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Ivo Terek*

Let V be a finite-dimensional real vector space. Denote by

Tr
s(V) = {T : (V∗)r ×Vs → R | T is multilinear}

the space of type (r, s)-tensors on V. Recall that Tr
s(V) ∼= V⊗r ⊗ (V∗)⊗s, and note that

T0
1(V) ∼= V∗, T1

0(V) ∼= V∗, and T1
1(V) ∼= Lin(V), where Lin(V) denotes the space of

all linear endomorphisms of V. The latter isomorphism is characterized by regarding
a pure tensor as an endomorphism acting by (x⊗ f )(y) = f (y)x. We will focus on a
special type of tensors here:

Definition 1. A curvaturelike tensor on V is a tensor R ∈ T0
4(V) satisfying the symme-

tries

(i) R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z);

(ii) R(x, y, z, ·) + R(y, z, x, ·) + R(z, x, y, ·) = 0,

for all x, y, z ∈ V. We will denote the space of curvaturelike tensors on V by R(V).

Remark. In other words, (i) says that R is skew on the first pair of arguments, and also
skew in the second pair of arguments, while (ii) is a “first Bianchi identity” (familiar
from Riemannian geometry). Together, (i) and (ii) imply the pair-symmetry:

(iii) R(x, y, z, w) = R(z, w, x, y)

To justify this, just compute:

2R(x, y, z, w)
(i)
= R(x, y, z, w) + R(y, x, w, z)
(ii)
= −R(y, z, x, w)− R(z, x, y, w)− R(x, w, y, z)− R(w, y, x, z)
(i)
= −R(z, y, w, x)− R(x, z, w, y)− R(w, x, z, y)− R(y, w, z, x)
(ii)
= R(w, z, y, x) + R(z, w, x, y)
(i)
= 2R(z, w, x, y).

Also, Milnor’s octahedron gives a geometric interpretation for this argument. An im-
proved version using a tetrahedron instead may be consulted in [1].

*terekcouto.1@osu.edu
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Let’s get out of the way a very useful way to check when two curvaturelike tensors
are equal:

Proposition 2. Let R1, R2 ∈ R(V) be such that R1(x, y, y, x) = R2(x, y, y, x), for all ele-
ments x, y ∈ V. Then R1 = R2.

Proof: Assume without loss of generality that R2 = 0 and denote R1 just by R. The
proof goes simply by polarizating twice, as follows: R(x + w, y, y, x + w) = 0 becomes

R(x, y, y, w) + R(w, y, y, x) = 0,

but also R(w, y, y, x)
(i)
= R(y, w, x, y)

(iii)
= R(x, y, y, w), and so R(x, y, y, w) = 0. Now,

R(x, y + z, y + z, w) = 0 becomes

R(x, y, z, w) + R(x, z, y, w) = 0,

meaning that R is skew in the middle pair. However, we have that

R(x, z, y, w)
(i)
= −R(z, x, y, w)

(ii)
= R(x, y, z, w) + R(y, z, x, w)

(∗)
= R(x, y, z, w)− R(y, x, z, w)

(i)
= 2R(x, y, z, w),

where in (∗) we use the just discovered skew-symmetry of the middle pair. Thus
3R(x, y, z, w) = 0, and so R = 0.

If V is also equipped with a pseudo-Euclidean scalar product1 g, we may identify
V ∼= V∗, by x 7→ x[ = g(x, ·), and so we can regard a tensor product x ⊗ y either as
an endomorphism via (x ⊗ y)(z) = g(y, z)x, or instead as a (0, 2)-tensor acting via
(x ⊗ y)(z, w) = g(y, z)g(x, w). Skew-symmetrizing such expression allows us to see
the wedge product x ∧ y either as a skew-adjoint endomorphism (with respect to g)
via (x ∧ y)(z) = g(y, z)x− g(x, z)y, or a skew-symmetric bilinear form

(x ∧ y)(z, w) = g(y, z)g(x, w)− g(x, z)g(y, w).

We now change our point of view, focusing on g instead of the vectors, and write the
above as (g©∧ g)(x, y, z, w)

.
= g(y, z)g(x, w)− g(x, z)g(y, w). This is our first example

of a curvaturelike tensor: g©∧ g ∈ R(V). Symmetry (i) is immediate, while the Bianchi
identity follows by a direct calculation, with the six terms canceling in pairs. We will
call g©∧ g the fundamental curvature of (V, g). To milk more examples out of this idea,
we regard g 7→ g©∧ g as a quadratic form in the variable g, and polarize. Recall that if
Q is a quadratic form, we can recover the associated bilinear form B by

B(x, y) =
Q(x + y)−Q(x)−Q(y)

2
.

