COMPUTATIONS ON PP-WAVE SPACETIMES

Ivo Terek

Definition 1. A Lorentzian manifold (M, g), dim M = n + 2, is called a *pp-wave space-time* if it admits a parallel null field $L \in \mathfrak{X}(M)$ such that the connection induced in the quotient screen bundle $L^{\perp}/\mathbb{R}L \to M$ is flat, or, in other words, we may write $R(X,Y): L^{\perp} \to \mathbb{R}L$ for all $X,Y \in \mathfrak{X}(M)$.

Theorem 2 (Brinkmann). Each point in a pp-wave spacetime (M,g) admits a coordinate neighborhood with coordinates $(x^+, x^-, x^1, \ldots, x^n)$ for which the metric is expressed as

$$g = 2H (dx^{+})^{2} + 2 dx^{+} dx^{-} + \delta_{ij} dx^{i} dx^{j},$$

where H is a smooth function not depending on x^- and i,j range from 1 to n. On such coordinates, we have $L = \partial_-$. Given $p \in M$, such coordinates may be chosen centered at p and such that $H(x^+, x^-, \mathbf{0}) = (\partial_i H)(x^+, x^-, \mathbf{0}) = 0$ for all i and x^+ ranging over an interval centered at 0 (those are called normal Brinkmann coordinates).

Remark. (M, g) is called a *plane wave* if the data function H is quadratic on the variables (x^i) with coefficients depending on x^+ , that is, if it has the form

$$H(x^+, x^-, x^1, \dots, x^n) = H_{ij}(x^+)x^ix^j + H_k(x^+)x^k + H_0(x^+).$$

Moreover, note that $g(\partial_-, \cdot) = dx^+$, so it will also follow that dx^+ is a parallel null 1-form.

Proof: Since L is parallel, the 1-form $g(L,\cdot)$ is closed, so Poincaré's Lemma gives a local smooth function x^+ such that $g(L,\cdot)=dx^+$. Next, since L is a parallel distribution, so is $L^\perp=\ker dx^+$ (for if $X\in\mathfrak{X}(M)$ and $Y\in\Gamma(L^\perp)$ are arbitrary, then we have that $g(\nabla_XY,L)=-g(Y,\nabla_XL)=0$, so $\nabla_XY\in\Gamma(L^\perp)$). Thus, the Levi-Civita connection induces connections on all the fibers of x^+ , which are the integral hypersurfaces of L^\perp (even though g is degenerate on them). We now claim that those induced connections are all flat. To wit, given $X,Y\in\Gamma(L^\perp)$ and $Z,W\in\mathfrak{X}(M)$, pair-symmetry of the Riemann tensor gives that R(X,Y,Z,W)=R(Z,W,X,Y)=0, since R(Z,W)X is a multiple of L (by definition of a pp-wave) and $Y\in\Gamma(L^\perp)$. With this in place, choose a point $p\in M$ and consider the integral hypersurface of L^\perp passing through p. Take orthonormal parallel fields X_1,\ldots,X_n along such hypersurface, and take a geodesic $\gamma\colon I\to M$ starting at p, orthogonal to X_1,\ldots,X_n , and transverse to hypersurface. The transversality condition allows us to assume L that L

¹This is a general phenomenon: if *M* is a smooth manifold, $f: M \to \mathbb{R}$ is smooth, and $\alpha: I \to M$ is a curve transverse to the fibers of f, then $(f \circ \alpha)' \neq 0$. So let h be the inverse of $f \circ \alpha$ defined on its range, and let $\gamma = \alpha \circ h$. Then $(f \circ \gamma)'(t) = (f \circ \alpha \circ h)'(t) = (f \circ \alpha)'(h(t))h'(t) = 1$, and this implies that $f(\gamma(t)) = t + t_0$ for some $t_0 \in \mathbb{R}$ — one can even arrange for $t_0 = 0$ by reparametrizing γ further.

