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Comparing principal and vector bundles

Ivo Terek*

This is another set of notes I ended up writing to organize a few things in my mind.
They’re not meant to be comprehensive. I will try to point references to everything I
don’t feel like proving here.

Section 1 is a very brief review on vector bundles, (Koszul) connections and curva-
ture tensors – we give examples, relate the condition ∇g = 0 for a pseudo-Euclidean
fiber metric in E→ M with compatibility of∇with the musical isomorphisms E ∼= E∗;
describe the horizontal distribution associated to ∇ and establish the equivalence be-
tween its integrabiity and the flatness of ∇; and conclude the section describing the
covariant exterior differentiation operator d∇. Here, things are not always spelled out
in full detail.

In Section 2 we register the definition of a principal G-bundle and work through
a decent amount of examples, frequently making observations and general comments
(either on the body of the text or on footnotes). Particular attention is given to the con-
struction of frame bundles. We’ll also briefly discuss sections (gauges) of a principal
bundle, and we’ll conclude the Section by discussing associated vector bundles.

In Section 3, we discuss right-invariant horizontal distributions in principal bun-
dles and its relation with connection 1-forms. Plenty of examples of Ehresmann con-
nections are given.

Lastly, in Section 4 we turn our attention again to bundle-valued forms and define
the curvature 2-form of an Ehresmann connection. We have the covariant exterior
differentiation D in the setting of principal bundles, playing the same role as d∇ has
in the setting of vector bundles. We’ll also see here how some of the formulas given in
Section 1 can now be rephrased, and we’ll also use some gauge theory notation when
convenient (for comparing two connections).
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1 A very brief review of vector bundles

Given a differentiable manifold M, one considers its tangent bundle TM, defined by

TM =
⊔

x∈M
Tx M,

the disjoint union of all the tangent spaces. We know that TM has a natural structure
of a differentiable manifold, but the idea to be generalized here is the one of assigning
to each point of M a vector space. This leads us to the:

Definition 1. A real smooth vector bundle of fiber dimension q is a triple (E, π, M), where:

(i) E and M are differentiable manifolds;

(ii) π : E→ M is smooth;

(iii) each fiber Ex = π−1(x) is a real vector space with dimension q, and;

(iv) for each x0 ∈ M there is an open neighborhood U ⊆ M of x0 and a diffeomor-
phism φ : π−1[U]→ U ×Rq such that the diagram

π−1[U] U ×Rq

U
π

φ

pr1

commutes and, for each x ∈ U, the restriction φ
∣∣
Ex
→ {x} ×Rq is an isomor-

phism of vector spaces.1

We say that E is the total space, M is the base manifold and π is the bundle projection.
Note that π is necessarily surjective, as each fiber Ex contains its own corresponding
zero vector. Each pair (U, φ) as above is called a VB-chart for E. And a collection
{(Uα, φα)}α∈Λ for which {Uα}α∈Λ is an open cover for M is called a VB-atlas for E. Just
like when developing manifold theory, one can also consider maximal VB-atlases.

Example 2.

(1) π : M ×Rq → M is called the trivial bundle of dimension q over M. Each fiber is
just {x} ×Rq. It has one global chart (M, φ), where φ : M×Rq → M×Rq is the
identity map.

(2) The tangent bundle π : TM → M, given by π(x, v) = x. A VB-chart can be con-
structed from a manifold-chart for M as follows: if (U, ϕ = (xj)n

j=1) is given along
with any x ∈ U and v ∈ Tx M, we may write

v =
n

∑
j=1

vj ∂

∂xj

∣∣∣∣
x

1The structure in {x} ×Rq is carried from the Rq factor.
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in a unique way in terms of coordinate vector fields, and so φ : π−1[U] → U ×Rn

is given by φ(x, v) = (x, (vj)n
j=1). This is different from the manifold-chart for TM

constructed in a similar process, which would be (x, v) 7→ (ϕ(x), (vj)n
j=1).

(3) The cotangent bundle π : T∗M → M, given by π(x, ξ) = x. A VB-chart can be
constructed from a manifold-chart for M as follows: if (U, ϕ = (xj)n

j=1) is given
along with any x ∈ U and ξ ∈ T∗x M, we may write

ξ =
n

∑
j=1

ξ j dxj|x

in a unique way in terms of the differentials of the coordinate functions, and so
φ : π−1[U] → U ×Rn is given by φ(x, ξ) = (x, (ξ j)

n
j=1). Again, this is different

from the manifold-chart for T∗M constructed in a similar process, which would be
(x, ξ) 7→ (ϕ(x), (ξ j)

n
j=1).

(4) If M = RPn = (Rn+1 \ {0})/∼ is the real projective space, where v ∼ w if there is
λ 6= 0 with v = λw, we have the tautological line bundle

γ1(R)
.
= {([v], x) ∈ RPn ×Rn+1 | x ∈ Rv},

and π : γ1(R) → RPn is given by π([v], x) = [v]. That is, to each point [v] we
assign the line Rv. This has a natural generalization where M = Grk(V) is a
Grassmannian manifold.

If π : E → M is a vector bundle with a VB-atlas {(Uα, φα)}α∈Λ, take α, β ∈ Λ with
Uα ∩Uβ 6= ∅. Since the diagram

π−1[Uα ∩Uβ]

(Uα ∩Uβ)×Rq (Uα ∩Uβ)×Rq

Uα ∩Uβ

φα φβ

π

pr1 pr1

φαβ
.
=φα◦φ−1

β

commutes, we know that φαβ : (Uα ∩ Uβ) × Rq → (Uα ∩ Uβ) × Rq is of the form2

φαβ(x, v) = (x, ταβ(x)(v)), where ταβ : Uα ∩ Uβ → GL(q, R) is smooth (note that
ταβ(x)(v) is actually smooth in the pair-variable (x, v), since it is a component of a
composition of diffeomorphisms). Taking a third VB-chart (Uγ, φγ) satisfying that
Uα ∩Uβ ∩Uγ 6= ∅ and doing some yoga with a diagram slightly more elaborate than
the above, we get the following three properties, for each x:

(i) ταα(x) = IdRq ;

2Play with notations. One can think that the second component of φαβ(x, v) is some fαβ(x, v). But
since fixed x, this is linear in the variable v, we define ταβ(x)(v) = fαβ(x, v), so that each ταβ(x) is linear.
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(ii) τβα(x) = ταβ(x)−1;

(iii) ταγ(x) = ταβ(x) ◦ τβγ(x).

Such properties are essential to the structure of E, as the following result shows:

Theorem 3. If {Uα}α∈Λ is an open cover for M and we’re also given smooth functions
ταβ : Uα ∩ Uβ → GL(q, R), for all α, β ∈ Λ such that Uα ∩ Uβ 6= ∅, and satisfying the
conditions (i), (ii) and (iii) above, then there is a real vector bundle (E, π, M) with fiber di-
mension q and a VB-atlas {(Uα, φα)}α∈Λ for which the transition functions are precisely the
prescribed ταβ.

See [3] for a proof. If all the ταβ happen to land inside some subgroup G of GL(q, R),
we say that {(Uα, φα)}α∈Λ is a G-atlas. We proceed with sections.

Definition 4. Let π : E → M be a vector bundle. A section of E is a smooth map
ψ : M → E such that π ◦ ψ = IdM. We write ψ(x) = (x, ψx), with ψx ∈ Ex, when
needed. We also denote the collection of smooth sections of E by Γ(E).

M

E

ψ

x

Ex

π

Figure 1: A section ψ ∈ Γ(E).

Using VB-charts, one can show that Γ(E) is a C∞(M)-module (namely, one has to
show that ψ1 + ψ2 and f ψ are smooth when ψ, ψ1 and ψ2 are – this is not immedi-
ately trivial since the operations + and · are also varying with the points in the base
manifold).

When ψ is not defined on all of M, but only in an open subset of M, we’ll say that
ψ is a local section of E. The collection of local sections defined in some open subset U
of M will be denoted by ΓU(E). And for x ∈ M, the collection of local sections defined
in some neighborhood of x will be denoted by Γx(E).

Example 5.

(1) Γ(TM) = X(M) consists of vector fields on M;

(2) Γ(T∗M) = Ω1(M) consists of differentiable 1-forms on M;

(3) Γ(M×Rq) ∼= C∞(M, Rq).
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A VB-chart (U, φ) for E defines a collection (ea)
q
a=1 ⊆ ΓU(E) with the property that

(ea(x))q
a=1 is a basis for Ex, for each x ∈ U. Such collection will be called a frame.

Conversely, a frame defines a VB-chart. Using frames one can give new examples of
vector bundles, by constructing frames for new bundles in terms of frames for a given
initial bundle. In particular, one can form pull-backs, direct sums (here called Whitney
sums), tensor products, homs and duals of vector bundles. For example, one can form
the bundle

Tr
s(M)

.
= T∗M⊗r ⊗ TM⊗s → M,

whose sections are called tensor fields of type (r, s).
Given a pseudo-Riemannian manifold (M, g), one has the so-called Levi-Civita

connection ∇, which controls its geometry. The notion of connection makes sense for
vector bundles as well:

Definition 6. Let E → M be a vector bundle. A Koszul connection in E is a R-bilinear
map ∇ : X(M)× Γ(E)→ Γ(E) satisfying:

(i) ∇ f Xψ = f∇Xψ and;

(ii) ∇X( f ψ) = X( f )ψ + f∇Xψ,

for each X ∈ X(M), f ∈ C∞(M) and ψ ∈ Γ(E).

We’ll use Einstein’s convention from here on when convenient. Given coordinates
(xj) and a frame (ea), one may write∇∂j ea = Γb

jaeb, for some (local) functions Γb
ja. With

this, we write
∇Xψ = X j(∂jψ

a + Γa
jbψb)ea,

which shows that the value of (∇Xψ)x depends only on Xx and on the values of ψ in
a neighborhood of x. This means that we can restrict ∇ in a consistent way to open
subsets of M and work with local sections when needed. We also consider the map
∇ψ : X(M) → Γ(E) given by X 7→ ∇Xψ, whose components will be denoted simply
by ψa

;j
.
= ∂jψ

a + Γa
jbψb. We will say that ψ is parallel if ∇ψ = 0.

Example 7.

(1) In the trivial bundle M×Rq, we define a connection D by DXψ
.
= dψ(X), where in

the right-hand side we use the identification Γ(M×Rq) ∼= C∞(M, Rq) previously
mentioned. This is called the standard flat connection in M×Rq.

(2) If ∇ is a connection in E and A : X(M)× Γ(E) → Γ(E) is C∞(M)-bilinear (i.e., a
tensor), then∇+ A is also a connection. Conversely, the difference of two connec-
tion is such a tensor A. This says that the space of connections over E is an affine
space, and the associated translation space is the space of such tensors A. Un-
der this light, the connection symbols Γb

ja actually get a meaning: fixed a VB-chart
(U, φ), one can use φ−1 to pull-back ∇ to a connection ∇φ in the trivial bundle
U ×Rq over U. There, one also has the standard flat connection D, and we may
write ∇φ = D + Γ, where Γ is the so-called Christoffel tensor of ∇ relative to φ.
Note, however, that the components Γb

ja do not transform like a tensor.
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(3) If E′, E′′ → M are vector bundles with connections ∇′ and ∇′′, we consider the
bundle Hom(E′, E′′) (whose fiber at x ∈ M is Hom(E′x, E′′x )). There is a unique
connection ∇ in Hom(E′, E′′) characterized by the Leibniz rule, in the following
sense: given ψ ∈ Γ(E) and a section F of Hom(E′, E′′), one may define a section
F(ψ) of E′′ by x 7→ Fx(ψx). Then we set

(∇X F)(ψ) = ∇′′X(F(ψ))− F
(
∇′Xψ

)
.

It is straightforward to see that this indeed defines a connection. The same proce-
dure is used to define connections in tensor bundles created from E and E∗ (bear-
ing in mind that E∗ = Hom(E, M×R)).

Definition 8. Let E→ M be a vector bundle. A pseudo-Euclidean fiber metric on E is
a smooth section g ∈ Γ(E∗ ⊗ E∗) such that each gx is symmetric and non-degenerate
(i.e., a pseudo-Euclidean scalar product in Ex).

When E = TM, g is just a pseudo-Riemannian metric on M. This has a relation with
G-atlases mentioned above. For example, the existence of an Euclidean (i.e., positive-
definite) fiber metric is equivalent to the existence of a O(q, R)-atlas for E. Since a
connection ∇ in E induces a connection on E∗ ⊗ E∗ via the Leibniz rule (which will
also be denoted by∇), it makes sense to ask whether∇g = 0 or not. In the affirmative
case, we say that∇ and g are compatible, or that∇ is a metric connection. The geometric
interpretation is given in terms of the musical isomorphism

Γ(E) 3 ψ 7→ ψ[ = g(ψ, ·) ∈ Γ(E∗)

and its inverse ], in the following result:

Proposition 9. Let E→ M be a vector bundle equipped with a pseudo-Euclidean fiber metric
g and a connection ∇. So:

(i) ∇X(ψ[) = (∇Xψ)[ + (∇X g)(ψ, ·), for all X ∈ X(M) and ψ ∈ Γ(E);

(ii) ∇Xξ = (∇X(ξ
]))[ + (∇X g)(ξ], ·), for all X ∈ X(M) and ξ ∈ Γ(E∗).

Thus, the following are equivalent: g is a parallel section of E∗ ⊗ E∗; ∇ and [ commute; and
∇ and ] commute.

Remark. It might be instructive to note that the relations

(∇X[)(ψ) = ∇X(ψ[)− (∇Xψ)[ and (∇X])(ξ) = ∇X(ξ
])− (∇Xξ)]

hold, so that how much g deviates from being parallel directly measures the non-
commutativity of ∇ with [ and ].

