k, and those span W, it follows
that ¢! annihilates W. In other words, e¥*1,...,e" € W°. They are linearly indepen-
dent, because they are part of a larger basis. To see that they actually span W°, one
can either argue that the dimension of W° is equal to n — k (so a maximal linearly in-
dependent set is a basis) or, directly take f € V*, writeitas f = Y/, fiei (with the
coefficients f,..., fu € K), and use that f € W°ifand onlyif f{ = --- = fy =0,s0 f
is indeed a linear combination of the remaining functionals ekl e O

3 On groups

Let G be a group and H be a subgroup of G. We write e for the identity element’.

Definition 6

Let’s say that two elements ¢, ¢’ € G are congruent modulo H, written simply as
¢g=¢ (modH)org=y¢,if(¢') g € H.

Lemma 2

=p is an equivalence relation.

Proof:
o =y is reflexive because forall g € G, ¢~ !¢ = ¢ € Hsays that g =y ¢.

* =y is symmetric because if ¢ =y ¢/, then ¢71¢' = ((¢’)"'¢)~! € H says that
¢ =p g, as H is closed under taking inverses.

e =y is transitive because if ¢ =g ¢’ and ¢’ =p ¢, then

(8" 'g=(8")""¢'() 'geH

says that g =y ¢”, as H is closed under multiplication.
[]

Note that the equivalence class of ¢ € G is the translate (in the group setting, called
a coset)

¢H={gh|he H}.

Since we started with a group G, it would make sense to ask whether the quotient set
G/=,,, simply denoted by G/H, can be made into a group. Unlike what happened
with vector spaces, this is not guaranteed, and we need a stronger assumption on the
subgroup H.

LThe letter e is from German, einselement.
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Definition 7

A subgroup H of G is called normal in G — this is written H <G —ifforallg € G
and i € H, we have ¢hg~! € H.

Remark. If G is abelian, then every subgroup is normal. In particular, this applies
when we have a vector space V considered as an abelian group with addition of vec-
tors — vector subspaces are additive subgroups, and thus normal. There are non-
abelian groups whose subgroups are all normal. These are called Hamiltonian groups
(the name is unrelated to Hamiltonian dynamics and symplectic geometry). Here’s
one example: Qg = {1, +i, j, +k}, with operations summarized by i? = j? = k? = —1
and ij = k, jk = iand ki =j.

Proposition 8

If H< G, then-: G/H x G/H — G/H given by

(gH) - (¢'H) = (g¢")H

is well-defined and turns G/ H into a group.

Proof: Exercise/maybe later. Note that the identity of G/H is eH and that inverses
are given by (¢H) ' = ¢7'H. O

Remark. Many properties for G pass to G/ H. For example, if G is abelian, so will be
G/H. Also note that G/{e} = G (via g — g{e}) and G/G = {eG}.

Replacing linear maps with group homomorphisms, we can mimic much of what
was done before.

Corollary 5

The quotient projection r: G — G/ H is a surjective group homomorphism with
kernel H.

Theorem 5 (First isomorphism theorem)

Let ¢: G — H be a group homomorphism. Then ¢ passes to the quotient as an
injective group homomorphism ¢: G/ker ¢ — H, so that G/ker ¢ = Im(¢).

To proceed, recall that given two subsets A, B C G, we may consider the set of all
products, AB = {ab | a € A,b € B}. When we take A and B to be subgroups of G,
AB might still not be a subgroup! However, AB is a subgroup of G if A and B are both
subgroups and at least one of them is normal in G.
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Theorem 6 (Second isomorphism theorem)

Let Hy, Hy < G be normal subgroups. Then

HH, ., H
H,  H NHy

Proof: The homomorphism H, — (HyH)/H; taking hy +— hyHj is surjective (take
gHy € (H1Hy)/H;, write g = hyh! with b} € Hy and I} € Hy, — we're using normality
to write the product in the reverse order with possibly different elements — and note
that 1} — ¢H;) and has kernel H; N H. O

Theorem 7 (Third isomorphism theorem)

Let K < H <1 G be a chain of normal subgroups with K <1 G as well”. Then

G/K _ G

H/K H’

?K < H and H <1G do not necessarily imply K <1 G, so this has to be explictly assumed. Example?

Proof: The homomorphism G/K — G/H taking gK + ¢H is well-defined, surjective,
and has kernel H/K. O

3.1 The commutant subgroup

Let G be a group. The commutator of two elements a,b € G is defined to be the
element [a,b] = aba—'b~! € G. The reason for the name commutator is obvious: the
commutator equals e if and only if ab = ba. So this is measuring how far a4 and b
are from commuting. If G is abelian, all the commutators are trivial, so this would be
uninteresting. The set {[a,b] | a,b € G} of commutators is not a subgroup of G. But
we write [G, G] for the subgroup generated by such set. We call [G, G| the commutant
subgroup of G. Explictly, elements of [G, G| are finite strings

alblaflbfla2b2aglb£1 . -akbkaljlblzl
of commutators. To see that [G, G| < G, it suffices to check that conjugating a single
commutator yields a commutator.

Exercise 1

Show that for all g,a,b € G, we have g[a,b]g™! = [gag™!, gbg™1].

So, it makes sense to consider the quotient G/[G, G|.
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Proposition 9 (Abelianization of G)

The quotient G/ [G, G] is always abelian.

Proof: Let a[G,G],b[G,G] € G/[G,G]. Then
(a[G, G (b[G, G])(alG, G]) 71 (b]G, G]) ™! = (aba™'b71)[G, G] = ¢[G, G,
where the very last equal sign uses aba~1b~! € [G, G|, implies that
(alG, G])(b[G, G]) = (b[G, G])(4[G, G]),

as required. O
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