for all $t \in I$ or, in other words, $g(L, \gamma') = 1$. That is, we may assume that x^+ is the geodesic parameter. The fields L, X_1, \ldots, X_n , being parallel (along the hypersurface), give coordinates (x^-, x^1, \ldots, x^n) on the integral hypersurface passing through p. For each x^+ , we consider the parallel transport of all of those fields from $p = \gamma(0)$ to $\gamma(x^+)$, and then we extend those to parallel fields along the integral hypersurface of L^\perp passing through $\gamma(x^+)$ — such extensions (denoted with the same letters) give coordinates (x^-, x^1, \ldots, x^n) on each hypersurface. Thus, given $q \in M$ near enough p, the coordinate $x^+(q)$ will be the value corresponding to the hypersurface passing through q, and the remaining values $x^-(q), x^1(q), \ldots, x^n(q)$ are determined by the hypersurface coordinates just defined. Since parallel translations are isometries and $g(\partial_i, \partial_j) = g(X_i, X_j) = \delta_{ij}$ on each hypersurface, these relations hold on the entire coordinate domain. By construction, ∂_+ (which in particular satisfies $\partial_+|_{\gamma(x^+)} = \gamma'(x^+)$) is orthogonal to all the ∂_i , and we have $g(\partial_+, \partial_-) = 1$. The function $H = g(\partial_+, \partial_+)/2$ satisfies $\partial_- H = 0$ because ∂_- is parallel. For the adjustment needed to get *normal* Brinkmann coordinates, see Lemma 3.1 in [1].

Let's compute the Christoffel symbols, assuming that $\lambda, \mu, \nu, \delta \in \{+, -, 1, \dots, n\}$ and using

$$\Gamma^{\lambda}_{\mu\nu} = rac{g^{\lambda\delta}}{2} (\partial_{\mu}g_{\delta\nu} + \partial_{\nu}g_{\delta\mu} - \partial_{\delta}g_{\mu\nu}).$$

Note that

$$(g_{\mu\nu}) = \begin{pmatrix} 2H & 1 & \mathbf{0} \\ 1 & 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathrm{Id}_n \end{pmatrix} \quad \text{and} \quad (g^{\mu\nu}) = \begin{pmatrix} 0 & 1 & \mathbf{0} \\ 1 & -2H & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathrm{Id}_n \end{pmatrix}$$

In particular, note that unless $\mu = \lambda = +$, we automatically have $\partial_{\mu}g_{\nu\lambda} = 0$.

- If $\lambda = +$: since $g^{\delta +} = \delta^{\delta -}$, we'll have terms with ∂_- derivatives and only $g_{\bullet \bullet}$ terms where enters, so $\Gamma^+_{\mu\nu} = 0$ for all μ and ν .
- If $\lambda = -$: this time we have to deal with $g^{\delta -}$, so

$$\Gamma^-_{\mu
u} = rac{1}{2}(\partial_\mu g_{
u+} + \partial_
u g_{\mu+} - \partial_+ g_{\mu
u}) - H(\partial_\mu g_{
u-} + \partial_
u g_{\mu-} - \partial_- g_{\mu
u}).$$

By previous comments, all terms multiplying H vanish. Systematically, we see that $\Gamma_{++}^- = \partial_+ H$ and $\Gamma_{+j}^- = \partial_j H$, while the remaining symbols vanish.

• If $\lambda = k$: the only non-zero $g^{\delta k}$ are when $\delta = \ell$ is latin, so we have

$$\Gamma^k_{\mu
u} = rac{1}{2}(\partial_\mu g_{
u k} + \partial_
u g_{\mu k} - \partial_k g_{\mu
u}) = -rac{\partial_k g_{\mu
u}}{2}.$$

Hence $\Gamma_{++}^k = -\partial_k H = -\partial^k H$ and all the remaining symbols vanish.

So, the non-zero symbols are $\Gamma_{++}^- = \partial_+ H$, $\Gamma_{+j}^- = \partial_j H$ and $\Gamma_{++}^k = -\partial^k H$. Let's summarize our computations so far.