Proof: Let’s check only the first formula, being the second one analogous: take a sec-
tion φ ∈ Γ(E) and compute

(∇X(ψ[))(φ) = ∇X(ψ[(φ))− ψ[(∇Xφ)

= Xg(ψ, φ)− g(ψ,∇Xφ)

= g(∇Xψ, φ) + (∇X g)(ψ, φ)

= (∇Xψ)[(φ) + (∇X g)(ψ, φ).
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One construction relevant for understanding connections in principal bundles is
the one of horizontal lifts. If E → M is a vector bundle with a connection ∇, we define
the horizontal lift of a vector v ∈ Tx M as vhor

(x,φ)
.
= dψx(v) ∈ T(x,φ)E, where ψ ∈ Γp(E)

is any section satisfying (∇ψ)x = 0 and ψx = φ. We need to check that this does
not depend on the choice of ψ. This is done locally, first observing that a VB-atlas
{(Uα, φα)}α∈Λ and a manifold-atlas {(Uα, ϕα)}α∈Λ for M (both assumed with the same
domains Uα, by reducing them if necessary) together define a manifold-atlas for E via
the compositions

π−1[Uα] Uα ×Rq ϕα[Uα]×Rq ⊆ Rn+q,
φα ϕα×IdRq

which in practice say that (x, φ) 7→ (xj, φa) and dim E = dim M + q, giving us co-
ordinate vector fields (∂j, ∂a) tangent to E (note the slight abuse of notation: the ∂j’s
here are fields tangent to E which project under dπ to the actual ∂j’s tangent to M). In
particular, the canonical isomorphism Tφ(Ex) ∼= Ex consists simply of ∂a|x 7→ ea|x. In
any way, we have the expressions φ = φaea(x) and ψ = ψaea – so that ψa(x) = φa for
all a. Also ψa

;j(x) = 0 becomes (∂jψ
a)(x) = −Γa

jb(x)φb, and with this we see that

dψx(v) = vj∂j
∣∣
(x,φ) + vj(∂jψ

a)(x)∂a
∣∣
(x,φ) = vj∂j

∣∣
(x,φ) − Γa

jb(x)vjφb∂a
∣∣
(x,φ)

depends only on v and φ, but not on ψ. Indeed, we have that the components of
dψx(v) in the direction of ∂j are just vj in view of π ◦ ψ = IdU, while the compo-
nent in the direction of ∂a is v(ψa). Denoting the image of the (injective) linear map
Tx M 3 v 7→ vhor

(x,φ) ∈ T(x,φ)E by Hor(x,φ)(E) (the ∇-horizontal subspace of T(x,φ)E) and
setting Ver(x,φ)(E) = ker dπ(x,φ) (the vertical subspace of T(x,φ)E, which by the way is
canonical), we have that

T(x,φ)E = Hor(x,φ)(E)⊕Ver(x,φ)(E),

where Hor(x,φ)(E) ∼= Tx M via the restriction of dπ(x,φ): in fact, the restriction of dπ(x,φ)
to any subspace of T(x,φ)E complementary to Ver(x,φ)(E) will be an isomorphism onto
the tangent space Tx M. Any vector Z(x,φ) ∈ T(x,φ)E can be decomposed according to
this as

Z(x,φ) = Zj∂j
∣∣
(x,φ) + Za∂a

∣∣
(x,φ)

=
(
Zj∂j

∣∣
(x,φ) − Γa

jb(x)Zjφb∂a
∣∣
(x,φ)

)︸ ︷︷ ︸
horizontal

+
(
Za + Γa

jb(x)Zjφb)∂a
∣∣
(x,φ)︸ ︷︷ ︸

vertical

.

Letting (x, φ) range over E, we obtain a smooth distribution Hor(E) ↪→ TE. At this
point, the natural question is whether Hor(E) is integrable. This leads us to the defi-
nition:

Definition 10. Let E → M be a vector bundle equipped with a connection ∇. The
curvature of ∇ is the map R∇ : X(M)×X(M)× Γ(E)→ Γ(E) given by

R∇(X, Y)ψ .
= ∇X∇Y ψ−∇Y∇Xψ−∇[X,Y ]ψ.
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A straightforward computation show that R∇ is skew-symmetric in the first two
entries, and also that it is C∞(M)-trilinear, and thus defines a tensor. That is to say,
the value of R∇(X, Y)ψ at a point x depends only on the values Xx, Yx and ψx. With
respect to a coordinate system (xj) and a local frame (ea), we may write

R∇(X, Y)ψ = R b
jka X jYkψaeb,

where the components are computed as

R∇(∂j, ∂k)ea = ∇∂j∇∂k
ea −∇∂k

∇∂j ea

= ∇∂j(Γ
b
kaeb)−∇∂k

(Γb
jaeb)

= (∂jΓb
ka)eb + Γb

kaΓc
jbec − (∂kΓb

ja)eb − Γb
jaΓc

kbec

= (∂jΓb
ka − ∂kΓb

ja + Γc
kaΓb

jc − Γc
jaΓb

kc)eb,

so that R b
jka = ∂jΓb

ka − ∂kΓb
ja + Γc

kaΓb
jc − Γc

jaΓb
kc.

Example 11.

(1) If D is the standard connection in M×Rq, then RD = 0. This can be seen in terms
of a global parallel frame induced by a basis of Rq, or simply by computing

RD(X, Y)ψ = X(Y(ψ))− Y(X(ψ))− [X, Y ](ψ) = 0.

(2) If E′, E′′ → M are vector bundles with connections∇′ and∇′′, and∇ is the natural
connection induced in Hom(E′, E′′), then

R∇(X, Y)F = R∇
′′
(X, Y) ◦ F− F ◦ R∇

′
(X, Y).

In particular, when E′ = E′′, we just get the usual commutator of endomorphisms.

Theorem 12. Let E → M be a vector bundle equipped with a connection ∇. Then the distri-
bution Hor(E) ↪→ TE is integrable if and only if R∇ = 0.

Proof: A straightforward computation gives that Ωa
jk + R a

jkb φb = 0, where Ωa
jk is the

Levi symbol3 (curvature form) of Hor(E) in TE.

3The Levi symbol of a distribution D ↪→ TM is the collection of maps Ωx : Γ(D)× Γ(D) → TM/D,
for x ∈ M, defined by Ωx(X, Y) = π([X, Y ]x). If coordinates (xj, yλ) are adapted to D in the sense that
D is described by dyλ = Hλ

j dxj, then the components of Ω (relative to the local frame ej = ∂j + Hλ
j ∂λ

tangent to D) are
Ωλ

jk = ∂j Hλ
k − ∂k Hλ

j + Hµ
j ∂µHλ

k − Hµ
k ∂µHλ

j .

So D is involutive (hence integrable, by the Frobenius Theorem) if and only Ωλ
jk = 0 for all choices of

indices. Now, for the horizontal distribution Hor(E) ↪→ TE, we have Ha
j = −Γa

jbφb.
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If E→ M has a connection∇ and a pseudo-Euclidean fiber metric g, one can form
totally covariant version of R∇ by setting R∇(X, Y , ψ, φ) = g(R∇(X, Y)ψ, φ), and then
the condition ∇g = 0 implies in skew-symmetry in the last two entries.

Connections can be used to generalize the notion of exterior derivative to bundle-
valued forms. Namely, if ∇ is a connection in a vector bundle E → M, we just mimic
the coordinate-free description of the operator d (also known as the Palais formula) to
define the covariant exterior derivative d∇ : Ωk(M; E)→ Ωk+1(M; E) by the formula

(d∇ω)(X0, . . . , Xk)
.
=

k

∑
i=0

(−1)i∇X i(ω(X0, . . . , X̂ i, . . . , Xk))

+ ∑
0≤i<j≤k

(−1)i+jω([X i, X j], . . . , X̂ i, . . . , X̂ j, . . . , Xk).

For example, if ω ∈ Ω1(M, E) we have

(d∇ω)(X, Y) = ∇X(ω(Y))−∇Y(ω(X))−ω([X, Y ]).

When E = M×R and∇ = D, we recover the usual exterior derivative. This captures
all the relevant information about ∇ and R∇, in the sense of the:

Proposition 13. Given ψ ∈ Γ(E) = Ω0(M; E), we have:

(i) (d∇ψ)(X) = ∇Xψ.

(ii)
(
(d∇)2ψ

)
(X, Y) = R∇(X, Y)ψ.

(iii)
(
(d∇)3ψ

)
(X, Y , Z) = R∇(X, Y)∇Zψ + R∇(Y , Z)∇Xψ + R∇(Z, X)∇Y ψ.

(iv)
(
(d∇)4ψ

)
(X, Y , Z, W) = R∇(X, Y)R∇(Z, W)ψ + R∇(Z, X)R∇(Y , W)ψ

+ R∇(X, W)R∇(Y , Z)ψ + R∇(Y , Z)R∇(X, W)ψ

+ R∇(W , Y)R∇(X, Z)ψ + R∇(Z, W)R∇(X, Y)ψ.

Proof: Brute force.

Also, we may regard R∇ as an element of Ω2(M; End(E)), and use the induced
connection in the latter bundle to compute d∇R∇ = 0. This is known as the Second
Bianchi Identity, usually described as

(∇X R∇)(X, Y) + (∇Y R∇)(Z, X) + (∇ZR∇)(X, Y) = 0,

when using a torsion-free connection in TM. The operation d∇ is also useful to express
the curvature of a connection modified by a tensor. For this, we will also need a new
type of operation: when we have forms taking values in an algebra bundle A (i.e., just
like a vector bundle, but each fiber has a bilinear multiplication ·), we may mimic the
definition of the wedge product and define, for ω ∈ Ωk(M; A), η ∈ Ω`(M, A), a new
element ω~ η ∈ Ωk+`(M, A) by

(ω~ η)(X1, . . . , Xk+`)
.
=

1
k!`! ∑

σ∈Sk+`

sgn(σ)ω(Xσ(1), . . . , Xσ(k)) · η(Xσ(k+1), . . . , Xσ(k+`)).
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A very frequent case is when the fibers are actually Lie algebras, in which case the
product is denoted by [ω, η]. For k = ` = 1 we have

[ω, η](X, Y) = [ω(X), η(Y)]− [ω(Y), η(X)],

and in particular [ω, ω](X, Y) = 2[ω(X), ω(Y)]. While the operation~might not have
any symmetry since we do not know whether the product structure in A is commuta-
tive or skew, in the Lie algebra case we do have that [η, ω] = (−1)k`+1[ω, η].

As a last remark about ~ before we move one, we note that this operation also
relates to the usual exterior derivative via d(ω ~ η) = dω ~ η + (−1)kω ~ dη, as
expected. Back to the curvature of a modified connection, we have the:

Proposition 14 (Palatini-like identity). Let E → M be a vector bundle with a connection
∇, and consider also a tensor A : X(M)× Γ(E)→ Γ(E). Then

R∇+A = R∇ + d∇A +
1
2
[A, A].

Here we regard A as an element of Ω1(M, End(E)).

Remark. When we use a VB-chart (U, φ) and write ∇φ = D + Γ, the above formula
gives that R∇ = d∇Γ+ [Γ, Γ]/2. Then the differential term ∂jΓb

ka− ∂kΓb
ja corresponds to

d∇Γ, while the term Γc
kaΓb

jc − Γc
jaΓb

kc corresponds to the commutator, and so we indeed

have the full expression for R b
jka .

Proof: Just distribute the “products” to get

R∇+A(X, Y)ψ = (∇+ A)X((∇+ A)Y ψ)− (∇+ A)Y((∇+ A)Xψ)− (∇+ A)[X,Y ]ψ

= R∇(X, Y)ψ +∇X AY ψ + AX AY ψ + AX∇Y ψ

−∇Y AXψ + AY AXψ + AY∇Xψ− A[X,Y ]ψ

= R∇(X, Y)ψ + ((d∇A)(X, Y))ψ + [AX , AY ]ψ,

as wanted.

In the particular case when E = TM is equipped with a connection ∇, there is
one very special TM-valued 1-form on which we can apply d∇: the bundle identity
IdTM : TM → TM itself. With this, one could also define the torsion of a connection ∇
as the map τ∇ : X(M)×X(M)→ X(M) given by

τ∇(X, Y) .
= (d∇Id)(X, Y) = ∇XY −∇Y X − [X, Y ].

This is of course C∞(M)-bilinear, and can be seen as an element τ∇ ∈ Ω2(M, TM).
One proceeds and computes

(d∇τ∇)(X, Y , Z) = R∇(X, Y)Z + R∇(Y , Z)X + R∇(Z, X)Y .

So:
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Proposition 15. Let ∇ be a torsion-free connection in TM. Then the First Bianchi Identity
holds for all vector fields X, Y , Z ∈ X(M):

R∇(X, Y)Z + R∇(Y , Z)X + R∇(Z, X)Y = 0.

Remark. In other words, the content of the First Bianchi Identity is just the algebraic
statement that “the derivative of zero equals zero”.

Another last geometric feature in TM worth mentioning is that connections pro-
duce covariant Hessians of smooth functions: Hess∇( f )(X, Y) = X(Y( f ))−d f (∇XY),
and those Hessians are symmetric tensors if and only if τ∇ = 0.

Let’s conclude the section with an alternative way to locally record information
about a connection ∇ and its curvature R∇, in a general vector bundle E → M. Let
(ea) be a local frame for E. Write

∇Xeb = ωa
b(X)ea and R∇(X, Y)eb = Ωa

b(X, Y)eb,

for all a. Then the ωa
b ∈ Ω1(M) are called the connection 1-forms relative to (ea), while

the Ωa
b ∈ Ω2(M) are called the curvature 2-forms relative to (ea). Of course, we may

regard ω and Ω as gl(q, R)-valued differential forms. So, a few remarks are in order:

• we can extend the ∧ operation to such forms, by replacing the usual matrix mul-
tiplication with ∧.

• if we consider the standard flat connection D in the trivial (Lie algebra) bun-
dle M× gl(q, R), we can form the covariant exterior derivatives dDω and dDΩ,
which just amount to taking the exterior derivatives of all entries of the matrix in
question. Thus when writing dω, we mean a matrix whose entries are 2-forms,
for example.

• if X, Y ∈ X(M) and α ∈ Ω1(M, gl(n, R)), then X(α(Y)) is the matrix whose
entries are X(αi

j(Y)).

That being said, we have some relations between ω and Ω, given in the next two
results:

Proposition 16. Let E → M be a vector bundle with a connection ∇ and (ea) a local frame
for E. Then

Ω = dω +
1
2
[ω, ω] = dω + ω ∧ω.

In terms of matrix entries, we have Ωa
b = dωa

b + ωa
c ∧ωc

b.

Proof: Write e = [e1 · · · eq] as a row vector of local sections4. Then by definition of
connection and curvature forms, we have ∇Xe = eω(X) and R∇(X, Y)e = eΩ(X, Y),
where the right sides of those equations are actual matrix products, and the left sides

4This sort of notation using the same kernel letter in German font is used, for example, in [6].

Page 11



Comparing principal and vector bundles Ivo Terek

are defined by applying the corresponding operation in each entry5. So now we use
the definition of curvature and an obvious product rule in this setting to get

eΩ(X, Y) = R∇(X, Y)e
= ∇X(eω(Y))−∇Y(eω(X))− eω([X, Y ])
= eω(X)ω(Y) + eX(ω(Y))− eω(Y)ω(X)− eY(ω(X))− eω([X, Y ])
= e (X(ω(Y))− Y(ω(X))−ω([X, Y ]) + [ω(X), ω(Y)])

= e

(
dω(X, Y) +

1
2
[ω, ω](X, Y)

)
.

The conclusion follows from linear independence of e (which is then cancelled in the
previous equality).

Corollary 17 (Second Bianchi Identity). Under the same assumptions as the previous result,
we have dΩ = Ω ∧ω−ω ∧Ω.

