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1 Definitions

Let (M",g), n > 3, be a (connected) pseudo-Riemannian manifold.
Definition 1 (Products).

(i) Given « € Q}(M) and B € O?(M), we regard B as an element of Q! (M; T*M)
and compute the actual wedge product a A B € Q*(M; T*M). It is given by
(@A B)(X,Y)Z = a(X)B(Y, Z) — a(Y)B(X, Z).

(ii) Given symmetric tensors T, S € T(T*M®“?), we define their Kulkarni-Nomizu prod-
uct as

2(TAS)(X,Y,Z,W)=T(Y,Z2)S(X,W) —T(X,Z)S(Y,W) + switch(T <> S),
where by switch(T <+ S) we mean the previous terms with T and S switched.

Remark. The relation Vx(T® S) = (VxT) D S+ T @ (VxS) always holds. This is
easily verified pointwise by using a geodesic frame centered at the arbitrary chosen
point.

Definition 2 (Curvatures).

(i) The Riemann curvature tensor of (M, g) is defined by

(i) The Ricci tensor is Ric(Y,Z) = tr (X — R(X,Y)2Z).
(iii) The scalar curvature is s = tr ¢ Ric.

With the operation (), we have that (M, ¢) has constant curvature cif R = ¢c(g® g).
In general, we may decompose R as

s 2 ) s
R= n(n—l)g®g+n—2g® <RIC_Eg> W,
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where W is called the Wey! tensor of (M, g). Essentially, this decomposition consists in
writing R as a sum of: a multiple of g ® g, a term ¢ (® E where tr ;E = 0, and a term W
whose abstract Ricci contraction vanishes. The tensor W controls conformal flatness,
and while we can just solve for W in the above formula, it is more convenient to write
it as 5

W =R 58 @ Sch,

where
S

Sch = Ric — mg
is called the Schouten tensor of (M, g).
Definition 3 (Divergence).

(i) If T € T(T*M®k) is a tensor field, we define the g-divergence 6T € T(T* M®Kk-1))
as
(0T) (X1, .., Xp1) = tr (X, Y) = (VXxT) (X1, ..., Xp—1,Y)).

(ii) If T'is a type (1, k)-tensor, we define the g-divergence 0T as the (0, k) tensor given

by
6T(Xq,..., X)) = tr (X — (VxT)(X1,...,Xg))

Definition 4 (Exterior derivative). Let T € T'(T*M®?) be a tensor field. We define the
exterior derivative dV T € T'(T*M®%3) by

(@VT)(X,Y)Z = (VxT)(Y,Z) = (VyT)(X, Z).

Remark. Since V is torsion-free, the above is the same as regarding T as an element of
Q' (M; T*M) and then taking the exterior derivative dV T € Q?(M; T* M) with the aid
of V.

Using coordinates, and denoting covariant derivatives in direction of coordinate
fields with a semi-colon, we have that:

o (aAB)ijk = aifjk — a;Bix

2(T®D S)ijke = TixSie — TaeSje + SikTie — Six T

14
R(9;,0)9 = Ry, 0y

1

Ric(d;,9;) = Ry with Ryx = R,

ijk
e g — gl]Rl]

i ((5T)i1---ik,1 = gijTil---ik,li;j if T is of type (O,k)
° (0T)iy.i, = Til---ik];j if T is of type (1, k).

(AVT)ijk = Tiksi — T
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* Rjjkr + Rijkie + Rije = 0 (first Bianchi identity dV't = 0)

* Rijker + Rjrkei + Ryike;j = 0 (second Bianchi identity dVR = 0).

Lastly, recall that if E — M is a vector bundle equipped with a connection (also
to be denoted by V), and ¢ € I'(E), one may define the second covariant derivative
of by (Vx(V§))Y = VxVyp — Vy,yp. Using coordinates (x/) in M and a local
trivialization (e, ), we may write

p=9"e, Voyp=9ye, and (Vo (V))d;=97en.
In the last expression, note that the index k is the second index in ¢*. " because Vj, is

the last derivative to be applied. In particular, we have that ¢, K~ 1/)“;].k = R]_kba ¥’ by

definition of curvature.
This should be enough to get us going. Unless said otherwise, f stands for an
arbitrary f € 6% (M).