Then Q(x) = B(x, x). So, let T, S ∈ T0
2(V). Compute(

(T + S)©∧ (T + S)
)
(x, y, z, w)− (T©∧ T)(x, y, z, w)− (S©∧ S)(x, y, z, w) =

= (T + S)(y, z)(T + S)(x, w)− (T + S)(x, z)(T + S)(y, w)

− T(y, z)T(x, w) + T(x, z)T(y, w)− S(y, z)S(x, w) + S(x, z)S(y, w)

= T(y, z)S(x, w) + S(y, z)T(x, w)− T(x, z)S(y, w)− S(x, z)T(y, w).

This motivates the:
1Which we’ll assume, throughout the text, that is never negative-definite.
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Definition 3. Let T, S ∈ T0
2(V). The Kulkarni-Nomizu product of T and S is the tensor

T©∧ S defined by

2(T©∧ S)(x, y, z, w) = T(y, z)S(x, w)− T(x, z)S(y, w) + S(y, z)T(x, w)− S(x, z)T(y, w).

So we have a symmetric map©∧ : T0
2(V)×T0

2(V)→ T0
4(V).

Remark.

• Note that the factor 2 in the left side above appeared naturally, as a mere conse-
quence of the polarization process.

• If (ei) is a basis for V, then we have the coordinate expression

2(T©∧ S)ijk` = TjkSi` − TikSj` + SjkTi` − SikTj`.

It is also easy to see that the product T©∧ S not only always satisfies symmetry (i)
from Definition 1, but also satisfies symmetry (iii). So, to say that T©∧ S is a curvature-
like tensor, it remains to check symmetry (ii), the Bianchi identity. However, it is not
guaranteed to hold. Brute force says that (twice) the left side of the Bianchi identity
for (T©∧ S)(x, y, z, w) actually equals the sum of six terms

(T(y, z)− T(z, y))S(x, w) + (T(z, x)− T(x, z))S(y, w)

+ (T(x, y)− T(y, x))S(z, w) + (three more terms, but switching T ↔ S).

This definitely vanishes if both T and S are symmetric tensors. Thus we have proved
the:

Proposition 4. Let T, S ∈ T0
2(V). If both T and S are symmetric, then T©∧ S ∈ R(V) is

curvaturelike.

Remark.

• We’ll let S(V) denote the space of all type (0, 2) symmetric tensors.

• Focusing on such symmetries allows us to give another interpretation of the
Kulkarni-Nomizu product. If R ∈ R(V), symmetry (i) says that R defines a
map R′ : V∧2 × V∧2 → R, characterized by its action on pairs of 2-blades as
R′(x ∧ y, z ∧ w)

.
= R(x, y, z, w). Now, symmetry (iii) induces yet another linear

map R′′ : V∧2�V∧2 → R (here � denotes symmetric product), characterized by
R′′((x ∧ y)� (z ∧ w)) = R(x, y, z, w). On the other hand, if V is equipped with
a pseudo-Euclidean scalar product g, we have an induced scalar product in V∧2

(also denotes by g), acting on 2-blades by

g(x ∧ y, z ∧ y) = det
(

g(x, z) g(x, w)
g(y, z) g(y, w)

)
= g(x, z)g(y, w)− g(x, w)g(y, z).

This induced scalar product is precisely −(g©∧ g)′′. So in some sense, ©∧ is the
identity (up to a sign depending on the conventions adopted).
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Now that we have this small factory of examples, given by the operation©∧ , let’s
move on and establish a few algebraic features of curvaturelike tensors.

Proposition 5. If dim V = n, then dimR(V) = n2(n2 − 1)/12.

Proof: As mentioned in the previous remark, we can see any curvaturelike tensor
R ∈ R(V) as a symmetric bilinear map V∧2 � V∧2 → R or, equivalently, as a self-
adjoint endomorphism of V∧2. Moreover, R(V) is precisely the space of such endo-
morphisms which lie in the kernel of the “Bianchi” map, which is a surjection onto
V∧4, as it is a multiple of the skew-symmetrization operation. Thus

dim(V∧2 �V∧2) = dimR(V) + dim(V∧4).

Since dim(V∧2) = n(n− 1)/2, we have that

dimR(V) =
1
2

n(n− 1)
2

(
n(n− 1)

2
+ 1

)
−

(
n
4

)
=

n2(n2 − 1)
12

.