Proof: Apply d on both sides of Ω = dω + ω ∧ω to get

dΩ = 0 + dω ∧ω−ω ∧ dω

= (Ω−ω ∧ω) ∧ω−ω ∧ (Ω−ω ∧ω)

= Ω ∧ω− (ω ∧ω) ∧ω−ω ∧Ω + ω ∧ (ω ∧ω)

= Ω ∧ω−ω ∧Ω,

since (ω ∧ ω) ∧ ω = (−1)2·1ω ∧ (ω ∧ ω) = ω ∧ (ω ∧ ω), ensuring the desired calcu-
lation.

Remark. Applying d again to both sides of dΩ = Ω∧ω−ω ∧Ω actually gives 0 = 0.

Proposition 18. Let E → M be a vector bundle with a connection ∇ and e = (ea) a local
frame for E, seen as a row of sections. Then if e> = (ea) is the coframe dual to (ea), seen as a
column of sections, we have that

d∇e> + ωe> = 0.

Proof: For any local section ψ in the frame domain, we have that ψ = eb(ψ)eb. Apply
∇X to get

∇Xψ = ∇X(eb(ψ)eb) = X(ea(ψ))ea + eb(ψ)∇Xeb = (X(ea(ψ)) + ωa
b(X)eb(ψ))ea,

so that ea(∇Xψ) = X(ea(ψ)) + ωa
b(X)eb(ψ). This means that

(d∇ea)(X)(ψ) + ωa
b(X)eb(ψ) = 0,

and we are done.
5One can also omit the vector fields, writing only ∇e = eω and R∇e = eΩ, as functions of X and Y .
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In the particular case where E = TM and we have a local frame (Ei), with dual
coframe (θi), the exterior derivative dθi is not exactly the same thing as the covariant
exterior derivative d∇θi of θi seen as a T∗M-valued 0-form. So to cast Proposition 18
under this light, we’ll need to replace the matrix product there by a ∧, and a correction
factor involving the torsion τ∇ will appear.

Proposition 19. Let ∇ be a connection in TM, (Ei) be a local frame and (θi) be the corre-
sponding dual coframe. Then

dθ + ω ∧ θ = τ∇,

where τ∇ is seen as a column of 2-forms.

Proof: The current Proposition 18 applied twice gives

X(θi(Y))− θi(∇XY) + ωi
j(X)θ j(Y) = 0 and Y(θi(X))− θi(∇Y X) + ωi

j(Y)θ
j(X) = 0,

by definition of d∇θi. Now use that ∇XY −∇Y X = τ∇(X, Y) + [X, Y ] and subtract
the second equation from the first to get

X(θi(Y))− Y(θi(X))− θi(τ∇(X, Y) + [X, Y ]) + (ωi
j ∧ θ j)(X, Y) = 0.

But this becomes τi(X, Y) .
= θi(τ∇(X, Y)) = dθi(X, Y) + (ωi

j ∧ θ j)(X, Y).

Corollary 20 (First Bianchi Identity). Under the same assumptions as the previous result,
we have dτ∇ = Ω ∧ θ −ω ∧ τ∇.

Proof: Apply d to τ∇ = dθ + ω ∧ θ to get

dτ∇ = 0 + dω ∧ θ −ω ∧ dθ

= (Ω−ω ∧ω) ∧ θ −ω ∧ (τ∇ −ω ∧ θ)

= Ω ∧ θ − (ω ∧ω) ∧ θ −ω ∧ τ∇ + ω ∧ (ω ∧ θ)

= Ω ∧ θ −ω ∧ τ∇.

Remark. If τ∇ = 0, we get Ω ∧ θ = 0. This means that (Ωi
j ∧ θ j)(X, Y , Z) = 0 for any

fields X, Y and Z. So Ωi
j(X, Y)θ j(Z) + Ωi

j(Y , Z)θ j(X) + Ωi
j(Z, X)θ j(Y) = 0. Contract

against Ei and get R∇(X, Y)Z + R∇(Y , Z)X + R∇(Z, X)Y = 0, as usual.

Now, connection 1-forms and curvature 2-forms for a connection∇ in a vector bun-
dle E→ M are, a priori, local objects, depending on a choice of local frame. However,
a miracle happens: these are actually local manifestations of a global object living not
on E, but on the frame bundle Fr(E) of E, to be discussed in Section 2. It will be useful
to register how will the ω’s and Ω’s transform when we change from a local frame to
another. So:

Proposition 21. Assume that E → M is a vector bundle with a connection ∇, and (ea) and
(ẽa) are local frames for E, related on their common domain via ẽb = Aa

bea, where A = (Aa
b)

is a smooth GL(q, R)-valued function. In other words, ẽ = eA. Then:
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(i) ω̃ = A−1ωA + A−1 dA.

(ii) Ω̃ = A−1ΩA.

Remark. The transformation law in (ii) reflects the fact that R∇ is a tensor. The trans-
formation law in (i), in turn, will serve as a motivation for defining an Ehresmann
connection in a principal bundle, in Section 3.

Proof:

(i) On one hand, ∇ẽ = ẽω̃ = eAω̃. On the other hand, we have

∇ẽ = ∇(eA) = (∇e)A + edA = eωA + edA = e(ωA + dA).

So we get that e(Aω̃) = e(ωA + dA), and linear independence of e implies the
relation Aω̃ = ωA + dA. Thus ω̃ = A−1ωA + A−1 dA.

(ii) Similarly, we have that R∇ẽ = ẽΩ̃ = eAΩ̃, and also the linearity of R∇ gives that
R∇ẽ = R∇(eA) = (R∇e)A = eΩA. So, linear independence of e gives AΩ̃ = ΩA,
and so Ω̃ = A−1ΩA.
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2 Principal bundles – basic definitions

We want to repeat what was done in the last section but in a “different category”.
Instead of assigning to each point of M a vector space, we will assign a Lie group. With
Lie groups, we have several related concepts such as actions, Lie algebras, etc.. We
want to take those things into account in a suitable definition of “principal G-bundle”.

Definition 22. A principal G-bundle is a triple (P, π, M), where:

(i) P and M are differentiable manifolds;

(ii) π : P→ M is smooth;

(iii) we have a smooth right action P 	 G which preserves the fibers Px
.
= π−1(x)

and is free6 and transitive7 on all of them, that is, for all x ∈ M and p ∈ Px, the
orbit map G 3 g 7→ p · g ∈ Px is a bijection8.

(iv) for each x0 ∈ M there is an open neighborhood U ⊆ M of x0 and a diffeomor-
phism φ : π−1[U]→ U × G such that the diagram

π−1[U] U × G

U
π

φ

pr1

commutes9 and φ is G-equivariant10. That is, φ(p · g) = φ(p) · g, where the right
action (U × G) 	 G is given by (x, h) · g = (x, hg).

Again, we’ll say that P is the total space, M is the base manifold, and π is the bundle
projection. Note that π is necessarily surjective as each fiber Px is in bijection with the
non-empty set G (it contains the neutral element). Each pair (U, φ) here will be called
a principal G-chart, and a collection {(Uα, φα)}α∈Λ for which {Uα}α∈Λ is an open cover
for M is called a principal G-atlas for P. It will also be convenient to denote the action
maps by Rg : P→ P, Rg(p) = p · g.

Before we move on to examples, there is one technicality regarding the above defi-
nition which will be convenient to clear up now:

Proposition 23. Given a triple (P, π, M) satisfying items (i) and (ii) in Definition 22 above,
and a Lie group action P 	 G which satisfies item (iv), then it automatically satisfies item (iii)
as well and thus (P, π, M) is a principal G-bundle.

6Each orbit map is injective. This is equivalent to the stabilizers of all points being trivial.
7Each orbit map is surjective. This is equivalent to the action having a single orbit.
8Then the Orbit-Stabilizer Theorem implies that Px ∼= G, for all x ∈ M. The isomorphisms will vary

from point to point and a priori we have no control over that.
9This implies that φ|Px : Px → {x}×G. So footnote number 5 above is thus, in some sense, retconned:

principal G-charts gather a bunch of isomorphisms Px ∼= G in a single map, for x ranging over an open
subset of M.

10If X and Y are (for concreteness, left) G-sets, a map f : X → Y is G-equivariant if f (g · x) = g · f (x)
for all x ∈ X. So G-equivariant maps are the morphisms in the category of G-sets. Copy and paste for
right actions.
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Proof: The action is fiber-preserving because of the commutativity of the diagrams
provided by (iv). Now, let p ∈ P be any point and set x = π(p). We want to show that
the orbit map Op : G → Px given by Op(g) = p · g is bijective. Take a principal G-chart
(U, φ) around x and write φ = (π, φ2).

• First we show that Stab(p) is trivial by assuming that p · g = p and showing that
g = e: apply pr2 ◦ φ on both sides to get φ2(p · g) = φ2(p). Since we have that φ is
G-equivariant, so is φ2 and the previous relation is rewritten as φ2(p)g = φ2(p).
But this last equality holds in G and, in a group, we have a cancellation law. Thus
we conclude that g = e, and this means that Op is injective.

• Now we show that Op is surjective, by assuming that p′ is another point in Px,
and exhibiting an element in G which moves p to p′. If we want p · g = p′,
morally g should be the “ratio” p′/p. This is achieved formally by using φ as
follows:

φ
(

p · φ2(p)−1φ2(p′)
)
=
(

x, φ2
(

p · φ2(p)−1φ2(p′)
))

(∗)
=
(

x, φ2(p)φ2(p)−1φ2(p′)
)

= (x, φ2(p′))
= φ(p′),

where in (∗) we used G-equivariance of φ. But φ is a diffeomorphism, so we
obtain that p · φ2(p)−1φ2(p′) = p′, as wanted.

Remark. In other words, the above proposition says that condition (iii) was essentially
superfluous in Definition 22. We have included it anyway for pedagogical reasons and
the geometric appeal.

Now we can move on to some examples.

Example 24.

(1) π : M × G → M is called the trivial principal G-bundle over M. Each fiber is just
{x} × G, and the action (M× G) 	 G is given by (x, h) · g = (x, hg). Clearly such
action preserves the fibers and act freely and transitively on then. Moreover, we
have a global principal G-chart (M, φ), where φ : M× G → M× G is the identity
map.

(2) Example (1) is a particular case of a more general situation: assume that N 	 G is a
free and transitive action on a second manifold N. By the Orbit-Stabilizer Theorem,
we have that G and N are G-equivariantly diffeomorphic11, say, via θ : N → G. So

11Let’s recall the proof in the context of sets and left actions (nothing really changes). Assume G � X
and fix x0 ∈ X. Look at the map f : G → Orb(x0) given by f (g) = g · x0. This is surjective by definition
of orbit, and if we say that g ∼ h if and only if h−1g ∈ Stab(x0), then g ∼ h if and only if f (g) = f (h). So
f passes to the quotient f : G/∼ = G/Stab(x0)→ Orb(x0) as a bijection, given by f̃ (g Stab(x0)) = g · x0.
But G also acts on G/Stab(x0) by the left in the obvious way, and f̃ becomes G-equivariant.
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consider π : M× N → M, where (M× N) 	 G is defined by (x, y) · g .
= (x, y · g).

Then this new action is free and transitive on each fiber {x} × N, and we have one
global principal G-chart (M, φ), where φ : M × N → M × G is simply given by
φ(x, y) = (x, θ(y)). We have

φ((x, y) · g) = φ(x, y · g) = (x, θ(y · g))
= (x, θ(y) · g) = (x, θ(y)) · g
= φ(x, y) · g.

The previous example is just where N = G and θ = IdG.

(3) Another toy model: any Lie group G naturally acts on itself by the right, via right
translations. Such action is clearly free and transitive, and so we get a principal
G-bundle over a one-point space (i.e., a zero-dimensional manifold): G → {∗},
with the whole total space G as the single fiber. The global principal G-chart is
essentially the identity G → {∗} × G.

(4) Let π : P → M be a principal G-bundle and f : N → M. Let’s define a principal
G-bundle over N as follows: the total space will be defined as

f ∗P .
= {(y, p) ∈ N × P | p ∈ Pf (y)}.

To argue that f ∗P is a differentiable manifold (more precisely, an embedded sub-
manifold of N × P), one considers the smooth map F : N × P → M×M given by
F(y, p) = ( f (y), π(p)), verifies that F t ∆ and notes that f ∗P = F−1[∆], where ∆
is the diagonal in M×M. Also, we have that12

T(y,p)( f ∗P) = {(v, w) ∈ TyN × TpP | d fy(v) = dπp(w)}.

The smooth projection π̃ : f ∗P→ N is the obvious one.

Next, the right action f ∗P 	 G is given by (y, p) · g .
= (y, p · g). Such action

preserves the fibers of f ∗P, as the original action preserves the fibers of P (namely,
p ∈ ( f ∗P)y = Pf (y) and g ∈ G implies p · g ∈ Pf (y) = ( f ∗P)y). Moreover, since
the orbit maps G 3 g 7→ p · g ∈ Px are bijections for all p ∈ Px and all x ∈ M, this
is particular remains true for the points of the form x = f (y) for y ∈ N, meaning
that the action f ∗P 	 G is also free and transitive on the fibers of f ∗P.

Lastly, we form principal G-charts for f ∗P via principal G-charts for P as fol-
lows: given (U, φ) for P, we consider the open set f−1[U] ⊆ N. Then define
φ̃ : π̃−1[ f−1[U]] → f−1[U] × G by φ̃(y, p) .

= (y, φ2(p)), where φ2 is the second
component of φ. It is clear that φ̃ is G-equivariant. Now, the inverse mapping is
φ̃−1 : f−1[U]× G → π̃−1[ f−1[U]] given by φ̃−1(y, h) = (y, φ−1( f (y), h)). Indeed,
on one hand we have that

φ̃(φ̃−1(y, h)) = φ̃(y, φ−1( f (y), h)) = (y, φ2(φ
−1( f (y), h))) = (y, h),

12This is a general fact: if F : M → N is a smooth map, S ⊆ N is a submanifold, and F t S, then
F−1[S] is an embedded submanifold of M and Tx(F−1[S]) = (dFx)−1[TF(x)S]. The fast way to remember
is to “differentiate” both sides of the equation F(x) ∈ S with respect to x and evaluate at v to get
dFx(v) ∈ TF(x)S.
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since for all x ∈ U and h ∈ G (in particular when x = f (y) with y ∈ f−1[U]) we
have that

(x, h) = φ(φ−1(x, h)) = (x, φ2(φ
−1(x, h))) =⇒ φ2(φ

−1(x, h)) = h.

On the other hand, we have

φ̃−1(φ̃(y, p)) = φ̃−1(y, φ2(p)) = (y, φ−1(φ2(p))) = (y, p),

since for all x ∈ U and p ∈ Px (in particular when x = f (y) with y ∈ f−1[U]) we
have p = φ−1(φ(x, p)) = φ−1(x, φ2(p)).

