Why is the Hessian of a function well-defined
only at its critical points?
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Defining d°f),:

Let M" be a differentiable manifold, f : M — R be a smooth function, and p € M be
a critical point of f, that is, satisfying df, = 0. This means that the partial derivatives
of f with respect to any chart around p vanish when evaluated at p. This allows us to
write the:

Definition. The Hessian of f at p is the bilinear form d*f,: T,M x T,M — R defined

by
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where (Uy, ¢, = (x},...,x")) is a chart around p for which we write
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To make this definition valid, we have to verify that the expression does not depend
on the choice of chart around p. For this end, assume that we are given a second chart
(Up, pp = (x}g, ..., Xg)) around p. Then U, N Upg is an open set around p (hence we
are able to take derivatives), and we may assume without loss of generality (and to
simplify the writing) that ¢a(p) = ¢p(p) = 0= (0,...,0) € R". The relation between
the coordinate vector fields along U, N Up, evaluated at the correct points, is just
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Seeing this as an equality between differential operators, it follows that
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Applying 9/ E)x;3 on both sides and applying the product rule, we get
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Evaluating the above at the point p kills the first sum in the right hand side, in view
of the condition df, = 0 (which implies that (3f/9x)(p) = 0 for £ = 1,2,...,n),
resulting in
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Now, to compute the Hessian of f according to the chart (Ug, ¢g), we need to know
the components of the tangent vectors v and w with respect to this new coordinate
basis. Using self-evident notation, we have that
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Putting everything together, we finally compute:
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as wanted. This means that the Hessian is indeed well-defined if p is a critical point of
the function f. Perhaps a more elegant approach for checking this last part, avoiding
picking the tangent vectors v and w (but which obviously boils down to the same
computation), is to write the transformation law for the differentials at the point p
instead:
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and recognizing f and &! to again obtain the same conclusion.

Generalizations:

Everything here uses in a crucial way the fact that df, = 0. So this raises the natural
question: is it possible to define such a Hessian for arbitrary points of the manifold M?
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Without additional structure, the answer is no. If you do, however, have some extra
structure to work with, here’s what happens: let V be a (Koszul) connection in the
tangent bundle TM, and define the covariant Hessian of f with respect to V at p as the
map Hess" (f),: TyM x T,M — R given by

Hess" (fp(v,w) =v(@(f)) —dfp(Vow),

where w is some extension of w to a neighborhood of p (i.e., a vector field defined
in a neighborhood of p such that w, = w). By the Leibniz rule for V and its local
character, we see that the right hand side above is actually independent of the choice
of extension for w, and defines a bilinear form on T, M. Note that if p happens to be a

critical point of f, we recover Hess" (f), = d?f,.
This actually induces a €% (M)-bilinear map Hess" (f): X(M) x X(M) — €*(M),
which is given in local coordinates (U, (x!,...,x")) by

Hess" (f)(9;, 9j) = 0i9;f —df(Vy,0))
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where the 1 functions Tf-‘]- are the connection components of V. Writing it in its full
glory, we have
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One might also recognize the object Hess" (f) as the covariant differential V(df) of
the (0,1)-tensor df, which is then a (0,2)-tensor. But despite all these ways of look-
ing at the Hessian, we cannot expect it to necessarily have good properties, since the
connection V was so arbitrary. In fact, recall that the torsion of the connection V is the
(0,2)-tensor field TV: X(M) x X(M) — X(M) given by

™V(X,Y) = VxY — VyX — [X,Y],
where [X, Y] is the Lie bracket of X and Y. The presence of [X, Y] has the purpose

of making the torsion TV €*°(M)-bilinear. We'll conclude the discussion with the
following characterization of this torsion:

Proposition. TV = 0 if and only if Hess" (f) is a symmetric tensor, for every f € € (M).
Proof: Given vector fields X,Y € X(M), we compute directly that
Hess” ()(Y.X) = Y(X(f)) — df (VyX) = X(Y(f)) — [X, Y](f) - df(VyX)
— X(Y(f) — df(VyX + X, Y]) = X(X(f)) — df(VxY — 7 (X, Y))
= Hessv(f)(X, Y) + TV(X,Y)(f).

The conclusion follows. O



