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Definition 1. A Lorentzian manifold (M, g), dim M = n + 2, is called a pp-wave space-
time if it admits a parallel null field L € X(M) such that the connection induced in
the quotient screen bundle L+/RL — M is flat, or, in other words, we may write
R(X,Y): L+ — RL forall X,Y € X(M).

Theorem 2 (Brinkmann). Each point in a pp-wave spacetime (M, g) admits a coordinate
neighborhood with coordinates (x*,x~, Xl x™) for which the metric is expressed as

g =2H (dx")?+2dx" dx™ + 4;;dx' do,

where H is a smooth function not depending on x~ and i,j range from 1 to n. On such
coordinates, we have L = d_. Given p € M, such coordinates may be chosen centered at p
and such that H(x",x~,0) = (9;H)(x*,x~,0) = 0 forall i and x* ranging over an interval
centered at O (those are called normal Brinkmann coordinates).

Remark. (M, g) is called a plane wave if the data function H is quadratic on the vari-
ables (x') with coefficients depending on x7, that is, if it has the form

H(xb,x™, 2!, . x") = Hy(x")x's) + Hy(x")x* + Ho(xT).

Moreover, note that g(d_,-) = dx™, so it will also follow that dx™ is a parallel null
1-form.

Proof: Since L is parallel, the 1-form g(L,-) is closed, so Poincaré’s Lemma gives a
local smooth function x* such that g(L,-) = dx™. Next, since L is a parallel dis-
tribution, so is L+ = kerdx™ (for if X € ¥(M) and Y € T'(L') are arbitrary, then
we have that g(VxY,L) = —g(¥,VxL) = 0, so VxY € T(L')). Thus, the Levi-
Civita connection induces connections on all the fibers of x*, which are the integral
hypersurfaces of L+ (even though g is degenerate on them). We now claim that those
induced connections are all flat. To wit, given X,Y € T'(L*) and Z, W € X(M), pair-
symmetry of the Riemann tensor gives that R(X,Y,Z,W) = R(Z,W,X,Y) = 0, since
R(Z,W)X is a multiple of L (by definition of a pp-wave) and Y € T(L*). With this
in place, choose a point p € M and consider the integral hypersurface of L+ pass-
ing through p. Take orthonormal parallel fields X1, ..., X, along such hypersurface, and
take a geodesic y: I — M starting at p, orthogonal to X1, ..., X;;, and transverse to hy-
persurface. The transversality condition allows us to assume’ that dx* ‘7 ) (v(t) =1

IThis is a general phenomenon: if M is a smooth manifold, f: M — R is smooth, and a: [ -+ M
is a curve transverse to the fibers of f, then (f oa)’ # 0. So let  be the inverse of f o a defined on its
range, and let v = woh. Then (fo ) (t) = (foaoh)'(t) = (foa)' (h(t))W(t) = 1, and this implies
that f(y(t)) = t + to for some ty € R — one can even arrange for ty = 0 by reparametrizing <y further.
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for all t € I or, in other words, g(L,7') = 1. That is, we may assume that x™ is the
geodesic parameter. The fields L, X1, ..., X, being parallel (along the hypersurface),
give coordinates (x~,x!,...,x") on the integral hypersurface passing through p. For
each x*, we consider the parallel transport of all of those fields from p = (0) to
v(xT), and then we extend those to parallel fields along the integral hypersurface of
Lt passing through «(x*) — such extensions (denoted with the same letters) give
coordinates (x~,x},...,x") on each hypersurface. Thus, given 4 € M near enough
p, the coordinate x™(g) will be the value corresponding to the hypersurface passing
through g, and the remaining values x~(q),x'(q),...,x"(q) are determined by the
hypersurface coordinates just defined. Since parallel translations are isometries and
g(9;,9;) = g(Xj, Xj) = ¢;; on each hypersurface, these relations hold on the entire co-

ordinate domain. By construction, 9 (which in particular satisfies 0+ \,Y () = v (xT))
is orthogonal to all the 9;, and we have g(d4,0_) = 1. The function H = g(d+,9+)/2

satisfies _H = 0 because d_ is parallel. For the adjustment needed to get normal
Brinkmann coordinates, see Lemma 3.1 in [1]. ]

Let’s compute the Christoffel symbols, assuming that A, y,v,6 € {+,—,1,...,n}
and using

r _gﬁ(a +0y8su — VsSuv)
) u8ov v8su s&uv)-

2H 1 0 0 1 0
(gw)=1{1 0 0 and (¢")= |1 —2H 0
0 0 Id, 0 0 Id,

In particular, note that unless 4 = A = +, we automatically have d,,¢,, = 0.

