Why is the Hessian of a function well-defined only at its critical points?

Ivo Terek Couto

Defining $d^2 f_p$:

Let M^n be a differentiable manifold, $f: M \to \mathbb{R}$ be a smooth function, and $p \in M$ be a critical point of f, that is, satisfying $\mathrm{d} f_p = 0$. This means that the partial derivatives of f with respect to any chart around p vanish when evaluated at p. This allows us to write the:

Definition. The *Hessian* of f at p is the bilinear form $d^2 f_p \colon T_p M \times T_p M \to \mathbb{R}$ defined by

$$d^{2}f_{p}(v,w) \doteq \sum_{i,j=1}^{n} \frac{\partial^{2}f}{\partial x_{\alpha}^{i} \partial x_{\alpha}^{j}}(p) v_{\alpha}^{i} w_{\alpha}^{j},$$

where $(U_{\alpha}, \varphi_{\alpha} = (x_{\alpha}^{1}, \dots, x_{\alpha}^{n}))$ is a chart around p for which we write

$$v = \sum_{i=1}^{n} v_{\alpha}^{i} \frac{\partial}{\partial x_{\alpha}^{i}} \Big|_{p}$$
 and $w = \sum_{i=1}^{n} w_{\alpha}^{j} \frac{\partial}{\partial x_{\alpha}^{j}} \Big|_{p}$.

To make this definition valid, we have to verify that the expression does not depend on the choice of chart around p. For this end, assume that we are given a second chart $(U_{\beta}, \varphi_{\beta} = (x_{\beta}^{1}, \dots, x_{\beta}^{n}))$ around p. Then $U_{\alpha} \cap U_{\beta}$ is an *open* set around p (hence we are able to take derivatives), and we may assume without loss of generality (and to simplify the writing) that $\varphi_{\alpha}(p) = \varphi_{\beta}(p) = \mathbf{0} = (0, \dots, 0) \in \mathbb{R}^{n}$. The relation between the coordinate vector fields along $U_{\alpha} \cap U_{\beta}$, evaluated at the correct points, is just

$$\frac{\partial}{\partial x_{\beta}^{j}} = \sum_{\ell=1}^{n} \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}} \frac{\partial}{\partial x_{\alpha}^{\ell}}, \qquad j = 1, 2, \dots, n.$$

Seeing this as an equality between differential operators, it follows that

$$\frac{\partial f}{\partial x_{\beta}^{j}} = \sum_{\ell=1}^{n} \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}} \frac{\partial f}{\partial x_{\alpha}^{\ell}}, \qquad j = 1, 2, \dots, n.$$

Applying $\partial/\partial x^i_\beta$ on both sides and applying the product rule, we get

$$\frac{\partial^2 f}{\partial x_{\beta}^i \partial x_{\beta}^j} = \sum_{\ell=1}^n \frac{\partial^2 x_{\alpha}^{\ell}}{\partial x_{\beta}^i \partial x_{\beta}^j} \frac{\partial f}{\partial x_{\alpha}^{\ell}} + \sum_{k,\ell=1}^n \frac{\partial x_{\alpha}^k}{\partial x_{\beta}^i} \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^j} \frac{\partial^2 f}{\partial x_{\alpha}^k \partial x_{\alpha}^{\ell}}.$$

Evaluating the above at the point p kills the first sum in the right hand side, in view of the condition $\mathrm{d}f_p = 0$ (which implies that $(\partial f/\partial x_\alpha^\ell)(p) = 0$ for $\ell = 1, 2, \ldots, n$), resulting in

$$\frac{\partial^2 f}{\partial x^i_{\beta} \partial x^j_{\beta}}(p) = \sum_{k,\ell=1}^n \frac{\partial x^k_{\alpha}}{\partial x^i_{\beta}}(\mathbf{0}) \frac{\partial x^\ell_{\alpha}}{\partial x^j_{\beta}}(\mathbf{0}) \frac{\partial^2 f}{\partial x^k_{\alpha} \partial x^\ell_{\alpha}}(p).$$