2 Formulas

Proposition 5. §(VX) — d(6X) = Ric(-, X).
Corollary 6. For X = V f, we get 6(Hess f) = Ric(Vf,-) +d(Af).
Proof: Make i = jin X', — X', = R;,/X". O
Proposition 7. (dY (Hess f))(X,Y)Z = R(X,Y,Vf,Z).
Proof:
(dY (Hess f));jc = (Hess f)jx; — (Hess f)x;;

= fijki — fikj

= fxji — fxij

= Rijucf"

Proposition 8. dV (fT) =df AT+ fdVT.
Corollary 9. For T = g, we get dV (fg) = df A g.
Proof:
dV(fT) = (fT)jksi — (fT) it
= (fTix);i — (fTix);j
= fiTix + fTjki — f;jTix — f Tix;j
= fiTix — f;iTic + f(Tii — Tisj)
= (df AT)ij + (fdV Tz
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Proposition 10. 6(fT) = T(-,Vf) + féT
Corollary 11. For T = g, 6(fg) = df.

Proof:

(6(fT))i = (FT),;)

= (fTyp/
= fiTy+ T,
= fITij+ f(6T);
[l
Proposition 12. 6T = trq3(dVT) +d(tr T), if T has rank 2.
Proof:
(OT); = & Tijx = ¢ ((AV T)ij + Tijyi) = (tr1,3(dVT)); + (tr T);
[]
Proposition 13. R = dVRic.
Proof:
(OR) ik = Rijkg;é
= 8" Rijirt
= —8" Rjtkri — 8" Ryikrsj
= 8" Ryjirii — 8" Reikr;
= Rjk;i — Rik;j
= (dVRic);jx
U
Proposition 14. JRic = ds/2.
Remark. This also follows from Proposition 12, as tr 3(dVRic) = —dRic.
Proof:
(6Ric); = Ri].;j
— g Rkije;]
=g 8k£Rkije;r
= —g"¢" Riyivx — 878" Rukju;
= —g"Rigx + 8" Ry
= —(JRic); + s,
[]
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Proposition 15. 25(¢ ® S) = 6S A g+dVS.

Proof:

(26(3 D 8))ijk = 28 ® )i
= (gikSie — giSje + Sixgit — Sugje),
- g]'ksié;é - giksje;g + Sjk;égié - Sik,-égjé
= gik(0S); — gik(6S); + Sik;i — Sik;j
= (0S A g)ijk + (dVS)jx
= (6SANg+dVS)ij

Proposition 16. 6Sch = Z(nn—_—zl)ds'

Proof:

. S
0Sch = ¢ (RIC — mg>

) 1
= JRic — m&(sg)

ds_ ds
2 2(n—1)
n—2

B CE

n—3
n—2

Proposition 17. {W = dVSch.

Proof:

2

_ SR 25(g @ Sch)
n—2

0SchAg

n—2
ds A 1

 aAVpRia 8 v

= d Y Ric 2 —1) n—Zd Sch

1
= dVRic — ——d"sch

= dVSch — %dVSch

n

_3 v
n—2d Sch
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dshg n—-2

2(n—1) + n—35w'

Proposition 18. 6R =

Proof: This is equivalent to the previous proposition. O
Proposition 19. 6W =0 = dYW = 0.

Remark. This justifies the name “harmonic” Weyl curvature, as W will be both closed
and co-closed.

Proof: Computing (dVW)i]'kgm by definition gives a sum of six terms of the form
gjk(dVSch) g 0

3 Immediate consequences

Corollary 20. If (M, g) is locally symmetric (that is, VR = 0), then we also have VT = 0
(hence 6T = 0), for T € {Ric,s,Sch, W}.

Corollary 21 (Schur). If n > 3 and Ric = fg for some f € €® (M), then f is automatically
constant so that (M, g) is Einstein (and has constant scalar curvature).

Proof: Applying tr to Ric = fg gives f = s/n, while applying J gives ds/2 = ds/n,
sods =df =0. O

Corollary 22. (M, g) has harmonic curvature <= Ric is closed. In this case, s is constant.

Proof: ; ; ; . S
sk = &/Rijx = ' Ryji = Rk].; = (0Ric); = > — s4 =0.

Corollary 23. If n > 3,0S5ch = 0 <= s s constant.
Corollary 24. If n > 4, (M, g) is has harmonic Weyl curvature <= Sch is closed.

Corollary 25. If n > 4, then (M, g) has harmonic curvature <= it has harmonic Weyl
curvature and s is constant.

Proof: If (M, g) has harmonic curvature, note that s is constant by Proposition 22,
so dVRic = 0 implies dVSch = 0 by definition of Sch. The converse is clear from
Proposition 18. [

Remark. For instance, every Einstein manifold and every locally symmetric manifold
satisfy the assumptions above.
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