Let’s mimic what we have done before to study the transition maps of a VB-atlas.
So let π : P→ M be a principal G-bundle with a principal G-atlas {(Uα, φα)}α∈Λ. Since
the diagram

π−1[Uα ∩Uβ]

(Uα ∩Uβ)× G (Uα ∩Uβ)× G

Uα ∩Uβ

φα φβ

π

pr1 pr1

φαβ
.
=φα◦φ−1

β

commutes, we know that φαβ : (Uα ∩ Uβ) × G → (Uα ∩ Uβ) × G is of the form13

φαβ(x, g) = (x, ταβ(x)(g)), where ταβ : Uα ∩ Uβ → G ⊆ Diff(G) is smooth. Taking
a third principal G-chart (Uγ, φγ) satisfying that Uα ∩Uβ ∩Uγ 6= ∅, we again obtain
for each x that:

(i) ταα(x) = IdG;

(ii) τβα(x) = ταβ(x)−1;

(iii) ταγ(x) = ταβ(x) ◦ τβγ(x).

13Again, say that the second component of φαβ(x, g) is some fαβ(x, g). But since fixed x, this is an
equivariant map in the variable g, we define ταβ(x)(g) = fαβ(x, g) = fαβ(x, e)g. This also justifies
why ταβ takes values in G ⊆ Diff(G), as ταβ(x) : G → G consists of left multiplication by the element
fαβ(x, e). More precisely, there are two natural ways to inject G ↪→ Diff(G). Either by g 7→ Lg or
g 7→ Rg−1 (observe that g 7→ Rg is not a homomorphism). To relate those two injections, we define a
“hat” map as follows: given ϕ ∈ Diff(G), define ϕ̂ ∈ Diff(G) by the formula ϕ̂(a) = ϕ(a−1)−1. Then
the diagram

G Diff(G)

G Diff(G)

R◦inv

∧

L

commutes. Note that the “hat” map fixes the subgroup Aut(G) ⊆ Diff(G). Of course this all works in
the pure category Grp, with Diff(G) replaced by the group Sym(G) of all bijections G → G.
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Just like for vector bundles, those transition functions are enough to “reconstruct”
the bundle P.

Theorem 25. If {Uα}α∈Λ is an open cover for M and {ταβ : Uα ∩Uβ → G ⊆ Diff(G)}α,β∈Λ
is a collection of smooth maps satisfying (i), (ii) and (iii) above, whenever they make sense, then

P =

(⊔
α∈Λ

Uα × G

)
/∼

is a principal G-bundle, where ∼ is defined by (α, x, g) ∼ (β, y, h) if x = y and g = ταβ(x)h.

We’d like some concrete relation between vector bundles and principal bundles.
For example, if V is a vector space, one could think that item (2) of the above list of
examples works to define a principal GL(V)-bundle M×V → V. It does not, because
the stabilizer of a given non-zero vector can be huge, and we have two orbits: {0} and
V \ {0}. This will be remediated with the construction of frame bundles:

Example 26 (Frame bundles).

• Start considering a real vector space V, with dimension dim V = q < +∞. Let
Fr(V) denote the collection of all ordered bases of V. So a basis of V is seen as
a point v ∈ Fr(V). Write v = [v1 · · · vq] as a row vector, whose entries are again
vectors. Given a matrix A = (ai

j)
q
i,j=1 ∈ GL(q, R), we may define a new basis

for V by setting, for each j = 1, . . . , q, the combination ṽj = ∑
q
i=1 ai

jvi. So the
relation between v and ṽ is just ṽ = vA. Which is to say, GL(q, R) acts by the
right on Fr(V).

Such action is free (by linear independence of bases) and transitive (since bases
span V), and so the Orbit-Stabilizer Theorem gives a bijection GL(q, R) ∼= Fr(V),
which we’ll use to turn Fr(V) into a differentiable manifold, also making the
chosen bijection a diffeomorphism14. We then call Fr(V) the frame manifold of V.

• Let π : E → M be a real vector bundle, with fiber dimension q. For every fiber
Ex, we may consider the frame manifold Fr(Ex). Now put all of them together
to form the frame bundle of E:

Fr(E) .
=

⊔
x∈M

Fr(Ex).

There’s an obvious projection πfr : Fr(E) → M, and from the above point we
have a right action Fr(E) 	 GL(q, R) which is free and transitive on fibers. As
a matter of fact, frame bundles are the prototypes of principal bundles, and we
can see this construction as a justification for using right actions instead of left
actions.

14Rigorously, we have a bijection φv : GL(q, R) → Fr(V), for each v ∈ Fr(V). They’re given by
φv(B) = vB. We have that φvA = φv ◦ LA, where LA : GL(q, R)→ GL(q, R) denotes the left translation
by A. Since LA is a diffeomorphism, we conclude that the manifold structures of Fr(V) defined by φv

and φvA coincide.
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If we define smoothly compatible “formal” principal GL(q, R)-charts, the man-
ifold structure on Fr(E) comes for free15. So, fix the standard basis (ea) for Rq

and start with a VB-chart (U, φ) for E. We’ll define a principal GL(q, R)-chart
(U, φfr) for Fr(E) by φfr(v) = (x, A), where x = πfr(v) and A = (ai

j)
q
i,j=1 is the

non-singular matrix characterized by

vj =
q

∑
i=1

ai
jφ
−1(x, ei),

where v = [v1 · · · vq] is a basis for Ex. It is clear that φfr is bijective, so let’s check
that it is GL(q, R)-equivariant: take a non-singular matrix B = (bi

j)
q
i,j=1. Then

vB = [w1 · · ·wq], where wj = ∑
q
k=1 bk

jvk. One more step gives

wj =
q

∑
k=1

bk
j

(
q

∑
i=1

ai
kφ−1(x, ei)

)
=

q

∑
i=1

(
q

∑
k=1

ai
kbk

j

)
φ−1(x, ei),

and so φfr(vB) = (x, AB) = (x, A) · B = φfr(v) · B, as wanted16. That said, the
only thing left to check is the smooth compatibility between charts for Fr(E) con-
structed in such a way. So, assume we’re given VB-charts (Uα, φα) and (Uβ, φβ)

for E with Uα ∩Uβ 6= ∅. For simplicity, denote eα,i(x) = φ−1
α (x, ei), and similarly

for eβ,i’s. Note that if we write φαβ(x, v) = (x, ταβ(x)(v)), then

eβ,j(x) =
q

∑
i=1

ταβ(x)i
jeα,i(x).

With this, let’s compute the transition φαβ,fr
.
= φα,fr ◦ φ−1

β,fr as follows: given a

pair (x, A) ∈ (Uα ∩Uβ)×GL(q, R), φ−1
β,fr(x, A) = v = [v1 · · · vq], where for all j

we have vj = ∑
q
k=1 ak

j eβ,k(x). To apply φα,fr, we need to write those vectors as
combinations of the eα,i’s, and that’s where the original transitions ταβ come in.
Since

vj =
q

∑
k=1

ak
j

(
q

∑
i=1

ταβ(x)i
keα,i(x)

)
=

q

∑
i=1

(
q

∑
k=1

ταβ(x)i
kak

j

)
eα,i(x),

we get that φαβ,fr(x, A) = (x, ταβ(x)A), which is smooth. Thus, πfr : Fr(E) → M
is indeed a principal GL(q, R)-bundle. Also note that the transitions between
these principal charts for Fr(E) indeed take values in the subgroup GL(q, R) of
Diff(GL(q, R)), where the embedding is given by left-multiplication. We will see
the “inverse” of this construction in the end of this section.

15This is a general fact about fiber bundles, see Theorem 4.3.3 in [2].
16A more efficient use of notation is as follows: φfr(v) = (x, A), where A is the unique non-singular

matrix for which v = eA, where e ∈ Fr(Ex) is defined via φ. Then vB = (eA)B = e(AB) reads precisely
as φfr(vB) = φfr(v) · B, bypassing all summations and indices.
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• If (V, 〈·, ·〉) is an Euclidean vector space, one may consider the manifold FrO(V)
(or Fr(V, 〈·, ·〉)) of all ordered orthonormal bases of V. And then repeating the
previous construction, we get a right action on FrO(V) by O(q, R). If E→ M is a
vector bundle equipped with an given Euclidean fiber metric g, one also obtains
a principal O(q, R)-bundle FrO(E) → M. This all works when the products
considered are no longer positive-definite, once an agreement is made on, for
example, placing all timelike fiber elements last. The structure group is then the
pseudo-orthogonal group Oν(q, R), where ν is the index of the scalar product or
fiber metric.

• If (V, Ω) is a symplectic vector space, we repeat the construction to get the man-
ifold FrSp(V) (or Fr(V, Ω)) of all Darboux bases for V. The symplectic group
Sp(2q) acts by the right on FrSp(V). In the vector bundle level, we assume that
E→ M is equipped with a symplectic structure ω (i.e., a non-degenerate section
of E∗ ∧ E∗), and we obtain a principal Sp(2q)-bundle FrSp(E)→ M.

Definition 27. Let π : P→ M be a principal G-bundle.

(i) A section of P is a mapping ψ : M → P such that π ◦ ψ = IdM. We’ll also say that
ψ is a gauge for P. Similarly we talk about local sections (local gauges).

(ii) If π′ : P′ → M is another principal G-bundle, a gauge transformation Φ : P→ P′ is
a G-equivariant bundle isomorphism.

Remark. We will denote the space of gauge transformations of a principal G-bundle
P→ M by G(P).

Example 28.

(1) Gauges of the trivial G-bundle M × G → M are clearly identified with smooth
functions M → G. Also, gauge transformations of M× G are also identified with
smooth functions M → G, but this requires some argument (actually very similar
to when we described the transition maps for a general principal atlas): assume
that Φ : M × G → M × G is of the form Φ(x, g) = (x, ϕ(x, g)), for some smooth
map ϕ : M × G → G (here we already used that Φ is fiber-preserving). Now the
equivariance condition Φ(x, gh) = Φ(x, g)h reads (x, ϕ(x, gh)) = (x, ϕ(x, g)h).
This means that we may identify Φ with the smooth map f : M → G given by
f (x) = ϕ(x, e), so that ϕ(x, g) = ϕ(x, eg) = ϕ(x, e)g = f (x)g. In particular,
it also follows from that argument that a fiber-preserving G-equivariant smooth
map is automatically a diffeomorphism (and hence a gauge transformation), as
Φ−1 : M× G → M× G can be given explicitly as Φ−1(x, g) = (x, f (x)−1g).

(2) Consider the “toy” bundle G → {∗} over a one-point space. Then gauges are
constant functions, meaning that the space of gauges is identified with G itself. In
the same fashion, G(G) ∼= G, since every gauge transformation Φ : G → G actually
is given by Φ = LΦ(e), in view of the G-equivariance condition.

(3) Local frames for a vector bundle E → M are the same thing as local gauges
for the frame bundle Fr(E). Now, let’s understand what a gauge transformation
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Φ : Fr(E) → Fr(E) is. Given v ∈ Fr(Ex), we have that Φ(v) ∈ Fr(Ex) as well. So
there is a matrix relating both bases, call it AΦ(v) ∈ GL(q, R). In other words, we
have Φ(v) = vAΦ(v). Smoothness of the gauge transformation Φ means that the
matrix map AΦ : Fr(E) → GL(q, R) is also smooth. Now, the equivariance con-
dition Φ(vB) = Φ(v)B reads as vBAΦ(vB) = vAΦ(v)B, and linear independence
of frames implies that AΦ(vB) = B−1AΦ(v)B. Now, note that GL(q, R) acts on
itself on the right by conjugation (where the inverse comes in the left). This means
that gauge transformations of Fr(E) are the same thing as GL(q, R)-equivariant
smooth maps Fr(E) → GL(q, R). This is a particular instance of a more general
phenomenon, to be described in Proposition 29.

(4) Local orthonormal frames for a vector bundle E→ M equipped with an Euclidean
fiber metric are the same thing as local gauges for the orthonormal frame bundle
FrO(E). As before, gauge transformations of FrO(E) are the same thing as O(q, R)-
equivariant smooth maps FrO(E)→ O(q, R).

(5) Local Darboux frames for a vector bundle E → M equipped with a fiber sym-
plectic structure are the same thing as local gauges for the symplectic frame bun-
dle FrSp(E). As before, gauge transformations of FrSp(E) are the same thing as
Sp(2q, R)-equivariant smooth maps FrSp(E)→ Sp(2q, R).

Proposition 29. Let P→ M be a principal G-bundle. Let

C∞(P, G)G .
= { f ∈ C∞(P, G) | f (p · g) = g f (p)g−1 for all p ∈ P, g ∈ G}.

Then the map σ : G(P) → C∞(P, G)G characterized by Φ(p) = p · σΦ(p), for all p ∈ P,
is a well-defined group isomorphism. Here, the group structure on C∞(P, G)G is given by
pointwise multiplication, and the neutral element is the constant function e ∈ G.

Remark.

• Note that the condition f (p · g) = g f (p)g−1 is equivalent to f ◦ Rg = Cg−1 ◦ f
where, for any g ∈ G, the conjugation Cg : G → G is defined by Cg(a) = gag−1.
In other words, the upper G in C∞(P, G)G again stands for G-equivariance.

• In item (1) of the previous example, for the trivial G-bundle M × G → M we
indeed have that C∞(M × G, G)G ∼= C∞(M, G), where the isomorphism is the
evaluation f 7→ f (·, e).

Proof: Let’s work in three steps:

• That σΦ is well-defined follows from the action of G on P being free and transitive
on fibers. To see that σΦ is smooth, take a principal G-chart (U, φ) for P. If we
have φ(p) = (x, φ2(p)), where p ∈ Px and φ2 : π−1[U] → G is smooth and G-
equivariant, applying φ2 to the relation Φ(p) = p · σΦ(p) gives that

φ2(Φ(p)) = φ2(p · σΦ(p)) = φ2(p)σΦ(p),
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so that σΦ(p) = φ2(p)−1φ2(Φ(p)) and hence σΦ is smooth on π−1[U]. Since the
principal G-chart was arbitrary, σΦ is globally smooth. Now from the equality
Φ(p · g) = Φ(p) · g we compute

(p · g) · σΦ(p · g) = (p · σΦ(p)) · g =⇒ p · (gσΦ(p · g)) = p · (σΦ(p)g),

and from freeness of the action we get that gσΦ(p · g) = σΦ(p)g. It follows that
σΦ(p · g) = g−1σΦ(p)g, so that indeed σΦ ∈ C∞(P, G)G.

• The next step is checking that σ is a group homomorphism. So let Φ1, Φ2 ∈ G(P).
We have that

(Φ1 ◦Φ2)(p) = Φ1(Φ2(p)) = Φ2(p) · σΦ1(Φ2(p))

= (p · σΦ2(p)) · σΦ1(p · σΦ2(p)) = p · (σΦ2(p)σΦ2(p)−1σΦ1(p)σΦ2(p))
= p · (σΦ1(p)σΦ2(p)) = p · ((σΦ1 · σΦ2)(p)),

so that freeness of the action and arbitrariety of p gives that σΦ1◦Φ2 = σΦ1 · σΦ2 ,
as wanted.