Now, to compute the Hessian of f according to the chart $(U_{\beta}, \varphi_{\beta})$, we need to know the components of the tangent vectors v and w with respect to this new coordinate basis. Using self-evident notation, we have that

$$v_{\beta}^{i} = \sum_{r=1}^{n} \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0}) v_{\alpha}^{r}$$
 and $w_{\beta}^{j} = \sum_{s=1}^{n} \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{s}}(\mathbf{0}) w_{\alpha}^{s}$, $i, j = 1, 2, \dots, n$.

Putting everything together, we finally compute:

$$\begin{split} \sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{\beta}^{i} \partial x_{\beta}^{j}}(p) v_{\beta}^{i} w_{\beta}^{j} &= \sum_{i,j,k,\ell,r,s=1}^{n} \frac{\partial x_{\alpha}^{k}}{\partial x_{\beta}^{i}}(\mathbf{0}) \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{i}}(\mathbf{0}) \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{s}}(\mathbf{0}) v_{\alpha}^{r} \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{s}}(\mathbf{0}) w_{\alpha}^{s} \\ &= \sum_{k,\ell,r,s=1}^{n} \left(\sum_{i=1}^{n} \frac{\partial x_{\alpha}^{k}}{\partial x_{\beta}^{i}}(\mathbf{0}) \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0}) \right) \left(\sum_{j=1}^{n} \frac{\partial x_{\alpha}^{\ell}}{\partial x_{\beta}^{j}}(\mathbf{0}) \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{s}}(\mathbf{0}) \right) \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) v_{\alpha}^{r} w_{\alpha}^{s} \\ &= \sum_{k,\ell,r,s=1}^{n} \delta_{r}^{k} \delta_{s}^{\ell} \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) v_{\alpha}^{r} w_{\alpha}^{s} \\ &= \sum_{k,\ell=1}^{n} \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) v_{\alpha}^{k} w_{\alpha}^{\ell}, \end{split}$$

as wanted. This means that the Hessian is indeed well-defined if p is a critical point of the function f. Perhaps a more elegant approach for checking this last part, avoiding picking the tangent vectors v and w (but which obviously boils down to the same computation), is to write the transformation law for the differentials at the point p instead:

$$\left. \mathrm{d} x_{\beta}^{i} \right|_{p} = \sum_{r=1}^{n} \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0}) \left. \mathrm{d} x_{\alpha}^{r} \right|_{p} \qquad i = 1, 2, \dots, n,$$

setting up

$$\sum_{i,j=1}^{n} \frac{\partial^{2} f}{\partial x_{\beta}^{i} \partial x_{\beta}^{j}}(\mathbf{0}) dx_{\beta}^{i}|_{p} \otimes dx_{\beta}^{j}|_{p} = \sum_{i,j,k,l=1}^{n} \frac{\partial x_{\alpha}^{k}}{\partial x_{\beta}^{i}}(\mathbf{0}) \frac{\partial^{2} f}{\partial x_{\alpha}^{k} \partial x_{\alpha}^{\ell}}(p) \left(\sum_{r=1}^{n} \frac{\partial x_{\beta}^{i}}{\partial x_{\alpha}^{r}}(\mathbf{0}) dx_{\alpha}^{r}|_{p}\right) \otimes \left(\sum_{s=1}^{n} \frac{\partial x_{\beta}^{j}}{\partial x_{\alpha}^{s}}(\mathbf{0}) dx_{\alpha}^{s}|_{p}\right)$$

and recognizing δ_r^k and δ_s^ℓ to again obtain the same conclusion.

Generalizations:

Everything here uses in a crucial way the fact that $df_p = 0$. So this raises the natural question: is it possible to define such a Hessian for arbitrary points of the manifold M?