Note that

o If A = +: since ¢° = §°~, we'll have terms with d_ derivatives and only gee
terms where — enters, so 1“;[], =0 forall y and v.

e If A = —: this time we have to deal with ¢°~, so

_ 1
Iy = E(aygv—f— + v 8u+ — a+gﬂy) - H(aﬂg‘/_ + gy — B_g;w)-

By previous comments, all terms multiplying H vanish. Systematically, we see
that[,, =dyHand I i = d;H, while the remaining symbols vanish.

¢ If A = k: the only non-zero g‘Sk are when ¢ = / is latin, so we have

1 98
rlfw = Q(aygvk + dvguk — Okguv) = _TW-
Hence F’_i L = —0H = —0FH and all the remaining symbols vanish.
So, the non-zero symbols are ', = d, H, F:L]. = 9J;H and F’_‘Hr = —oH. Let's

summarize our computations so far.
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Proposition 3. If (M, g) is a pp-wave spacetime, then relative to Brinkmann coordinates we
have that the Levi-Civita connection V is described by

—(0*H)9x + (9+H)o— 0 (0;H)o-
(Va#av) = 0 0 0 .
(0jH)o- 0 0

Alternatively, we may write all covariant derivatives as

(i) Vo4 = —dx™ ® grad, H+dH ® 0_;

(i)) Vo_ =0;
(iii)) Vo; = o;H dxt ®o_,
where grad [H = (0"H )9y, is the “flat gradient” of H.

With this in place, we systematically move on to curvature operators, simply using
the definition
R(X, Y)Z = VXVyZ — VvaZ — V[X,Y}Z'

® R(04+,0_) = 0since d_ is parallel and 9_H = 0.

.
=

8+,a]-)8+ = (a]akH)ak and R(a+,a]')ak = —(a]akH)a_

°
=~

d—,9;) = 0 again since d_ is parallel and 9_H = 0.

°
=

(
(
(
(0;,9;) = 0 since 9;0;H = 9;0;H and V3,0 = 0.

In essence, the only non-zero curvature operators are
R(94,9;) = (9,0°H) dx" ® 0y — (9;0,H) dx* ® 9_.
Equivalently, the only non-zero curvature components (up to symmetry) are

ki 5ok -
R + —8]8H and R+jk ——a]'akH.

+j

Proposition 4. A pp-wave spacetime if flat if and only if, relative to any system of Brinkmann
coordinates, the “flat Hessian” Hess,H = aiajH dx! ® dx/ vanishes.

With this in place, we may compute the Ricci tensor of (M, g).
Proposition 5. The Ricci tensor of a pp-wave spacetime is given by
Ric = —AHdx" ®@dx™,

where AH = 9;0"H stands for the “flat Laplacian” induced by the Brinkmann coordinates.
Hence every pp-wave spacetime is scalar-flat and Ricci-recurrent.

Next, let’s find out when is a pp-wave locally symmetric. Namely, let's compute
the covariant differential VR.
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* Vj,, R: the only non-zero operator is (Vj, R)(d+,0;) = Vj, (R(d+,9;)), whose
only non-zero values are found to be

[(Va,R)(9+,0)]9+ = (9+9;0°H)9; and [(Va,R)(9+,0))]0k = —(949;0¢H)d-.

* V5 R = 0because d_ is parallel and d_g;,, = 0 for all y, v.

* V;,R: the only non-zero operator is (Vj,R)(d+,9;), whose only non-zero values
are found to be

[(Va,R)(0+,9))]0+ = (9;00°H)9; and [(Vy,R)(d+,9;)]0x = —(9;0;0xH)9-.

Theorem 6. A pp-wave spacetime (M, g) with parallel null field L is a plane wave spacetime
ifand only if VZR = 0 forall Z € T(L™*).

Theorem 7. A pp-wave spacetime (M, g) is locally symmetric if and only if, relative to
Brinkmann coordinates, the “flat Hessian” matrix of the data function H is a constant. In
particular, this is equivalent to (M, g) being a plane wave for which H is a quadratic polyno-
mial in the variables (x') with constant coefficients.