Proposition 3. *If* (M, g) *is a pp-wave spacetime, then relative to Brinkmann coordinates we have that the Levi-Civita connection* ∇ *is described by*

$$(
abla_{\partial_{\mu}}\partial_{
u})=egin{pmatrix} -(\partial^k H)\partial_k+(\partial_+ H)\partial_-&\mathbf{0}&(\partial_j H)\partial_-\ \mathbf{0}&\mathbf{0}&\mathbf{0}\ (\partial_j H)\partial_-&\mathbf{0}&\mathbf{0} \end{pmatrix}.$$

Alternatively, we may write all covariant derivatives as

(i)
$$\nabla \partial_+ = -dx^+ \otimes \operatorname{grad}_x H + dH \otimes \partial_-;$$

(ii)
$$\nabla \partial_{-} = 0$$
;

(iii)
$$\nabla \partial_i = \partial_i H \, \mathrm{d} x^+ \otimes \partial_-$$
,

where grad, $H = (\partial^k H)\partial_k$ is the "flat gradient" of H.

With this in place, we systematically move on to curvature operators, simply using the definition

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

- $R(\partial_+, \partial_-) = 0$ since ∂_- is parallel and $\partial_- H = 0$.
- $R(\partial_+, \partial_i)\partial_+ = (\partial_i \partial^k H)\partial_k$ and $R(\partial_+, \partial_i)\partial_k = -(\partial_i \partial_k H)\partial_-$.
- $R(\partial_-, \partial_i) = 0$ again since ∂_- is parallel and $\partial_- H = 0$.
- $R(\partial_i, \partial_j) = 0$ since $\partial_i \partial_j H = \partial_j \partial_i H$ and $\nabla_{\partial_i} \partial_k = \mathbf{0}$.

In essence, the only non-zero curvature operators are

$$R(\partial_+,\partial_j)=(\partial_j\partial^k H)\,\mathrm{d}x^+\otimes\partial_k-(\partial_j\partial_k H)\,\mathrm{d}x^k\otimes\partial_-.$$

Equivalently, the only non-zero curvature components (up to symmetry) are

$$R_{+j+}^{\quad k} = \partial_j \partial^k H$$
 and $R_{+jk}^{\quad -} = -\partial_j \partial_k H$.

Proposition 4. A pp-wave spacetime if flat if and only if, relative to any system of Brinkmann coordinates, the "flat Hessian" $\operatorname{Hess}_x H = \partial_i \partial_j H \, \mathrm{d} x^i \otimes \mathrm{d} x^j$ vanishes.

With this in place, we may compute the Ricci tensor of (M, g).

Proposition 5. The Ricci tensor of a pp-wave spacetime is given by

$$Ric = -\triangle H \, dx^+ \otimes dx^+,$$

where $\triangle H = \partial_k \partial^k H$ stands for the "flat Laplacian" induced by the Brinkmann coordinates. Hence every pp-wave spacetime is scalar-flat and Ricci-recurrent.

Next, let's find out when is a pp-wave locally symmetric. Namely, let's compute the covariant differential ∇R .

• $\nabla_{\partial_+} R$: the only non-zero operator is $(\nabla_{\partial_+} R)(\partial_+, \partial_j) = \nabla_{\partial_+} (R(\partial_+, \partial_j))$, whose only non-zero values are found to be

$$[(\nabla_{\partial_+} R)(\partial_+, \partial_i)]\partial_+ = (\partial_+ \partial_i \partial^k H)\partial_k \quad \text{and} \quad [(\nabla_{\partial_+} R)(\partial_+, \partial_i)]\partial_k = -(\partial_+ \partial_i \partial_k H)\partial_-.$$

- $\nabla_{\partial_{-}}R = 0$ because ∂_{-} is parallel and $\partial_{-}g_{\mu\nu} = 0$ for all μ , ν .
- $\nabla_{\partial_i} R$: the only non-zero operator is $(\nabla_{\partial_i} R)(\partial_+, \partial_j)$, whose only non-zero values are found to be

$$[(\nabla_{\partial_i}R)(\partial_+,\partial_j)]\partial_+ = (\partial_i\partial_j\partial^k H)\partial_k \quad \text{and} \quad [(\nabla_{\partial_i}R)(\partial_+,\partial_j)]\partial_k = -(\partial_i\partial_j\partial_k H)\partial_-.$$

Theorem 6. A pp-wave spacetime (M, g) with parallel null field \mathbf{L} is a plane wave spacetime if and only if $\nabla_{\mathbf{Z}} R = 0$ for all $\mathbf{Z} \in \Gamma(\mathbf{L}^{\perp})$.