• Finally, let’s exhibit the inverse for σ. Given f ∈ C∞(P, G)G, define a map
Φ f : P → P by Φ f (p) .

= p · f (p). Clearly Φ f is smooth and fiber-preserving.
It is G-equivariant since

Φ f (p · g) = (p · g) · f (p · g) = p · (gg−1 f (p)g)
= p · ( f (p)g) = (p · f (p)) · g
= Φ f (p) · g.

And it is a gauge transformation since its inverse automorphism is explictly
given by (Φ f )−1(p) = p · f (p)−1. To wit, we have that

(Φ f ◦ (Φ f )−1)(p) = Φ f (p · f (p)−1) = (p · f (p)−1) · f (p · f (p)−1)

= p · ( f (p)−1 f (p) f (p) f (p)−1) = p,

and (Φ f )−1 ◦Φ = IdP follows from the exact same computation repeated switch-
ing the roles of f and its pointwise inverse. We will conclude the proof by noting
that since Φ f (p) = p · f (p), the definition of σ says that σΦ f = f , while on the
other hand we have that ΦσΦ(p) = p · σΦ(p) = Φ(p).

We proceed to describe one of the most striking differences between vector bundles
and principal bundles: while vector bundles always admit global sections (at least the
zero section), this is no longer true for principal bundles. The situation is much more
extreme:

Proposition 30. Let π : P → M be a principal G-bundle. Then P admits a global gauge if
and only if P is G-equivariantly diffeomorphic to the trivial G-bundle M× G → M.
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Proof: We start with the easy direction. If Ψ : P → M × G is a G-equivariant dif-
feomorphism, define ψ : M → P by ψ(x) .

= Ψ−1(x, e). To see that ψ is a gauge for
P, first note that Ψ has necessarily the form Ψ(p) = (π(p), Ψ2(p)) for some smooth
Ψ2 : P→ G. Then for all (x, g) ∈ M× G we have that

(x, g) = ΨΨ−1(x, g) = (π(Ψ−1(x, g)), Ψ2(Ψ−1(x, g))) =⇒ π(Ψ−1(x, g)) = x.

In particular, we get that π(ψ(x)) = π(Ψ−1(x, e)) = x, as wanted.
Conversely, assume now that we have a global gauge ψ : M → P. Let’s define a

G-equivariant diffeomorphism between P and M × G. We will exhibit both the map
and its inverse. First we define ζ : M× G → P by ζ(x, g) = ψ(x)g. Indeed, we have
that ζ is G-equivariant, as

ζ((x, g) · h) = ζ(x, gh) = ψ(x) · (gh) = (ψ(x) · g) · h = ζ(x, g) · h.

To define the inverse Ψ of ζ, we use that the action P 	 G is free and transitive on
fibers. Since p, ψ(π(p)) ∈ Pπ(p) for all p ∈ P, there is a unique gp ∈ G such that
ψ(π(p)) = p · gp. By a similar argument to the one done in the proof of Proposition
29, we have that gp depends smoothly on p. In particular, when we already have
p = ψ(x) for some x ∈ M, we get that gψ(x) = e. Also, if g ∈ G is arbitrary, we have
that

p · gp = ψ(π(p)) = ψ(π(p · g)) = (p · g) · gp·g = p · (ggp·g),

and freeness of the action on fibers gives that gp·g = g−1gp. With this, define now
Ψ : P → M× G by Ψ(p) = (π(p), g−1

p ). The inverse on gp is needed to ensure that Ψ
is G-equivariant, as the following computation shows:

Ψ(p · g) = (π(p · g), g−1
p·g) = (π(p), (g−1gp)

−1)

= (π(p), g−1
p g) = (π(p), g−1

p )g

= Ψ(p)g.

Lastly, we check that Ψ and ζ are indeed inverses. On one hand we have that

ζ(Ψ(p)) = ζ(π(p), g−1
p ) = ψ(π(p)) · g−1

p = p,

and on the other hand that

Ψ(ζ(x, g)) = Ψ(ψ(x) · g) = (π(ψ(x)), g−1
ψ(x)·g) = (x, (g−1gψ(x))

−1) = (x, g),

recalling that gψ(x) = e. We are done.

Remark. It might be worth noting that even if E → M is just a fiber bundle (i.e., the
projection is a surjective submersion, all the fibers Ex are diffeomorphic to a fixed
typical fiber F and there are local trivializations – with no extra structure), Γ(E) = ∅
is a perfectly possible situation. For instance, consider the slit tangent bundle of S2,
T◦S2 → S2, where T◦S2 = TS2 \ 0TS2 . Then Γ(T◦S2) = ∅ in view of the hairy ball
theorem.
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Example 31.

(1) Let π : P → M be a principal G-bundle. We can pull this back to P itself via π,
obtaining another principal G-bundle π∗P → P. Observe that in this case the
total space is given by π∗P = {(p1, p2) ∈ P × P | π(p1) = π(p2)}. That being
understood, we have an obvious global gauge ψ : P→ π∗P given by ψ(p) = (p, p).
Thus π∗P→ P is trivial.

(2) If M is any smooth manifold, when is Fr(TM) trivial? This happens precisely
when M is parallelizable.

The idea given in the previous proof allows us to establish the version of “VB-charts
are equivalent to local frames” in the setting of principal G-bundles:

Theorem 32. Let π : P → M be a surjective submersion and P 	 G a smooth right action
which is free and transitive on the fibers of π. Then π : P→ M is a principal G-bundle if and
only if there is an open cover {Uα}α∈Λ of M together with local gauges ψα : Uα → P.

The proof consists mainly in applying the previous result for every principal chart
domain, i.e., to the restrictions PU = π−1[U] → U. With this in hand, we get a few
more examples:

Example 33.

(1) If P is a manifold and we have a free right action P 	 G for which the map

P× G 3 (p, g) 7→ (p, p · g) ∈ P× P

is closed (such actions are called principal, for good reason), then P/G is a smooth
manifold17, and the canonical projection P→ P/G is a surjective submersion. The
action is automatically principal and we get this conclusion, for example, if G is
compact. By the rank theorem, surjective submersions always admit local sections.
Hence P→ P/G is a principal G-bundle.

(2) As a particular case of the previous item, if G is a Lie group and H ≤ G is a closed
subgroup (hence a Lie subgroup), then the action G 	 H is principal and so the
canonical projection G → G/H defines a principal H-bundle. The fiber over a
point aH ∈ G/H is the coset aH ⊆ G itself.

• When H = G, we recover the “toy” bundle over a one-point space.

• A more interesting example arises from considering the Grassmannian Grk(R
n)

of k-dimensional subspaces of Rn. For instance, we have that O(n, R) acts

17The general theorem about the structure of quotient manifolds is:

Theorem (Godement). Let R be an equivalence relation on a manifold M. Suppose that R is a closed embedded
submanifold of M×M and pr1|R : R → M is a surjective submersion. Then M/R has a unique structure of a
smooth manifold such that the canonical projection M→ M/R is a surjective submersion.

The proof is very technical and can be found in [2].
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transitively on Grk(R
n) via direct images and the stabilizer of a fixed sub-

space is isomorphic to O(k, R)×O(n− k, R), so that the orbit-stabilizer theo-
rem gives that

Grk(R
n) ∼=

O(n, R)

O(k, R)×O(n− k, R)
.

With this, the quotient projection on the right side (since the denominator is
a closed subgroup) establishes O(n, R) as a (O(k, R) ×O(n − k, R))-bundle
over the Grassmannian GrK(R

n).

(3) Consider a sphere S2n+1 ⊆ R2n+2 ∼= Cn+1. We have an action S2n+1 	 S1 given by
z · λ .

= λz. This action is free, since given any z ∈ S2n+1 and λ ∈ S1 with λz = z,
we multiply both sides by z to get λ = 1. Since S1 is compact, we automatically get
a principal S1-bundle S2n+1 → S2n+1/S1 ∼= CPn. This is called the Hopf fibration.

Let’s proceed. Given a principal G-bundle P → M, we’d like to construct a vector
bundle from that. However, we need an extra tool for that. Namely, a representation
ρ : G → GL(V) of G in some vector space V, which will be the typical fiber of the
vector bundle to be constructed.

Lemma 34. Let P → M be a principal G-bundle and ρ : G → GL(V) be a representation of
G in a vector space V. Then the action

(P×V)× G 3 ((p, v), g) 7→ (p · g, ρ(g−1)v) ∈ P×V

is principal. Thus the quotient P×ρ V .
= (P×V)/G is a smooth manifold, and the projection

P×V → P×ρ V is a surjective submersion.

Remark. It is also instructive to note the alternative formulation via an equivalence
relation: say that (p, v) ∼ (p′, v′) if and only if there is g ∈ G with p′ = p · g and
v′ = ρ(g−1)v. We see that the inverse in ρ(g−1) is needed when regarding the rep-
resentation ρ as a left action V 	 G instead of a right action. Indeed ∼ is reflexive
(take g = e), symmetric (given g, consider g−1) and transitive (take the product). So
P×ρ V = (P×V)/∼.

Proof: See [2].

Proposition 35. Let P→ M be a principal G-bundle and ρ : G → GL(V) be a representation
of G in a vector space V. Then P×ρ V → M is a vector bundle, whose fibers are isomorphic
to V. This is called the associated vector bundle to P via ρ.

Proof: In view of the previous result, the only thing left to do is to define the vector
space operations on the fibers, and find VB-charts for P×ρ V using principal G-charts
for P. Fixed x ∈ M and [p, v], [q, w] ∈ (P×ρ V)x, we define the addition by

[p, v] + [q, w]
.
= [p, v + ρ(g)w] = [q, ρ(g−1)v + w],

where g ∈ G is the unique element such that q = p · g, and also λ[p, v] = [p, λv], for
λ ∈ R. The only thing to check here is that the addition above is well-defined. So
assume that (p′, v′) ∼ (p, v) and (q′, w′) ∼ (q, w), and then take a, b ∈ G such that

p′ = p · a, v′ = ρ(a−1)v, q′ = q · b and w′ = ρ(b−1)w.
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If g ∈ G is such that q = p · g, then we immediately have q′ = p′ · (a−1gb). And finally
we conclude that (p, v + ρ(g)w) ∼ (p′, v′ + ρ(a−1gb)w′), as

ρ(a)
(
v′ + ρ(a−1gb)w′

)
= ρ(a)v′ + ρ(g)ρ(b)w′ = v + ρ(g)w.

This shows that the addition operation on each fiber of P ×ρ V is well-defined, as
claimed. And fixed p ∈ Px, V 3 v 7→ [p, v] ∈ (P×ρ V)x is an isomorphism.

Now, regarding trivializations, it will be convenient to denote both bundle projec-
tions in the discussion by π : P → M and πρ : P ×ρ V → M. Assume that we start
with a principal G-chart φ : π−1[U] → U × G for P, written as φ(p) = (π(p), φ2(p)).
We then define a VB-chart φρ : π−1

ρ [U]→ U ×V for P×ρ V simply by setting

φρ([p, v]) = (π(p), ρ(φ2(p))v).

The condition that φ2(p · g) = φ2(p)g is exactly what we need to ensure that φρ is
well-defined, as (p · g, ρ(g−1)v) gets sent to

(π(p · g), ρ(φ2(p · g))ρ(g−1)v) = (π(p · g), ρ(φ2(p)gg−1)v) = (π(p), ρ(φ2(p))v)

as well. Smoothness of φρ follows from smoothness of the remaining ingredients defin-
ing it. The (smooth) inverse φ−1

ρ : U × V → π−1
ρ [U] is written, as expected, by using

the inverse φ−1 : U × G → π−1[U]: we have that φ−1
ρ (x, v) = [φ−1(x, e), v].

Remark. Keeping the notation from the previous proof, it is interesting to see the re-
lation between the transition maps ταβ associated to a principal G-atlas {(Uα, φα)}α∈Λ
for P, and the transitions ταβ,ρ associated to the VB-atlas {(Uα, φα,ρ)}α∈Λ for P ×ρ V
constructed as above. We just compute that (with suggestive notation):

φαβ,ρ(x, v) .
= φα,ρ ◦ φ−1

β,ρ(x, v)

= φα,ρ([φ
−1
β (x, e), v])

= (x, ρ(φα,2(φ
−1
β (x, e)))v)

= (x, ρ(ταβ(x))v).

This means that ταβ,ρ = ρ ◦ ταβ.

Example 36.

(1) When π : P → M is a principal G-bundle, V is any vector space, and we take
ρ : G → GL(V) to be the trivial representation (i.e., ρ is constant and given by
ρ(g) = IdV for all g ∈ G), then P×IdV V is a trivial bundle. Indeed, in this case we
have (p, v) ∼ (p · g, v) for all g ∈ G, which says that the smooth map

P×IdV V 3 [p, v] 7→ (π(p), v) ∈ M×V

is a bijection18.

18Smoothness of the inverse is more subtle.
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(2) Recall that the conjugation Cg : G → G is given by Cg(a) = gag−1. The derivative
Ad(g) = d(Cg)e : g→ g defines the adjoint representation19 Ad: G → GL(g). Using
that, we may form the associated vector bundle Ad(P) .

= P×Ad g.

(3) Start with a vector bundle E→ M. From this, we have constructed the frame bun-
dle Fr(E) → M, which is a principal GL(q, R)-bundle. We have a canonical rep-
resentation of GL(q, R) in Rq itself, namely, the identity Id : GL(q, R) → GL(Rq).
With this, we may form the associated vector bundle Fr(E) ×Id Rq. One would
expect this to be naturally isomorphic to the original vector bundle itself E. If
v = [v1 · · · vq] ∈ Fr(E) and a = (a1, . . . , aq) ∈ Rq, the isomorphism is given by

Fr(E)×Id Rq 3 [v, a] 7→
q

∑
i=1

aivi ∈ E.

This is well defined because (v, a) ∼ (vA, A−1a) for all A ∈ GL(q, R). Clearly
such map is smooth and fiber-preserving, and linear on fibers. The inverse is de-
fined by taking an element of E, writing it as a combination of any basis of the
corresponding fiber, and mapping the original element to the chosen basis and the
coefficients of the combination.

So, we have seen that each fiber of P ×ρ V is isomorphic to V itself. But a pri-
ori those isomorphisms are independent of each other. A choice of local gauge uni-
formizes that:

Proposition 37. Let π : P → M be a principal G-bundle, ρ : G → GL(V) a representation
in some vector space V, and ψ : U ⊆ M → P a local gauge. Then we have a bijective corre-
spondence between local sections ψ̃ : U ⊆ M → P×ρ V and smooth functions f : U → V,
given by ψ̃(x) = [ψ(x), f (x)], for all x ∈ U.