In particular, when dim V = 2, we have that dimR(V) = 1. In this case, if V is
equipped with a pseudo-Euclidean scalar product g, it follows that R(V) = R(g©∧ g),
which is to say, any R ∈ R(V) is of the form R = Kg©∧ g, for some constant K ∈ R (to
be thought as the “g-Gaussian curvature” of R). In particular, taking an orthonormal
basis (e1, e2) of V with e1 spacelike, we evaluate both sides on the 4-uple (e1, e2, e2, e1)
to conclude that K = εR(e1, e2, e2, e1), where ε = g(e2, e2) is 1 if g is Euclidean, and −1
if g is Lorentzian.

When dim V > 2, our goal is to decompose the space of curvaturelike tensors as
something of the form R(V) = R(g©∧ g) ⊕ (some extra factors). To describe said
extra factors, we’ll recall briefly the notion of contraction, and focus on the particular
contraction known as the Ricci contraction.

If T ∈ Tr
s(V) and 1 ≤ a ≤ r, 1 ≤ b ≤ s, we define tr a

b(T) ∈ Tr−1
s−1(V) in terms of

components relative to a basis by

(tr a
b(T))

i1...ir−1
j1...js−1

= Ti1...ia−1kia ...ir−1
j1...jb−1kjb ...js−1

,

where k appear in the a-th upper slot and the b-th lower slot, and this does not depend
on the choice of basis, due to the coordinate transformation law for tensors. When V
has a pseudo-Euclidean inner product (which we’ll assume is always the case, from
here onwards) and r or s is at least 2, we also define metric traces tra,b(T) ∈ Tr

s−2(V)

and tra,b(T) ∈ Tr−2
s (V) by raising or lowering the an index, and applying tr a

b. That is,
we put

tr a,b(T)( f 1, . . . , f r, x1, . . . , xs−2)
.
= tr 1,2

(
T( f 1, . . . , f r, x1, . . . , •, . . . , •, . . . , xs−2)

)
,

and

tr a,b(T)( f 1, . . . , f r−2, x1, . . . , xs)
.
= tr 1,2(T( f 1, . . . , •, . . . , •, . . . , f r−2, x1, . . . , xs)

)
,
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where the •s are in the correct slots, and those are given in terms of a basis by

(tr a,b(T))
i1 ...ir

j1 ...js−2
= gk`Ti1 ...ir

j1 ...k...`...js−2
and (tr a,b(T))i1...ir−2

j1 ...js = gk`T
i1...k...`...ir

j1...js ,

where (gij)
n
i,j=1 are the components of g relative to the chosen basis, and (gij)n

i,j=1 is the
inverse matrix. For a further discussion and several examples, see [3].

Example 6. Some intuition for that operation is given by the following situation: given
α ∈ T0

2(V), the non-degeneracy of g ensures the existence of A ∈ Lin(V) such that
α(x, y) = g(Ax, y), for all x, y ∈ V. If (ei) denotes the chosen basis, making x = ej and
y = ek yields αjk = g(Aej, ek) = g(Ai

jei, ek) = Ai
jgik, and so Ai

j = gikαjk. Meaning that
tr 1,2(α) = tr (A).

So, let’s look at all possible contractions of a curvaturelike tensor R ∈ R(V). Since
R is skew in the first pair and skew in the last pair, tr 1,2(R) = tr 3,4(R) = 0. Also,
applying symmetry (i) from Definition 1 twice says that tr 2,4(R) = tr 1,3(R). Also, we
have that tr 2,3(R) = −tr 1,3(R) = tr 1,4(R). That is to say, up to sign, tr 1,4(R) is the
only non-trivial contraction of R.

Definition 7. Let R ∈ R(V). The Ricci contraction of R is Ric(R) ∈ T0
2(V) given by

Ric(R) .
= tr 1,4(R). The scalar contraction of R is the number s(R) = tr 1,2(Ric(R)).

Remark.

• Note that since R(z, x, y, w) = R(x, z, w, y) = R(w, y, x, z), the symmetry of g
allows us to trace in the pair (z, w) to get Ric(R)(x, y) = Ric(R)(y, x), meaning
that Ric(R) ∈ S(V). In terms of coordinates, Rij = g`mR`ijm and s = gijRij.

