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1 Definitions

Let (Mn, g), n ≥ 3, be a (connected) pseudo-Riemannian manifold.

Definition 1 (Products).

(i) Given α ∈ Ω1(M) and β ∈ Ω2(M), we regard β as an element of Ω1(M; T∗M)
and compute the actual wedge product α ∧ β ∈ Ω2(M; T∗M). It is given by
(α ∧ β)(X, Y)Z = α(X)β(Y, Z)− α(Y)β(X, Z).

(ii) Given symmetric tensors T, S ∈ Γ(T∗M�2), we define their Kulkarni-Nomizu prod-
uct as

2(T©∧ S)(X, Y, Z, W) = T(Y, Z)S(X, W)− T(X, Z)S(Y, W) + switch(T ↔ S),

where by switch(T ↔ S) we mean the previous terms with T and S switched.

Remark. The relation ∇X(T©∧ S) = (∇XT)©∧ S + T©∧ (∇XS) always holds. This is
easily verified pointwise by using a geodesic frame centered at the arbitrary chosen
point.

Definition 2 (Curvatures).

(i) The Riemann curvature tensor of (M, g) is defined by

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z.

(ii) The Ricci tensor is Ric(Y, Z) = tr (X 7→ R(X, Y)Z).

(iii) The scalar curvature is s = tr g Ric.

With the operation©∧ , we have that (M, g) has constant curvature c if R = c(g©∧ g).
In general, we may decompose R as

R =
s

n(n− 1)
g©∧ g +

2
n− 2

g©∧
(

Ric− s
n

g
)
+ W,
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where W is called the Weyl tensor of (M, g). Essentially, this decomposition consists in
writing R as a sum of: a multiple of g©∧ g, a term g©∧ E where tr gE = 0, and a term W
whose abstract Ricci contraction vanishes. The tensor W controls conformal flatness,
and while we can just solve for W in the above formula, it is more convenient to write
it as

W = R− 2
n− 2

g©∧ Sch,

where
Sch = Ric− s

2(n− 1)
g

is called the Schouten tensor of (M, g).

Definition 3 (Divergence).

(i) If T ∈ Γ(T∗M⊗k) is a tensor field, we define the g-divergence δT ∈ Γ(T∗M⊗(k−1))
as

(δT)(X1, . . . , Xk−1) = tr g((X, Y) 7→ (∇XT)(X1, . . . , Xk−1, Y)).

(ii) If T is a type (1, k)-tensor, we define the g-divergence δT as the (0, k) tensor given
by

δT(X1, . . . , Xk) = tr (X 7→ (∇XT)(X1, . . . , Xk))

Definition 4 (Exterior derivative). Let T ∈ Γ(T∗M⊗2) be a tensor field. We define the
exterior derivative d∇T ∈ Γ(T∗M⊗3) by

(d∇T)(X, Y)Z = (∇XT)(Y, Z)− (∇YT)(X, Z).

Remark. Since∇ is torsion-free, the above is the same as regarding T as an element of
Ω1(M; T∗M) and then taking the exterior derivative d∇T ∈ Ω2(M; T∗M) with the aid
of ∇.

Using coordinates, and denoting covariant derivatives in direction of coordinate
fields with a semi-colon, we have that:

• (α ∧ β)ijk = αiβ jk − αjβik

• 2(T©∧ S)ijk` = TjkSi` − TikSj` + SjkTi` − SikTj`

• R(∂i, ∂j)∂k = R `
ijk ∂`

• Ric(∂i, ∂j) = Rjk with Rjk = R i
ijk

• s = gijRij

• (δT)i1···ik−1 = gijTi1···ik−1i;j if T is of type (0, k)

• (δT)i1···ik = T j
i1···ik ;j if T is of type (1, k).

• (d∇T)ijk = Tjk;i − Tik;j
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• Rijk` + Rjki` + Rkij` = 0 (first Bianchi identity d∇τ = 0)

• Rijk`;r + Rjrk`;i + Rrik`;j = 0 (second Bianchi identity d∇R = 0).

Lastly, recall that if E → M is a vector bundle equipped with a connection (also
to be denoted by ∇), and ψ ∈ Γ(E), one may define the second covariant derivative
of ψ by (∇X(∇ψ))Y = ∇X∇Yψ −∇∇XYψ. Using coordinates (xj) in M and a local
trivialization (ea), we may write

ψ = ψaea, ∇∂j ψ = ψa
;jea and (∇∂k

(∇ψ))∂j = ψa
;jkea.

In the last expression, note that the index k is the second index in ψa
;jk because ∇∂k

is

the last derivative to be applied. In particular, we have that ψa
;kj − ψa

;jk = R a
jkb ψb, by

definition of curvature.
This should be enough to get us going. Unless said otherwise, f stands for an

arbitrary f ∈ C∞(M).

2 Formulas

Proposition 5. δ(∇X)− d(δX) = Ric(·, X).

Corollary 6. For X = ∇ f , we get δ(Hess f ) = Ric(∇ f , ·) + d(4 f ).

Proof: Make i = j in Xi
;kj − Xi

;jk = R i
jk` X`.

Proposition 7. (d∇(Hess f ))(X, Y)Z = R(X, Y,∇ f , Z).