Proof: If we start with a smooth function f , the local section ψ̃ defined as above is
smooth because the map U 3 x 7→ (ψ(x), f (x)) ∈ P×V is smooth itself. Conversely, if
we start with a local section ψ̃, there is a unique f (x) ∈ V such that ψ̃(x) = [ψ(x), f (x)]
for all x ∈ U, since the action of G on P is free and transitive on all the fibers. That
said, the only thing left to check is that such function f : U → V is indeed smooth.
For that, we will combine the constructions of propositions 30 (p. 23) and 35 (p. 26)
as follows: ψ induces a principal G-chart Ψ : π−1[U]→ U× G by Ψ(p) = (π(p), g−1

p ),
where gp ∈ G is the unique element such that ψ(π(p)) = p · gp (and recall that gp

depends smoothly on p) – then we have the associated VB-chart Ψρ : π−1
ρ [U]→ U×V

given by Ψρ([p, v]) = (π(p), ρ(g−1
p )v). Now, for every x ∈ U, we have that gψ(x) = e,

and thus

Ψρ ◦ ψ̃(x) = Ψρ([ψ(x), f (x)]) = (π(ψ(x)), ρ(g−1
ψ(x)) f (x)) = (x, f (x)),

showing that f is smooth (since the composition Ψρ ◦ ψ̃ is).

19Its derivative ad = d(Ad)e : g→ gl(g), in turn, is a Lie algebra representation.
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3 Ehresmann connections

Let π : P→ M be a principal G-bundle. Given p ∈ P, we define the vertical space of
P at p by Verp(P) .

= ker dπp ⊆ TpP. That is, if x = π(p) ∈ M, then Verp(P) = Tp(Px).
These vertical spaces are canonical and can be characterized in terms of the action of
G on P itself. For that, we need to recall action fields:

Definition 38. Let P→ M be a principal G-bundle. Given X ∈ g, define the action field
X# ∈ X(P) generated by X, by

X#
p

.
= d(Op)e(X) =

d
dt

∣∣∣∣
t=0

p · exp(tX),

where Op : G → P, Op(g) = p · g, is the orbit-map of p.

Remark.

• Smoothness of X# follows from suitable compositions and the smoothness of the
full action map P× G → P.

• The map g 3 X 7→ X# ∈ X(P) is a homomorphism of Lie algebras20, where the
Lie bracket in g is induced by left-invariant extensions of elements of g.

• The following shorthand notation will be useful: if g ∈ G and w ∈ TaG, we
let gw denote the image d(Lg)a(w) ∈ TgaG. In other words, the only thing that
makes sense. Similarly we talk about wg, or gwg−1, etc.. Usual rules like ew = w
and g(hw) = (gh)w hold, due to the chain rule.

Proposition 39. Let π : P → M be a principal G-bundle. Then for every fixed p ∈ P, the
map g 3 X 7→ X#

p ∈ Verp(P) is an isomorphism of vector spaces.

Proof: Let Op denote the orbit-map of p, again. Since the action of G on P preserves
fibers, we have that π(Op(g)) = π(p), for all g ∈ G. Differentiating with respect to the
variable g at e and evaluating at X, we get dπp(X#

p) = 0, so that X#
p is indeed vertical.

The conclusion follows as Op : G → Pπ(p) is a diffeomorphism: for any q ∈ Pπ(p) there
is a unique gq ∈ G such that q = p · gq, and gq depends smoothly on q, as is it easily
seen by using a principal G-chart, just like in Proposition 29 (p. 22).

Proposition 40. Let π : P→ M be a principal G-bundle, p ∈ P and X ∈ g. Then X#
p = 0 if

and only if X ∈ stab(p) (the Lie algebra of the stabilizer Stab(p) ⊆ G).

Proof: If X ∈ stab(p), then exp(tX) ∈ Stab(p) for all t ∈ R, so differentiating both
sides of p = p · exp(tX) at t = 0 gives 0 = X#

p. Conversely, assume that X#
p = 0. This

means that both t 7→ p and t 7→ p · exp(tX) are integral curves21 of X# starting at p,
and so they must be equal. Now p = p · exp(tX) says that exp(tX) ∈ Stab(p) for all
t ∈ R, and so X ∈ stab(p), as wanted.

20It would be an anti-homomorphism if G acted on P by the left.
21We have that α(t) = p · exp(tX) is an integral curve of X# passing through p because α(0) = p and

α′(t) =
d
ds

∣∣∣∣
s=0

α(t + s) =
d
ds

∣∣∣∣
s=0

p · exp((t + s)X) =
d
ds

∣∣∣∣
s=0

p · (exp(tX) exp(sX)) = X#
p·exp(tX),

as claimed.
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Remark. The general principle of describing a Lie algebra by differentiating at the
identity the equation describing the Lie group is useful again. g · p = p becomes
X#

p = 0.

One more quick relation:

Lemma 41. Let P → M be a principal G-bundle, Φ ∈ G(P) a gauge transformation, and
X ∈ g. Then dΦp(X#

p) = X#
Φ(p).

Proof: dΦp(X#
p) = dΦp(d(Op)e(X)) = d(Φ ◦ Op)e(X) = d(OΦ(p))e(X) = X#

Φ(p).

Example 42.

(1) For the trivial G-bundle M× G → M and X ∈ g, we have that X#
(x,a) = (0, aX).

(2) For the toy bundle over a one-point space G → {∗} and X ∈ g, we have X#
a = aX.

(3) If H ≤ G is a closed subgroup, we have seen that with the action G 	 H the
projection G → G/H becomes a principal H-bundle. As the previous item, if
X ∈ h, then X#

a = aX.

(4) If f : N → M is smooth and P→ M is a principal G-bundle, consider the pull-back
bundle f ∗P→ N. For X ∈ g, we have that X̃#

(y,p) = (0, X#
p), which shows that the

action field does not really change, just like the original action.

One more useful property is given in the:

Lemma 43. Let π : P → M be a principal G-bundle, and X ∈ g. Then for any g ∈ G and
p ∈ P we have d(Rg)p(X#

p) = (g−1Xg)#
p·g.

Proof: Compute directly:

d(Rg)p(X#
p) = d(Rg)p(d(Op)e(X)) = d(Rg ◦ Op)e(X)

= d(Op ◦ Rg)e(X) = d(Op)g(d(Rg)e(X))

= d(Op)g(Xg) = d(Op)g(g(g−1Xg))

= d(Op·g)e(g−1Xg) = (g−1Xg)#
p·g.

Now that we have understood a little about vertical spaces, what about horizontal
spaces? It turns out that there is no canonical way to choose them. But there are two
equivalent ways of describing this concept:

Definition 44. Let P → M be a principal G-bundle. An Ehresmann connection in P is a
distribution Hor(P) ↪→ TP such that:

(i) TpP = Horp(P)⊕Verp(P), for all p ∈ P;

(ii) d(Rg)p[Horp(P)] = Horp·g(P), for all p ∈ P and g ∈ G.
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In other words, a complementary and right-invariant distribution to Ver(P). We’ll say
that the connection is flat if Hor(P) ↪→ TP is integrable.

Remark. By linear algebra, if x ∈ M and p ∈ Px, Horp(P) being complementary to
Verp(P) implies that the restriction dπp : Horp(P)→ Tx M is an isomorphism.

Example 45.

(1) Consider the trivial G-bundle M× G → M. Clearly we have that

Ver(x,a)(M× G) = ker dπ(x,a) = {0} ⊕ TaG.

Thus, a natural choice of horizontal spaces is Hor(x,a)(M× G) = Tx M⊕ {0}. This
is clearly complementary to the vertical distribution, and so we need to check
right-invariance. This is done as follows: given g ∈ G, we have that the action
map of g is given by Rg(x, a) = (x, ag), and so d(Rg)(x,a) = IdTx M ⊕ d(Rg)a. Here
we use Rg to denote two different maps M× G → M× G and G → G, the distinc-
tion being made by context. Thus we have that

d(Rg)a[Hor(x,a)(M× G)] = (IdTx M ⊕ d(Rg)a)[Tx M⊕ {0}]
= IdTx M[Tx M]⊕ d(Rg)a[{0}]
= Tx M⊕ {0}
= Hor(x,ag)(M× G).

This is called the canonical flat connection of M× G.

(2) Consider the toy bundle over a one-point space, G → {∗}. Since the projection
is constant, for all a ∈ G we have Vera(G) = TaG, and so we necessarily have
Hora(G) = {0}, which is indeed right-invariant, thus defining an Ehresmann con-
nection.

(3) Consider the more general case where H ≤ G is a closed subgroup and the prin-
cipal H-bundle π : G → G/H. Since dπe : g → TeH(G/H) is a surjective submer-
sion, this derivative is surjective. Let’s show that ker dπe = h. For all X ∈ h, we
have that etX ∈ H for small t and so π(etX) = eH, leading to dπe(X) = 0. This
means that h ⊆ ker dπe. For the reverse inclusion22, we use the commutatitivity of

G G

G/H G/H

Lg

π π

Lg

22I’d like to thank Matheus Manzatto for bringing this short argument to my attention.
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for arbitrary g ∈ G, as follows: if X ∈ ker dπe, then

d
dt

π(etX) =
d
ds

∣∣∣∣
s=0

π(e(t+s)X) =
d
ds

∣∣∣∣
s=0

π(etXesX)

=
d
ds

∣∣∣∣
s=0

π ◦ LetX(esX) =
d
ds

∣∣∣∣
s=0

LetX ◦ π(esX)

= d
(
LetX

)
eH(dπe(X)) = 0,

meaning that etX ∈ H for all t and thus X ∈ h. This means that Vere(G) = h and
also that TeH(G/H) ∼= g/h. In general, if a ∈ G, we have that Vera(G) = d(La)eh
by taking derivatives in the previous diagram to obtain

dπa = d(La)eH ◦ dπe ◦ d(La)
−1
e ,

and noting that the first map on the right side is an isomorphism, a given vector
v ∈ TaG has dπa(v) = 0 if and only if dπe(d(La)−1

e (v)) = 0, which is to say that
d(La)−1

e (v) ∈ ker dπe = h – equivalent in turn to v ∈ d(La)eh. In particular, if
a ∈ H we may write Vera(G) = TaH.

To define an Ehresmann connection, we need something else: assume that G/H
is reductive, i.e., that there is a vector subspace m ⊆ g such that g = h⊕ m and
Ad(H)m ⊆ m. This condition is natural in the sense that if h is playing the role
of the vertical distribution (up to translations back in G), then something comple-
mentary to it should play the role of the horizontal distribution. Moreover, the
invariance condition Ad(H)m ⊆ m will correspond to the invariance of the hori-
zontal distribution to be defined in what follows.

More precisely, we make the only definition we can: Hora(G) = d(La)em. Of
course that applying d(La)e to g = h⊕m we get that TaG = Vera(G)⊕Hora(G).
To show that given a ∈ G and h ∈ H, the equality Horah(G) = d(Rh)a[Hora(G)]
holds, it suffices to show one inclusion, since both sides have the same dimension.
So, let v ∈ Hora(G). Our goal is to show that d(Rh)a(v) ∈ Horah(G). Write
v = d(La)e(X) with X ∈ m. The invariance condition says that

Y .
= Ad(h−1)X = d(Lh−1 ◦ Rh)e(X) = d(Lh−1)h ◦ d(Rh)e(X) ∈ m.

So d(Rh)e(X) = d(Lh)e(Y) implies that

d(Rh)a(v) = d(Rh)a ◦ d(La)e(X) = d(Rh ◦ La)e(X)

= d(La ◦ Rh)e(X) = d(La)h ◦ d(Rh)e(X)

= d(La)h ◦ d(Lh)e(Y) = d(La ◦ Lh)e(Y)
= d(Lah)e(Y).

Since Y ∈ m, by definition this means that d(Rh)a(v) ∈ Horah(G), as wanted.

(4) Let π : P → M be a principal G-bundle, f : N → M be a smooth function, and
consider the pull-back bundle π̃ : f ∗P → N. We have seen in Example 24 (p. 16)
that

T(y,p)( f ∗P) = {(v, w) ∈ TyN × TpP | d fy(v) = dπp(w)},
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and so, setting v = 0 (as dπ̃(y,p)(v, w) = v) we get that

Ṽer(y,p)( f ∗P) = {(0, w) ∈ TyN × TpP | dπp(w) = 0} = {0} ⊕Verp(P),

a very intuitive result. Now, if Hor(P) ↪→ TP is an Ehresmann connection for P,
let’s define an Ehresmann connection for f ∗P by

H̃or(y,p)( f ∗P) = {(v, w) ∈ T(y,p)( f ∗P) | w ∈ Horp(P)}.

Let’s check that:

• T(y,p)( f ∗P) = H̃or(y,p)( f ∗P) ⊕ Ṽer(y,p)( f ∗P): given (v, w) ∈ T(y,p)( f ∗P), we
write (v, w) = (v, whor)+ (0, wver). And such decomposition is unique, since
(v, w) ∈ H̃or(y,p)( f ∗P) ∩ Ṽer(y,p)( f ∗P) implies that v = 0 and finally that
w ∈ Horp(P) ∩Verp(P) = {0}. In particular, we see that the dimension of all
these new horizontal subspaces is always the same.

• H̃or( f ∗P) ↪→ T( f ∗P) is right-invariant: our goal is to show that if the action
on f ∗P is given by R̃g(y, p) = (y, Rg(p)), then

d(R̃g)(y,p)[H̃or(y,p)( f ∗P)] = H̃or(y,p·g)( f ∗P).

This fortunately is clear from the formula d(R̃g)(y,p) = IdTy N ⊕ d(Rg)p to-
gether with d(Rg)p[Horp(P)] = Horp·g(P).

(5) Assume that P→ M is a principal G-bundle, but that we have a Riemannian met-
ric 〈·, ·〉 on P which is G-invariant, that is, each Rg : P → P is an isometry for
(P, 〈·, ·〉). Then for p ∈ P, we have that Horp(P) .

= Verp(P)⊥ defines an Ehres-
mann connection (item (i) is obvious while item (ii) follows from the fact that if
a linear isometry in an Euclidean vector space leaves a subspace invariant, it also
leaves its orthogonal complement invariant).

(6) The same construction as above also works if P has a symplectic form with sym-
plectic fibers, by replacing orthogonal complements with symplectic complements
(if the fibers are not symplectic, condition (i) fails).

Describing connections in, for example, frame bundles Fr(E) → M, is easier using
the second notion:

Definition 46. Let P→ M be a principal G-bundle. A connection 1-form (or gauge field)
for P is a 1-form ω ∈ Ω1(P, g) satisfying:

(i) ω(X#) = X, for all X ∈ g, and;

(ii) (Rg)∗ω = Ad(g−1) ◦ω, for all g ∈ G.

Remark.