• When V has a pseudo-Euclidean scalar product, every R ∈ R(V) defines a map
V3 → V (which we’ll also denote by R) such that R(x, y, z, w) = g(R(x, y)z, w),
for all x, y, z, w ∈ V. Writing R(x, y)z instead of R(x, y, z) is customary in Geom-
etry, as one usually sees R(x, y) : V → V as an endomorphism of V. Note that
tr R(x, y) = 0 for all x, y ∈ V, in view of the symmetries or the original R. With
this terminology, one may also write Ric(R)(y, z) = tr(x 7→ R(x, y)z).

Example 8. Consider the fundamental curvature g©∧ g, given in terms of a basis by
the expression (g©∧ g)ijk` = gjkgi` − gikgj`. So we compute the Ricci contraction as

Ric(g©∧ g)jk = gi`gjkgi` − gi`gikgj` = ngjk − δ`k gj` = (n− 1)gjk,

which means that Ric(g©∧ g)(x, y) = (n− 1)g(x, y). Procceeding, we get

s(g©∧ g) = gij(n− 1)gij = n(n− 1).

We can do a similar computation for a general product:

Proposition 9. Let T, S ∈ S(V), and consider T©∧ S ∈ R(V). Then:

2Ric(T©∧ S)(x, y) = tr1,2(S)T(x, y)− tr1,4(T ⊗ S)(y, x) + tr1,2(T)S(x, y)− tr1,4(S⊗ T)(y, x).
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Proof: Directly compute

2 Ric(T©∧ S)jk = gi`TjkSi` − gi`TikSj` + gi`SjkTi` − gi`SikTj`

= (gi`Si`)Tjk − gi`(T ⊗ S)ikj` + (gi`Ti`)Sjk − gi`(S⊗ T)ikj`

= tr1,2(S)Tjk − tr1,4(T ⊗ S)kj + tr1,2(T)Sjk − tr1,4(S⊗ T)kj.

As an important particular case, we get the:

Corollary 10. Let T ∈ S(V). Then 2Ric(T©∧ g) = (n− 2)T + tr1,2(T)g. It also follows
that s(T©∧ g) = (n− 1)tr1,2(T).

Proof: It is instructive to repeat the previous proof:

2 Ric(T©∧ g)jk = gi`Tjkgi` − gi`Tikgj` + gi`gjkTi` − gi`gikTj`

= nTjk − δi
jTik + tr1,2(T)gjk − δ`kTj`

= (n− 2)Tjk + tr1,2(T)gjk.

For the last statement, we compute

2s(T©∧ g) = (n− 2)tr1,2(T) + tr1,2(T)n = (2n− 2)tr1,2(T)

and simplify.

Remark. In the same way that the space R(g©∧ g) appeared before, let’s also set the
notation g©∧ S(V)

.
= {g©∧ T ∈ R(V) | T ∈ S(V)}, and

g©∧ S(V)0
.
= {g©∧ T ∈ R(V) | T ∈ S(V) has tr 1,2(T) = 0}.

Corollary 11. If n ≥ 3, the maps g©∧ _ : S(V) → g©∧ S(V) and Ric : g©∧ S(V) → S(V)
are isomorphisms.

Proof: We check that the composition S(V) → S(V) is an isomorphism. For that, it
suffices to show that it is injective. So, assume that T ∈ S(V) is a tensor such that
Ric(g©∧ T) = 0. Then (n− 2)T + tr1,2(T)g = 0. Trace that to get (2n− 2)tr1,2(T) = 0.
So tr1,2(T) = 0, hence (n− 2)T = 0 and thus T = 0, as wanted. So both g©∧ _ and Ric
are injective. But g©∧ _ is surjective by definition, hence an isomorphism. Since g©∧ _
and the full composition are isomorphisms, Ric is an isomorphism as well.

To move on, recall that given any endomorphism A ∈ Lin(V), the traceless part of
A is A0 ∈ Lin(V) given by A0 = A − (tr(A)/n) IdV . Keeping the same notation of
Example 6, we may convert this to a relation between bilinear maps by the relation
α0 = α− (tr1,2(α)/n)g. So tr(A0) = 0 and tr1,2(α0) = 0. This idea will give us simpler
objects related to a given curvaturelike tensor R ∈ R(V). For example, we have the:

Definition 12. Let R ∈ R(V). The Einstein tensor of R is G(R) ∈ S(V) defined by

G(R) = Ric(R)− s(R)
n

g.
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Example 13. For the fundamental curvature of (V, g), we have

G(g©∧ g) = Ric(g©∧ g)− s(g©∧ g)
n

g = (n− 1)g− n(n− 1)
n

g = 0.