Proof:

(d∇(Hess f ))ijk = (Hess f )jk;i − (Hess f )ik;j

= f;jki − f;ikj

= f;kji − f;kij

= Rij`k f ;`

Proposition 8. d∇( f T) = d f ∧ T + f d∇T.

Corollary 9. For T = g, we get d∇( f g) = d f ∧ g.

Proof:

d∇( f T) = ( f T)jk;i − ( f T)ik;j

= ( f Tjk);i − ( f Tik);j

= f;iTjk + f Tjk;i − f;jTik − f Tik;j

= f;iTjk − f;jTik + f (Tjk;i − Tik;j)

= (d f ∧ T)ijk + ( f d∇T)ijk
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Proposition 10. δ( f T) = T(·,∇ f ) + f δT

Corollary 11. For T = g, δ( f g) = d f .

Proof:

(δ( f T))i = ( f T) j
ij;

= ( f Tij)
j

;

= f ;jTij + f T j
ij;

= f ;jTij + f (δT)i

Proposition 12. δT = tr 1,3(d∇T) + d(tr T), if T has rank 2.

Proof:

(δT)i = gjkTij;k = gjk((d∇T)kij + Tkj;i) = (tr 1,3(d∇T))i + (tr T);i

Proposition 13. δR = d∇Ric.

Proof:

(δR)ijk = R `
ijk ;`

= g`rRijkr;`

= −g`rRj`kr;i − g`rR`ikr;j

= g`rR`jkr;i − g`rR`ikr;j

= Rjk;i − Rik;j

= (d∇Ric)ijk

Proposition 14. δRic = ds/2.

Remark. This also follows from Proposition 12, as tr 1,3(d∇Ric) = −δRic.

Proof:

(δRic)i = R j
ij;

= gk`R j
kij`;

= grjgk`Rkij`;r

= −grjgk`Rirj`;k − grjgk`Rrkj`;i

= −gk`Ri`;k + grjRrj;i

= −(δRic)i + s;i
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Proposition 15. 2δ(g©∧ S) = δS ∧ g + d∇S.

Proof:

(2δ(g©∧ S))ijk = (2g©∧ S) `
ijk`;

= (gjkSi` − gikSj` + Sjkgi` − Sikgj`)
`

;

= gjkS `
i`; − gikS `

j`; + S `
jk; gi` − S `

ik; gj`

= gjk(δS)i − gik(δS)j + Sjk;i − Sik;j

= (δS ∧ g)ijk + (d∇S)ijk

= (δS ∧ g + d∇S)ijk

Proposition 16. δSch =
n− 2

2(n− 1)
ds.

Proof:

δSch = δ

(
Ric− s

2(n− 1)
g
)

= δRic− 1
2(n− 1)

δ(sg)

=
ds
2
− ds

2(n− 1)

=
n− 2

2(n− 1)
ds

Proposition 17. δW =
n− 3
n− 2

d∇Sch.

Proof:

δW = δ

(
R− 2

n− 2
g©∧ Sch

)
= δR− 2δ(g©∧ Sch)

n− 2

= d∇Ric− δSch∧ g
n− 2

− 1
n− 2

d∇Sch

= d∇Ric− ds∧ g
2(n− 1)

− 1
n− 2

d∇Sch

= d∇Sch− 1
n− 2

d∇Sch

=
n− 3
n− 2

d∇Sch
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Proposition 18. δR =
ds∧ g

2(n− 1)
+

n− 2
n− 3

δW.

Proof: This is equivalent to the previous proposition.

Proposition 19. δW = 0 =⇒ d∇W = 0.

Remark. This justifies the name “harmonic” Weyl curvature, as W will be both closed
and co-closed.

Proof: Computing (d∇W)ijk`m by definition gives a sum of six terms of the form
gjk(d∇Sch)mi`.

3 Immediate consequences

Corollary 20. If (M, g) is locally symmetric (that is, ∇R = 0), then we also have ∇T = 0
(hence δT = 0), for T ∈ {Ric, s, Sch, W}.

Corollary 21 (Schur). If n ≥ 3 and Ric = f g for some f ∈ C∞(M), then f is automatically
constant so that (M, g) is Einstein (and has constant scalar curvature).

Proof: Applying tr to Ric = f g gives f = s/n, while applying δ gives ds/2 = ds/n,
so ds = d f = 0.

Corollary 22. (M, g) has harmonic curvature ⇐⇒ Ric is closed. In this case, s is constant.

Proof:
s;k = gijRij;k = gijRkj;i = R j

kj; = (δRic)k =
s;k

2
=⇒ s;k = 0.

Corollary 23. If n ≥ 3, δSch = 0 ⇐⇒ s is constant.

Corollary 24. If n ≥ 4, (M, g) is has harmonic Weyl curvature ⇐⇒ Sch is closed.

Corollary 25. If n ≥ 4, then (M, g) has harmonic curvature ⇐⇒ it has harmonic Weyl
curvature and s is constant.

Proof: If (M, g) has harmonic curvature, note that s is constant by Proposition 22,
so d∇Ric = 0 implies d∇Sch = 0 by definition of Sch. The converse is clear from
Proposition 18.

Remark. For instance, every Einstein manifold and every locally symmetric manifold
satisfy the assumptions above.
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