Theorem 7. A pp-wave spacetime (M,g) is locally symmetric if and only if, relative to Brinkmann coordinates, the "flat Hessian" matrix of the data function H is a constant. In particular, this is equivalent to (M,g) being a plane wave for which H is a quadratic polynomial in the variables (x^i) with constant coefficients.

As for the next step, we look at the Weyl tensor. Since dim M = n + 2 and s = 0, we may generally write

$$W_{\mu\nu\lambda}^{\ \ \delta} = R_{\mu\nu\lambda}^{\ \ \delta} - \frac{1}{n} (R_{\nu\lambda} \delta_{\mu}^{\delta} - R_{\mu\lambda} \delta_{\nu}^{\delta} + g_{\nu\lambda} g^{\delta\varepsilon} R_{\mu\varepsilon} - g_{\mu\lambda} g^{\delta\varepsilon} R_{\nu\varepsilon}).$$

For a pp-wave spacetime, we may use again that $g^{\delta+} = \delta^{\delta-}$ as well as $R_{\mu\nu} = -\delta_{\mu+}\delta_{\nu+}\triangle H$ to simplify things to

$$W_{\mu\nu\lambda}^{\delta} = R_{\mu\nu\lambda}^{\delta} + \frac{\triangle H}{\mu} (\delta_{\nu} + \delta_{\lambda} + \delta_{\mu}^{\delta} - \delta_{\mu} + \delta_{\lambda} + \delta_{\nu}^{\delta} + g_{\nu\lambda}\delta^{\delta} - \delta_{\mu} + g_{\mu\lambda}\delta^{\delta} - \delta_{\nu}).$$

We'll follow the same order we used to compute curvature operators.

- $W(\partial_+, \partial_-) = 0$, since $g_{\lambda_-} = \delta_{\lambda_+}$.
- $W(\partial_+, \partial_i)$: the formula from above simplifies to

$$W_{+j\lambda}^{\delta} = R_{+j\lambda}^{\delta} + \frac{\triangle H}{n} (-\delta_{\lambda+} \delta_j^{\delta} + g_{j\lambda} \delta^{\delta-}).$$

Choosing $\lambda = +$ gives that

$$W(\partial_{+},\partial_{j})\partial_{+} = R(\partial_{+},\partial_{j})\partial_{+} - \frac{\triangle H}{n}\partial_{j} \implies W(\partial_{+},\partial_{j})\partial_{+} = (\partial_{j}\partial^{k}H)\partial_{k} - \frac{\triangle H}{n}\partial_{j}$$

and choosing $\lambda = k$ gives

$$W(\partial_{+},\partial_{j})\partial_{k} = R(\partial_{+},\partial_{j})\partial_{k} + \frac{\triangle H}{n}\delta_{jk}\partial_{-} \implies W(\partial_{+},\partial_{j})\partial_{k} = \left(-\partial_{j}\partial_{k}H + \frac{\triangle H}{n}\delta_{jk}\right)\partial_{-}$$

- $W(\partial_-, \partial_i) = 0$ as all the Kronecker deltas vanish.
- $W(\partial_i, \partial_i) = 0$ as all the Kronecker deltas vanish again.

Alternatively, one can avoid coordinate computations and directly appeal to the orthogonal decomposition of the fully covariant *R*, which yields:

Proposition 8. The Weyl tensor of a pp-wave spacetime (M,g) is given in Brinkmann coordinates by

$$W = R + 2 \frac{\triangle H}{n} g \bigotimes (dx^+)^2.$$

In particular, a pp-wave spacetime is conformally flat if and only if the "flat Hessian" of the data function H is "scalar", that is, if

$$\operatorname{Hess}_{x}H = \frac{\triangle H}{n}\operatorname{Id}_{n}.$$

Our last goal here will be to compute ∇W and give conditions for a pp-wave spacetime to be a ECS manifold (essentially conformally symmetric manifold). A straightforward computation (using that ∂_- is parallel and that none of the $\nabla_{\partial_\mu}\partial_\nu$ has a ∂_+ component) shows that

$$(\nabla_{\partial_u} W)(\partial_+, \partial_-) = (\nabla_{\partial_u} W)(\partial_-, \partial_j) = (\nabla_{\partial_u} W)(\partial_i, \partial_j) = [(\nabla_{\partial_u} W)(\partial_+, \partial_j)]\partial_- = 0$$