As for the next step, we look at the Weyl tensor. Since dimM = n+2ands = 0,
we may generally write

) 6

1
W =R = E(Rméz — Rya8 + 208 Rue — 818  Rue).

For a pp-wave spacetime, we may use again that ¢* = 6°~ aswellas R,y = —6,4.6,+ AH
to simplify things to
AH

n

)

Wyv)x

= Ry’ + = (0000485 — 014 82100 + §uA8° "Bt — 810" 0.
We’ll follow the same order we used to compute curvature operators.

e W(d4,0-) =0,since gy =) 4.

* W(d4,9;): the formula from above simplifies to

AH
n

0

_ 0 s o—
Win =R + (—0a+07 +gjnd"").

Choosing A = + gives that
AH AH
W(9+,0;)0+ = R(9+,0j)9+ — ——0; = W(d+,0;)9+ = (9;0H)9y — =9

and choosing A = k gives

AH AH
W(a+,aj)8k = R(04, a]')ak+ T(Sjka_ — W(94, aj)ak = <_ajakH + T(Sjk> Jd_
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e W(d-,9;) = 0 as all the Kronecker deltas vanish.
* W(0;,0;) = 0 as all the Kronecker deltas vanish again.

Alternatively, one can avoid coordinate computations and directly appeal to the
orthogonal decomposition of the fully covariant R, which yields:

Proposition 8. The Weyl tensor of a pp-wave spacetime (M, g) is given in Brinkmann coor-
dinates by

W =R+ 2%3; @ (dx)2.

In particular, a pp-wave spacetime is conformally flat if and only if the “flat Hessian” of the
data function H is “scalar”, that is, if

AH
Hess,H = — Id,,.

Our last goal here will be to compute VW and give conditions for a pp-wave space-
time to be a ECS manifold (essentially conformally symmetric manifold). A straightfor-
ward computation (using that o_ is parallel and that none of the V, d, has a d.-
component) shows that

(Va,W)(0+,0-) = (Va,W)(9—,9;) = (Va,W)(9;,9;) = [(Va,W)(9+,0))]o— =0
for all choices of indices, while all the other non-zero values are given by

9u(LH)

[(Va,W)(8:+,9))]0+ = (3,0;0"H)dy — j

[(VayW) (a+,a])]ak = (—ayajakH + w&k) 0_

Note that for y = —, the right side of the above two relations is just zero as 0 _H = 0.
(i.e., a tautology). The computations done to verify the first one for y = + and p =i
are slightly different (but equally easy). Verifying the second equation, in turn, is again
straightforward using that W(:,-)o_ = 0.

Proposition 9. A pp-wave spacetime (M, g) has parallel Weyl tensor if and only if, relative
to Brinkmann coordinates, we have

AH
Hess H = - Id, + A

for some constant A € sl,(R).
Corollary 10. Every pp-wave spacetime with parallel Weyl tensor is a plane wave.

Proof: Fixed x*, we may as well assume the ambient space is the standard Euclidean
space. Let y = AH/n. The goal is to show that dy = 0, as the Hessian being constant
will imply that (M, g) is a plane wave. Recall the formula dV (Hess H) = R(-,-, VH,-).
Applying dV on both sides of Hess H = g + A and using the flatness assumption
gives 0 = dy A g. So dyp = 0 as g has full-rank. O
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Proposition 11. A pp-wave spacetime (M, g) is ECS if and only if, relative to Brinkmann
coordinates, we have

AH
Hess,H = — Id, + A
for some non-zero A € sl,(R) and 9+ AH # 0.

Theorem 12. Every point in a ECS plane wave (M, g) admits a coordinate neighborhood
with coordinates (t,s, (x')) for which the metric is expressed as

g = xdt* +dtds + ;dx'dy/,

where « is the (smooth) map given by «(t,s,v) = f(t)(v,v) + (Av,v), with f non-constant
and A € sl,(R) non-zero.

Proof: By Theorem 2, we may already start with a system of normal Brinkmann coor-
dinates (x*,x~, (x')) centered at the given point. Now let t = x* and s = 2x~. We
may write H = H;j(x")x'x/, so that Proposition 11 gives us A € sl,(R), A # 0, such

that J
2Hy(x+) = (39,H) (x+) = (LHET)

(51']' + ajj.
Let f(t) = (AH)(t)/n. With this we clearly have
g =2H (dx")?+2dx" dx™ + 6;;dx’ dx/ = xdt* 4+ dt ds + §;;dx'd,

as required. O
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