Without additional structure, the answer is *no*. If you do, however, have some extra structure to work with, here's what happens: let ∇ be a (Koszul) connection in the tangent bundle TM, and define the *covariant Hessian* of f with respect to ∇ at p as the map $\text{Hess}^{\nabla}(f)_p \colon T_pM \times T_pM \to \mathbb{R}$ given by

$$\operatorname{Hess}^{\nabla}(f)_p(v,w) = v(\widetilde{\boldsymbol{w}}(f)) - \mathrm{d}f_p(\nabla_v \widetilde{\boldsymbol{w}}),$$

where \widetilde{w} is some extension of w to a neighborhood of p (i.e., a vector field defined in a neighborhood of p such that $\widetilde{w}_p = w$). By the Leibniz rule for ∇ and its local character, we see that the right hand side above is actually independent of the choice of extension for w, and defines a bilinear form on T_pM . Note that if p happens to be a critical point of f, we recover $\text{Hess}^{\nabla}(f)_p = \mathrm{d}^2 f_p$.

This actually induces a $\mathscr{C}^{\infty}(M)$ -bilinear map $\operatorname{Hess}^{\nabla}(f) \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathscr{C}^{\infty}(M)$, which is given in local coordinates $(U, (x^1, \dots, x^n))$ by

$$\begin{aligned} \operatorname{Hess}^{\nabla}(f)(\partial_{i},\partial_{j}) &= \partial_{i}\partial_{j}f - \operatorname{d}f(\nabla_{\partial_{i}}\partial_{j}) \\ &= \partial_{i}\partial_{j}f - \operatorname{d}f\left(\sum_{k=1}^{n}\Gamma_{ij}^{k}\partial_{k}\right) \\ &= \partial_{i}\partial_{j}f - \sum_{k=1}^{n}\Gamma_{ij}^{k}\partial_{k}f, \end{aligned}$$

where the n^3 functions Γ_{ij}^k are the connection components of ∇ . Writing it in its full glory, we have

$$\operatorname{Hess}^{\nabla}(f) = \sum_{i,j=1}^{n} \left(\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} - \sum_{k=1}^{n} \Gamma_{ij}^{k} \frac{\partial f}{\partial x^{k}} \right) dx^{i} \otimes dx^{j}.$$

One might also recognize the object $\operatorname{Hess}^{\nabla}(f)$ as the covariant differential $\nabla(\operatorname{d} f)$ of the (0,1)-tensor $\operatorname{d} f$, which is then a (0,2)-tensor. But despite all these ways of looking at the Hessian, we cannot expect it to necessarily have good properties, since the connection ∇ was so arbitrary. In fact, recall that the *torsion* of the connection ∇ is the (0,2)-tensor field $\tau^{\nabla} \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ given by

$$\tau^{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y],$$

where [X,Y] is the Lie bracket of X and Y. The presence of [X,Y] has the purpose of making the torsion τ^{∇} $\mathscr{C}^{\infty}(M)$ -bilinear. We'll conclude the discussion with the following characterization of this torsion:

Proposition. $\tau^{\nabla} = 0$ if and only if $\operatorname{Hess}^{\nabla}(f)$ is a symmetric tensor, for every $f \in \mathscr{C}^{\infty}(M)$.

Proof: Given vector fields $X, Y \in \mathfrak{X}(M)$, we compute directly that

$$\begin{aligned} \operatorname{Hess}^{\nabla}(f)(Y,X) &= Y(X(f)) - \operatorname{d}f(\nabla_{Y}X) = X(Y(f)) - [X,Y](f) - \operatorname{d}f(\nabla_{Y}X) \\ &= X(Y(f)) - \operatorname{d}f(\nabla_{Y}X + [X,Y]) = X(Y(f)) - \operatorname{d}f(\nabla_{X}Y - \tau^{\nabla}(X,Y)) \\ &= \operatorname{Hess}^{\nabla}(f)(X,Y) + \tau^{\nabla}(X,Y)(f). \end{aligned}$$

The conclusion follows.