for all choices of indices, while all the other non-zero values are given by

$$\begin{split} &[(\nabla_{\partial_{\mu}}W)(\partial_{+},\partial_{j})]\partial_{+} = (\partial_{\mu}\partial_{j}\partial^{k}H)\partial_{k} - \frac{\partial_{\mu}(\triangle H)}{n}\partial_{j} \\ &[(\nabla_{\partial_{\mu}}W)(\partial_{+},\partial_{j})]\partial_{k} = \left(-\partial_{\mu}\partial_{j}\partial_{k}H + \frac{\partial_{\mu}(\triangle H)}{n}\delta_{jk}\right)\partial_{-} \end{split}$$

Note that for $\mu=-$, the right side of the above two relations is just zero as $\partial_- H=0$. (i.e., a tautology). The computations done to verify the first one for $\mu=+$ and $\mu=i$ are slightly different (but equally easy). Verifying the second equation, in turn, is again straightforward using that $W(\cdot,\cdot)\partial_-=0$.

Proposition 9. A pp-wave spacetime (M,g) has parallel Weyl tensor if and only if, relative to Brinkmann coordinates, we have

$$\operatorname{Hess}_{x} H = \frac{\triangle H}{n} \operatorname{Id}_{n} + A$$

for some constant $A \in \mathfrak{sl}_n(\mathbb{R})$.

Corollary 10. Every pp-wave spacetime with parallel Weyl tensor is a plane wave.

Proof: Fixed x^+ , we may as well assume the ambient space is the standard Euclidean space. Let $\psi = \triangle H/n$. The goal is to show that $\mathrm{d}\psi = 0$, as the Hessian being constant will imply that (M, g) is a plane wave. Recall the formula $\mathrm{d}^\nabla(\mathrm{Hess}\,H) = R(\cdot, \cdot, \nabla H, \cdot)$. Applying d^∇ on both sides of $\mathrm{Hess}\,H = \psi\mathrm{g} + A$ and using the flatness assumption gives $0 = \mathrm{d}\psi \wedge \mathrm{g}$. So $\mathrm{d}\psi = 0$ as g has full-rank.

Proposition 11. A pp-wave spacetime (M,g) is ECS if and only if, relative to Brinkmann coordinates, we have

 $\operatorname{Hess}_{x} H = \frac{\triangle H}{n} \operatorname{Id}_{n} + A$

for some non-zero $A \in \mathfrak{sl}_n(\mathbb{R})$ and $\partial_+ \triangle H \neq 0$.

Theorem 12. Every point in a ECS plane wave (M,g) admits a coordinate neighborhood with coordinates $(t,s,(x^i))$ for which the metric is expressed as

$$g = \kappa dt^2 + dt ds + \delta_{ij} dx^i dx^j,$$

where κ is the (smooth) map given by $\kappa(t, s, v) = f(t)\langle v, v \rangle + \langle Av, v \rangle$, with f non-constant and $A \in \mathfrak{sl}_n(\mathbb{R})$ non-zero.

Proof: By Theorem 2, we may already start with a system of *normal* Brinkmann coordinates $(x^+, x^-, (x^i))$ centered at the given point. Now let $t = x^+$ and $s = 2x^-$. We may write $H = H_{ij}(x^+)x^ix^j$, so that Proposition 11 gives us $A \in \mathfrak{sl}_n(\mathbb{R})$, $A \neq 0$, such that

$$2H_{ij}(x^+) = (\partial_i \partial_j H)(x^+) = \frac{(\triangle H)(x^+)}{n} \delta_{ij} + a_{ij}.$$

Let $f(t) = (\triangle H)(t)/n$. With this we clearly have

$$g = 2H (dx^{+})^{2} + 2 dx^{+} dx^{-} + \delta_{ij} dx^{i} dx^{j} = \kappa dt^{2} + dt ds + \delta_{ij} dx^{i} dx^{j},$$

as required.

References

[1] Globke, W.; Leistner, T.; Locally homogeneous pp-waves, Journal of Geometry and Physics 108, pp. 83–101, 2016.