• Another common notation (from Physics) for the connection 1-form is A instead
of ω.
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• Axiom (ii) just says that the 1-form regarded as the “full map” ω : TP → g is
G-equivariant, seeing G act on TP via derivative, and by the right on g via the
adjoint representation. Furthermore, axiom (i) implies that axiom (ii) is true for
vertical vectors, as we have

d(Rg)p(X#
p) = d(Rg)p(d(Op)e(X)) = d(Rg ◦ Op)e(X)

= d(Op ◦ Rg)e(X) = d(Op)g(Xg)

= d(Op)g(d(Lg)e(g−1Xg)) = d(Op ◦ Lg)e(g−1Xg)

= d(Op·g)e(g−1Xg) = (g−1Xg)#
p·g,

and so

((Rg)
∗ω)p(X#

p) = ωp·g(d(Rg)p(X#
p)) = ωp·g((g−1Xg)#

p·g) = g−1Xg = g−1ωp(X#
p)g,

as wanted. So, while axiom (i) might seem more natural than axiom (ii) if one
does not notice the G-equivariance of the full map, we can see axiom (ii) of a
natural extension of a property that automatically holds for vertical vectors, in
view of (i).

• Principal bundles always have connection 1-forms. It is the usual argument us-
ing a partition of unity for P and that convex combinations of connection 1-forms
are again connection 1-forms.

• When G is abelian, axiom (ii) says that ω is G-invariant.

Example 47.

(1) Recall that if G is any Lie group, the Maurer-Cartan form of G is Θ ∈ Ω1(G, g)
given by Θg(w) = g−1w. So, consider the trivial G-bundle M× G → M. There,
define ω ∈ Ω1(M × G, g) by ω(x,a)(v, w) = Θa(w). Let’s check that this ω is a
connection 1-form for M× G. First, if X ∈ g, we have that

ω(x,a)(X#
(x,a)) = ω(x,a)(0, aX) = Θa(aX) = a−1aX = X.

Now, if g ∈ G, we compute

((Rg)
∗ω)(x,a)(v, w) = ω(x,ag)(d(Rg)(x,a)(v, w)) = ω(x,ag)(0, wg)

= Θag(wg) = (ag)−1wg

= g−1a−1wg = g−1Θa(w)g

= g−1ω(x,a)(v, w)g = Ad(g−1)
(
ω(x,a)(v, w)

)
,

as wanted. This is called the Maurer-Cartan connection of M× G.

(2) For the toy bundle over a one-point space G → {∗}, the Maurer-Cartan form
Θ ∈ Ω1(G, g) itself is a connection 1-form, as the calculations from the above item
also show. The non-trivial content of this example is that if ω ∈ Ω1(G, g) is a
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connection 1-form, then necessarily ω = Θ. Given a ∈ G and v ∈ TaG, we have
that

ωa(v) = ωa((va−1)a)
(ii)
= Ad(a−1)

(
ωe(va−1)

) (i)
= a−1(va−1)a = a−1v = Θa(v).

Note that ω = Θ is always injective and compare this with item (2) of Example 45
(p. 31).

(3) Consider again the case where H ≤ G is a closed subgroup and we have a reduc-
tive principal H-bundle π : G → G/H. As before, write g = h⊕m where m is a
Ad(H)-invariant vector subspace of g. The connection 1-form in this case has to
be a form ω ∈ Ω1(G, h). We’ll project the Maurer-Cartan form onto h and define
ω = prh ◦Θ, where prh : g → h is the direct sum projection. If X ∈ h and a ∈ G,
we have ωa(X#

a) = prh(Θa(X#
a)) = prh(X) = X. For the invariance condition, note

that for any h ∈ H we have

R∗hω = R∗h(prh ◦Θ)
(1)
= prh ◦ R∗hΘ

(2)
= prh ◦Ad(h−1) ◦Θ

(3)
= Ad(h−1) ◦ prh ◦Θ

= Ad(h−1) ◦ω,

where in (1) we use that prh is linear, in (2) previous computations, and in (3) the
Ad(H)-invariance assumption.

(4) If f : N → M is smooth and P→ M is a principal G-bundle, consider the pull-back
bundle f ∗P → N. Assume that we’re given a connection 1-form ω ∈ Ω1(P, g).
Define ω̃ ∈ Ω1( f ∗P, g) by ω̃(y,p)(v, w) = ωp(w). Let’s verify that ω̃ is also a
connection 1-form. If X ∈ g, we have that

ω̃(y,p)(X̃#
(y,p)) = ω̃(y,p)(0, X#

p) = ωp(X#
p) = X,

and if g ∈ G is given, we compute

((R̃g)
∗ω̃)(y,p)(v, w) = ω̃(y,p·g)(d(R̃g)(y,p)(v, w))

= ω̃(y,p·g)(0, d(Rg)p(w))

= ωp·g(d(Rg)p(w))

= ((Rg)
∗ω)p(w)

= Ad(g−1)
(
ωp(w)

)
= Ad(g−1)

(
ω̃(y,p)(v, w)

)
,

concluding the proof. Note that ω̃ = pr∗2ω, where pr2 : f ∗P → P is the projection
in the second factor23.

23This gives another proof that ω̃ satisfies axiom (ii) in Definition 46 (p. 33):

(R̃g)
∗ω̃ = (R̃g)

∗pr∗2ω = (pr2 ◦ R̃g)
∗ω = (Rg ◦ pr2)

∗ω = pr∗2R∗gω = pr∗2(Ad(g−1) ◦ω) = Ad(g−1) ◦ ω̃.
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(5) Let E→ M be a vector bundle equipped with a Koszul connection ∇. Let’s define
a connection 1-form ω∇ ∈ Ω1(Fr(E), gl(k, R)) from it. Given a point v ∈ Fr(E)
and a tangent vector v̇ ∈ TvFr(E), we need to see what ω∇v (v̇) ∈ gl(k, R) should
be. We regard v as a row vector whose entries form a basis for Eπfr(v)

, and such
a basis may be seen as an isomorphism Rk → Eπfr(v)

that takes the i-th canonical
vector in Rk to the i-th element of v. Thus it makes sense to consider v−1. If we
consider any curve t 7→ v(t) in Fr(E) with v(0) = v and v′(0) = v̇ and we write
v(t) = [v1(t) · · · vk(t)], then it makes sense to set

Dv

dt
(t) .

=

[
Dv1

dt
(t) · · · Dvk

dt
(t)
]

,

where D/dt is the connection induced in the pull-back bundle (πfr ◦ v)∗(E)→ M.
For t = 0, this depends only on v, v̇ and on ∇ itself (via Christoffel symbols), but
not on the values of v(t) or v′(t) for t 6= 0. Since v is a basis for Eπfr(v)

, we may
write

Dv

dt
(0) = v · A

for some matrix A ∈ gl(k, R). Thus, our dfinition is born as follows: we write

ω∇v (v̇) = v−1 Dv

dt
(0)

where t 7→ v(t) is any curve in Fr(E) with v(0) = v and v′(0) = v̇. Now, let’s prove
that ω∇ is indeed a connection 1-form. If X ∈ gl(k, R), then X]

v = v · X, since

d
dt

∣∣∣∣
t=0

v · etX = vX.

With this, we compute ω∇v (X]
v) = ω∇v (vX) = v−1(vX) = X, as wanted. For the

equivariance condition, fix A ∈ GL(k, R). Fix any curve realizing v̇ ∈ TvFr(E).
Compute

(R∗Aω∇)v(v̇) = ω∇vA(d(RA)v(v̇)) = ω∇vA(v̇A)

= (vA)−1 D
dt

∣∣∣∣
t=0

(v(t)A) = (vA)−1 Dv

dt
(0)A

= A−1v−1 Dv

dt
(0)A = A−1ω∇v (v̇)A

= Ad(A−1)(ω∇v (v̇)),

as wanted.

Proposition 48. Let P → M be a principal G-bundle, ω ∈ Ω1(P, g) a connection 1-form,
and ψ, ψ̃ : U ⊆ M → P be two local gauges for P. There is a smooth map A : U → G such
that ψ̃(x) = ψ(x) · A(x), for all x ∈ U. Then:

(i) dψ̃x(v) = d(RA(x))ψ(x)(dψx(v)) + d(Oψ(x))A(x)(dAx(v)), for all x ∈ M and vectors
v ∈ Tx M;
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(ii) d(Oψ(x))A(x)(dAx(v)) = (A(x)−1dAx(v))#
ψ̃(x)

, for all x ∈ M and v ∈ Tx M;

(iii) ψ̃∗ω = Ad(A−1)(ψ∗ω) + A−1 dA.

Remark. Item (ii) may be rephrased as
(

A∗(Oψ(x))
)

x(v) = ((A∗Θ)x(v))#
ψ̃(x)

, while

item (iii) may be rephrased as ψ̃∗ω = Ad(A−1)(ψ∗ω) + A∗Θ.

Proof:

(i) Just a product rule (e.g., define f (x, y) = ψ(x) · A(y), note that ψ̃(x) = f (x, x)
and compute dψ̃x(v) = (∂1 f )(x,x)(v) + (∂2 f )(x,x)(v)).

(ii) The idea is to drag dAx(v) back to g and use the chain rule, to get:

d(Oψ(x))A(x)(dAx(v)) = d(Oψ(x))A(x)(d(RA(x))e(A(x)−1dAx(v)))

= d(Oψ(x) ◦ RA(x))e(A(x)−1dAx(v))

= d(Oψ̃(x))e(A(x)−1dAx(v))

= (A(x)−1dAx(v))#
ψ̃(x).

(iii) Compute directly that

(ψ̃∗ω)x(v) = ωψ̃(x)(dψ̃x(v))

= ωψ̃(x)(d(RA(x))ψ(x)(dψx(v)) + d(Oψ(x))A(x)(dAx(v)))

= ωψ(x)·A(x)(d(RA(x))ψ(x)(dψx(v))) + ωψ̃(x)(d(Oψ(x))A(x)(dAx(v)))

= (R∗A(x)ω)ψ(x)(dψx(v)) + ωψ̃(x)((A(x)−1dAx(v))#
ψ̃(x))

= Ad(A(x)−1)
(
(ψ∗ω)x(v)) + A(x)−1dAx(v),

as wanted.

Remark. The map A : U → G is to be understood as a “change of basis”, just like
when two frames ṽ and v are related like ṽ = vA in Fr(E). So, compare this with the
expression obtained in Proposition 21 (p. 13).

The above result also tells us how to glue local connection 1-forms. Here’s another
related result:

Proposition 49. Let P→ M be a principal G-bundle, ω ∈ Ω1(P, g) be a connection 1-form,
and Φ ∈ G(P) be a gauge transformation. Then Φ∗ω ∈ Ω1(P, g) is also a connection 1-form.
Moreover, it is actually related to ω via:

(Φ∗ω)p = Ad(σΦ(p)−1) ◦ωp + σΦ(p)−1d(σΦ)p,

where σΦ : P → G corresponds to Φ as in Proposition 29 (p. 22), satisfying the relation
Φ(p) = p · σΦ(p), for all p ∈ P.
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Remark. This relation may be also written as (Φ∗ω)p = Ad
(
σΦ(p)−1) ◦ωp + (σ∗ΦΘ)p.

Proof: The two axioms are verified almost instantly:

(i) By Lemma 41 (p. 30), (Φ∗ω)p(X#
p) = ωΦ(p)(dΦp(X#

p)) = ωΦ(p)(X#
Φ(p)) = X;

(ii) Since Φ and Rg commute, so will the pull-backs. Thus we obtain

R∗gΦ∗ω = Φ∗R∗gω = Φ∗(Ad(g−1) ◦ω) = Ad(g−1) ◦Φ∗ω.

The explicit formula for Φ∗ω follows from noting that Φ(p) = p · σΦ(p) implies that

dΦp(v) = d(RσΦ(p))p(v) + d(Op)σΦ(p)(d(σΦ)p(v)),

and repeating the calculations from the previous proof, dragging d(σΦ)p(v) ∈ TσΦ(p)G
back to σΦ(p)−1d(σΦ)p(v) ∈ g.

Theorem 50. Let π : P→ M be a principal G-bundle.

(a) Let Hor(P) ↪→ TP be a right-invariant horizontal distribution on P. Then ω ∈ Ω1(P, g)
defined by ω(X) = X, where X ∈ g is the unique element such that X = Xh + X#, with
Xh a field along Hor(P), is a connection 1-form.

(b) Let ω ∈ Ω1(P, g) be a connection 1-form. Then Hor(P) = ker ω is a right-invariant
horizontal distribution on P.

Furthermore, constructions (a) and (b) are inverses. Thus, we’ll say that either Hor(P) or ω
itself is an Ehresmann connection for P→ M.

Proof:

(a) Start with Hor(P). Smoothness of ω follows from the smoothness of the distribu-
tion, and it clearly is C∞(P)-linear. So we have to check that ω defined in this way
satisfies both axioms of the definition of a connection 1-form. Axiom (i) is trivial
from the definition, while for axiom (ii) we argue as follows: take g ∈ G, v ∈ TpP,
and write v = vh + X#

p for some X ∈ g and vh ∈ Horp(P). Then by Proposition 43
(p. 30) we have that

d(Rg)p(v) = d(Rg)p(vh) + d(Rg)p(X#
p) = d(Rg)p(v)h + (g−1Xg)#

p·g.

Indeed, d(Rg)p(vh) has no vertical components, since we have the right-invariance
d(Rg)p[Horp(P)] = Horp·g(P). Thus, we conclude that

((Rg)
∗ω)p(v) = ωp·g(d(Rg)p(v)) = g−1Xg = Ad(g−1)(ωp(v)),

as wanted.
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(b) Start with ω ∈ Ω1(P, g). Smoothness of ker ω follows from smoothness of ω and
the fact ω never vanishes (hence ker ω has constant rank). Now, since for every
g ∈ G the map Ad(g−1) is an isomorphism, the relation

ωp·g(d(Rg)p(v)) = (R∗gω)p(v) = Ad(g−1)(ωp(v))

for all v ∈ TpP says that v ∈ Horp(P) if and only if d(Rg)p(v) ∈ Horp·g(P), and
thus d(Rg)p[Horp(P)] = Horp·g(P) as wanted.

In view of the above result, we have a (somewhat clear) rephrasing of Proposition
49 in terms of horizontal distributions:

Proposition 51. Let P→ M be a principal G-bundle, ω ∈ Ω1(P, g) be a connection 1-form,
and Φ ∈ G(P) be a gauge transformation. Then

dΦp[HorΦ∗ω
p (P)] = Horω

Φ(p)(P) and dΦp[Verp(P)] = VerΦ(p)(P).

Proof: Clearly dΦp preserves dimensions (since it is an isomorphism), so π ◦Φ = π
gives the result for the vertical distribution, and it suffices to verify one inclusion for
the horizontal distribution. Take v ∈ HorΦ∗ω

p (P). Then

ωΦ(p)(dΦp(v)) = (Φ∗ω)p(v) = 0 =⇒ dΦp(v) ∈ Horω
Φ(p)(P)

as wanted.

The idea of seeing when Hor(P) is integrable in terms of ω naturally translates as
ω ∧ dω = 0 (here we use the standard flat connection in the trivial bundle P × g to
define dω), which leads us to the idea of curvature form, to be discussed in the next
section.
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4 Tensorial and Curvature forms

Definition 52. Let P → M be a principal G-bundle equipped with a connection 1-
form ω ∈ Ω1(P, g) and a representation ρ : G → GL(V). We’ll say that a k-form
α ∈ Ωk(P, V) is:

(i) pseudo-tensorial of type ρ if R∗gα = ρ(g−1) ◦ α, for all g ∈ G.

(ii) horizontal if α(X1, . . . , Xk) = 0 whenever at least one of the arguments X i is ver-
tical;

(iii) tensorial of type ρ if it is both pseudo-tensorial of type ρ and horizontal.

We’ll set Ωk
ρ(P, V) = {α ∈ Ωk(P, V) | α is tensorial of type ρ}.

Remark.

• All the representations here will be assumed finite-dimensional.

• Pseudo-tensoriality can be understood as equivariance: a k-form α ∈ Ωk(P, V)
can be seen as a full map α : TP⊕k → V. But the action P 	 G induces a diagonal
derivative action TP⊕k 	 G, and we also have V 	 G given via the represen-
tation by (v, g) 7→ ρ(g−1)v. So, α is pseudo-tensorial of type ρ if this full map
TP⊕k → V is G-equivariant with respect to these two actions just described.

• Essentially, α is horizontal if it only cares about horizontal inputs.

Example 53. Any connection 1-form ω ∈ Ω1(P, g) is pseudo-tensorial of type Ad,
but not tensorial (in fact, a connection 1-form is pretty much the opposite of being
horizontal)! In contrast, if α ∈ Ω1

Ad(P, g), then ω + α is again a connection 1-form,
for the following reason: axiom (i) of Definition 46 (p. 33) holds since α is pseudo-
tensorial, while axiom (ii) holds because α is horizontal. Conversely, the difference
between two connection 1-forms is tensorial of type Ad. Thus, the space of connection
1-forms in a principal bundle is an affine space, and the underlying translation space
is Ω1

Ad(P, g).

Example 54. A cheap way to construct tensorial forms is just by considering pseudo-
tensorial ones and taking horizontal components of all the arguments. More precisely,
if α ∈ Ωk(P, V) is pseudo-tensorial, then α̃ defined by α̃p(v1, . . . , vk)

.
= αp(vh

1, . . . , vh
k),

for p ∈ P and vectors v1, . . . , vk ∈ TpP, is tensorial. Of course, for every i = 1, . . . , k,
vh

i ∈ Horp(P) is the horizontal component of vi ∈ TpP.

This new object Ωk
ρ(P, V) is not completely alien, though:

Theorem 55. Consider P → M be a principal G-bundle equipped with a connection 1-form
ω ∈ Ω1(P, g) and a representation ρ : G → GL(V). Then there is an isomorphism

Ωk
ρ(P, V) 3 α

∼=7−→ α] ∈ Ωk(M, P×ρ V),

given by α]x(v1, . . . , vk)
.
= [p, αp(ṽ1, . . . , ṽk)], where the right side does not depend on the

chosen point p ∈ Px and lifts ṽi ∈ TpP of the vi ∈ Tx M (i.e., dπp(ṽi) = vi, for all indices
i = 1, . . . , k).
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Proof: See [6].

Example 56. We have seen that for any principal G-bundle P → M with the trivial
representation G → GL(V), with ρ(g) = IdV for all g ∈ G, we have P×IdV V ∼= M×V,
and so

Ωk
IdV

(P, V) = {α ∈ Ωk(P, V) | R∗gα = α} ∼= Ωk(M, V).

And what can we do with tensorial forms? If α ∈ Ωk(P.V) is pseudo-tensorial of
type ρ, then dα ∈ Ωk(P, V) is also pseudo-tensorial of type ρ, since d commutes with
pull-backs and every ρ(g−1) : V → V is linear, by definition. The problem is that even
if α is horizontal, dα need not be. This begs for the cheap correction mentioned in
Example 54 above:

Definition 57. Consider P → M be a principal G-bundle equipped with a connection
1-form ω ∈ Ω1(P, g), and a vector space V. The exterior covariant derivative of a k-form
α ∈ Ωk(P, V) is Dα ∈ Ωk+1(P, V) defined by

Dαp(v1, . . . , vk+1)
.
= dαp(vh

1, . . . , vh
k+1),

where, again, for each i = 1, . . . , k we have that vh
i ∈ Horp(P) is the horizontal com-

ponent of vi ∈ TpP.

Remark. The definition of D does not depend on any choice of representation. But if
we’re given a representation ρ : G → GL(V), then we clearly have that this exterior
covariant derivative restricts to a map D: Ωk

ρ(P, V) → Ωk+1
ρ (P, V). But in a fashion

similar to what happened in Proposition 13 (p. 9), it is not generally true that D2 = 0.
This deviation will be measured by curvature (see Corollary 64 soon).

Definition 58. Let P→ M be a principal G-bundle, and ω ∈ Ω1(P, g) be a connection
1-form. The curvature (or field strength) of ω is Ω ∈ Ω2(P, g) defined by Ω .

= Dω. We
say that ω is flat if Ω = 0.

Remark. In Physics, it is usual to denote connection 1-forms (gauge fields) by A and
the curvature 2-form (field strength) by FA. Once a local gauge ψ : U ⊆ M → P has
been chosen, we can consider the pull-backs ψ∗A ∈ Ω1(U, g) and ψ∗(FA) ∈ Ω2(U, g),
which can be expressed in terms of local coordinates (xj) for M on U and a basis (Xa)
for g, by (omitting ψ∗ and) writing A = Aa ⊗ Xa and FA = Fa ⊗ Xa, where Aa and Fa

are real-valued local 1 and 2-forms, respectively. Then we have that

Aj = A(∂j) = Aa
j Xa ∈ g and Fjk = FA(∂j, ∂k) = Fa

jkXa ∈ g,

where Aa
j = Aa(∂j) and Fa

jk = Fa(∂j, ∂k) are real-valued functions on U. The exterior
covariant derivative is also sometimes denoted by dA or ∇A.

Proposition 59. Let P → M be a principal G-bundle equipped with a connection 1-form
ω ∈ Ω1(P, g). Then Hor(P) is integrable if and only if Ω = 0.

Proof: Take Xh, Yh horizontal fields on P. So ω(Xh) = ω(Yh) = 0 in g and by defini-
tion of exterior derivative we get Ω(Xh, Yh) = −ω([Xh, Yh]), meaning that Ω = 0 if
and only if Hor(P) is closed under Lie brackets.
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Example 60.

(1) Indeed, for the trivial bundle M× G → M and the toy-bundle G → {∗} equipped
with the Maurer-Cartan connection, we immediately get that Dω = 0 and DΘ = 0.

(2) Let H ≤ G be a closed subgroup and consider the m-reductive H-principal bundle
π : G → G/H, where m ⊆ g is a Ad(H)-invariant vector space complementary to
h. The canonical connection is flat if and only if m is in fact a subalgebra of g. In
this case, if M ≤ G is a Lie subgroup with Lie algebra m, for all a ∈ M we have
Hora(G) = TaM.

Proposition 61 (Structure equation). Let P → M be a principal G-bundle equipped with a
connection 1-form ω ∈ Ω1(P, g). Then we have

Ω = Dω = dω +
1
2
[ω, ω].

Remark.

• Compare this with Proposition 16 (p. 11).

• In terms of the gauge theory notation introduced in the last remark, pulling this
back to a relation between local forms on M, we have that

Fjk = ∂j Ak − ∂k Aj + [Aj, Ak],

with [Aj, Ak] = 0 if the structure group G is abelian (since this is a Lie bracket
and not a commutator).

Proof: We can prove it by cases:

• Two horizontal fields: Since ω annihilates horizontal fields, there’s nothing to
check.

• Two vertical fields: the left side vanishes by definition of D. For the right side,
note that for all X, Y ∈ g, we have X#(ω(Y#)) = X#(Y) = 0, as Y is constant.
Thus

dω(X#, Y#) +
1
2
[ω, ω](X#, Y#) = −ω([X#, Y#]) + [ω(X#), ω(Y#)]

= −ω([X, Y]#) + [X, Y]
= 0.

• One horizontal field and one vertical field: The left side vanishes again. And for
any horizontal field Xh and any Y ∈ g we have Xh(ω(Y#)) = Xh(Y) = 0 and
Y#(ω(Xh)) = Y#(0) = 0, so that

dω(Xh, Y#) +
1
2
[ω, ω](Xh, Y#) = −ω([Xh, Y#]) + [ω(Xh), ω(Y#)]

= −ω(0) + [0, Y]
= 0,

as the bracket of a horizontal vector and a vertical vector is again vertical.
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Corollary 62. Let P → M be a principal G-bundle equipped with a connection 1-form ω ∈
Ω1(P, g). Then dΩ = [Ω, ω].

Remark. Compare this with Corollary 17 (p. 12).

Proof: It is a direct computation:

dΩ = d
(

dω +
1
2
[ω, ω]

)
=

1
2

d[ω, ω]

=
1
2
([dω, ω]− [ω, dω]) = [dω, ω]

=

[
Ω− 1

2
[ω, ω], ω

]
= [Ω, ω],

since24 [[ω, ω], ω] = 0.

The above results begs the following question: when we have a representation
ρ : G → GL(V), how does D act in terms of d and ρ? To answer this, we’ll slightly
modify the operation ~ defined for algebra-bundle valued forms, in Section 1. We
have the infinitesimal representation ρ∗ = dρe : g → gl(V), which means that for
X ∈ g and v ∈ V, we have that ρ∗(X)v ∈ V. So, for α ∈ Ωk(P, g) and β ∈ Ω`(P, V),
we define α~ β ∈ Ωk+`(P, V) by

(α~ β)(X1, . . . , Xk+`) =
1

k!`! ∑
σ∈Sk+`

sgn(σ)ρ∗
(
α(Xσ(1), . . . , Xσ(k))

)
β(Xσ(k+1), . . . , Xσ(k+`)).

Theorem 63. Let P → M be a principal G-bundle equipped with a connection 1-form ω ∈
Ω1(P, g) and a representation ρ : G → GL(V). If α ∈ Ωk

ρ(P, V), then

Dα = dα + ω~ α.

Proof: The proof is long and deals with several cases. See [6].

Remark. The fact that α is tensorial is crucial. For instance, with ρ = Ad in Proposition
61 above we see that in the formula for Ω = Dω there is a 1/2 factor which is missing
above. This is precisely because, as mentioned before, ω itself is not tensorial. But
since Ω itself is tensorial, it follows from Corollary 62 (p. 43) that

DΩ = dΩ + [ω, Ω] = [Ω, ω] + [ω, Ω] = 0.

So, just like we have seen d∇R∇ = 0 for vector bundles, DΩ = 0 also deserves to be
called a Bianchi identity. In gauge theory notation, we have dAFA = 0.

24Computing it via the definition as a sum over σ ∈ S3 gives us six terms, three of them corresponding
to even permutations, and the remaining three terms to odd permutations: the Jacobi identity for the
bracket in g appears twice, and 0− 0 = 0. The fact that ω is a connection 1-form is irrelevant here, this
holds for any g-valued 1-form.
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The above theorem also allows us to precisely state how the curvature Ω measures
the difference between D2 and 0:

Corollary 64. Let P → M be a principal G-bundle equipped with a connection 1-form ω ∈
Ω1(P, g) and a representation ρ : G → GL(V). Then, for any α ∈ Ωk

ρ(P, V) we have that

D2α = Ω~ α.

In particular, ω is flat if and only if D2 = 0.

Remark. Compare this with the relation ((d∇)2ψ)(X, Y) = R∇(X, Y)ψ given in Propo-
sition 13 (p. 9), in the setting of vector bundles.

Proof: We combine the expressions obtained for D so far to compute

D2α = D(dα + ω~ α)

= d(dα + ω~ α) + ω~ (dα + ω~ α)

= 0 + dω~ α−ω~ dα + ω~ dα + ω~ (ω~ α)

= dω~ α +
1
2
[ω, ω]~ α

= Ω~ α.

The step 2ω ~ (ω ~ α) = [ω, ω]~ α is true in general but easily verified in the case
k = 0 (where α : P→ V is a smooth function), which in particular justifies the need for
the factor 1/2.

Trying to follow the same train of thought as in Section 1, the next thing would be
to recall Example 53 and establish a Palatini-like identity (Proposition 14, p. 10).

Proposition 65. Let P → M be a principal G-bundle equipped with a connection 1-form
ω ∈ Ω1(P, g) and a representation ρ : G → GL(V). For any α ∈ Ω1

Ad(P, g), the curvature
2-forms Fω and Fω+α are related via

Fω+α = Fω + Dα +
1
2
[α, α].

Proof: The idea is to use the structure equation for curvature 2-forms together with
Theorem 63 (p. 43) correctly, to recover the Dα term in the computation to be done.
Noting that [ω, α] = [α, ω] (since (−1)1·1+1 = 1), we have that

Fω+α = d(ω + α) +
1
2
[ω + α, ω + α]

= dω + dα +
1
2
([ω, ω] + [ω, α] + [α, ω] + [α, α])

= dω +
1
2
[ω, ω] + dα + [ω, α] +

1
2
[α, α]

= Fω + Dα +
1
2
[α, α],

as wanted.
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Note that in the above calculation, the symbol D was actually used with two mean-
ings, denoting both the covariant exterior derivative defined from ω and the one de-
fined for ω + α. In situations like this, using gauge theory notation does have an
advantage. To illustrate this, let’s consider gauge transformations again:

Proposition 66 (Naturality). Let P → M be a principal G-bundle, ω ∈ Ω1(P, g) be a
connection 1-form, and Φ ∈ G(P) be a gauge transformation. If V is a vector space and
α ∈ Ωk(P, V), then

Φ∗(Dωα) = DΦ∗ω(Φ∗α).

In particular, it follows that Φ∗(Fω) = FΦ∗ω.

Remark. Of course, this should be thought as “pull-backs under gauge transforma-
tions commute with D”. By definition of Φ∗ω, of course Φ : (P, Φ∗ω) → (P, ω) be-
comes connection-preserving (and so it makes perfect sense for it to pull-back one
curvature form to the other).

Proof: The key is to use Proposition 51 (p. 39) to conclude that dΦp intertwines hor-
izontal projections. And of course, there’s no loss of generality in proving the result
just for k = 1. If p ∈ P and v ∈ TpP, compute:

(Φ∗(Dωα))p(v) = (Dωα)Φ(p)(dΦp(v)) = dαΦ(p)(dΦp(v)h)

= dαΦ(p)(dΦp(vh)) = d(Φ∗α)p(vh)

= (DΦ∗ω(Φ∗α))p(v),

as wanted.
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