In the same way we could form the traceless part of Ric(R), we’d like to form the
Ricci-traceless part of R. So, to motivate the next definition, we’ll look for a tensor of
the particular form

W(R) = Ric(R)− λ(g©∧ h(R))

with Ric(W(R)) = 0, for some h(R) ∈ S(V) and λ ∈ R. It will also be convenient
to look for h(R) of the form h(R) = Ric(R) − µg, for some µ ∈ R. So our goal is
to find λ and µ making all of this work. Tracing the expression for W(R), we get
0 = Ric(W(R)) = Ric(R)− λRic(g©∧ h(R)), and so

Ric(R) = λRic(g©∧ h(R)) =
λ

2
((n− 2)h(R) + tr1,2(h(R))g)

=
λ

2
((n− 2)(Ric(R)− µg) + (s(R)− nµ)g)

=
λ

2
((n− 2)Ric(R) + (s(R)− 2(n− 1)µ)g).

This way, we see that µ = s(R)/(2n− 2) and λ = 2/(n− 2) fit the bill.

Definition 14. Let R ∈ R(V).

(i) The Schouten tensor of R is h(R) ∈ S(V) given by

h(R) = Ric(R)− s(R)
2(n− 1)

g.

(ii) The Weyl tensor of R is W(R) ∈ R(V) given (when n > 2) by

W(R) = R− 2
n− 2

(g©∧ h(R)).

We’ll also put W(V) = {W ∈ R(V) | Ric(W) = 0}.

Remark.

• So, from here on, when R is understood, we will denote the associated tensors
to R just by Ric, s, h and W. Some places denote the Weyl tensor by the letter C
instead of W, as it actually controls conformal flatness.

• As expected, when n ≥ 3, we have that W = R if and only if Ric = 0. To wit,
if Ric = 0, then s = 0, so that h = 0 and thus W = R. Conversely, if W = R,
then g©∧ h = 0, and Corollary 11 gives h = 0, so that tr1,2(h) = 0 readily implies
s = 0, and we return to the definition of h to get that Ric = 0.

• When n = 3, we always have W = 0. The reason is that in this particular case,
Ric(R) completely determines R.
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Example 15. Take K ∈ R and consider R = Kg©∧ g. We have seen in Example 8 that
Ric = (n− 1)Kg, and so s = n(n− 1)K. This way we get

h = (n− 1)Kg− n(n− 1)K
2(n− 1)

g =
n− 2

2
Kg,

and then

W = Kg©∧ g− 2
n− 2

g©∧
(

n− 2
2

Kg
)
= Kg©∧ g− Kg©∧ g = 0.

Example 16. Let T ∈ S(V), and consider R = g©∧ T. We have seen in Corollary 10
that Ric = (1/2)((n− 2)T + tr1,2(T)g) and s = (n− 1)tr1,2(T). With this, we compute

h =
1
2
((n− 2)T + tr1,2(T)g)− (n− 1)tr1,2(T)

2(n− 1)
g =

n− 2
2

T,

so that

W = g©∧ T − 2
n− 2

g©∧
(

n− 2
2

T
)
= g©∧ T − g©∧ T = 0.

We also have that

G =

(
n− 2

2

)(
T − g

n

)
.

The two previous examples illustrate particular cases of the:

Theorem 17. We have the decompositions:

(i) R(V) = R(g©∧ g)⊕ (g©∧ S(V)0)⊕ W(V).

(ii) g©∧ S(V) = R(g©∧ g)⊕ (g©∧ S(V)0).

Furthermore, the explicit decomposition of an element R ∈ R(V) is

R =
s

n(n− 1)
g©∧ g +

2
n− 2

g©∧ G + W.

Proof: Let’s first establish the expression for R (and hence the sums – not yet direct
– in items (i) and (ii)). Of course one can just start from the right-hand side and sim-
plify everything until only R is obtained, but it is more enlightening to see how such
expression is discovered:

R =
2

n− 2
g©∧ h + W

=
2

n− 2
g©∧

(
Ric− s

2(n− 1)
g
)
+ W

=
2

n− 2
g©∧

(
G +

s
n

g− s
2(n− 1)

g
)
+ W

=
2

n− 2
g©∧

(
G +

(n− 2)s
2n(n− 1)

g
)
+ W

=
s

n(n− 1)
g©∧ g +

2
n− 2

g©∧ G + W.

The sums are direct by Corollary 11 (which gives R(g©∧ g) ∩ (g©∧ S(V)0) = {0} and
(g©∧ S(V)) ∩ W(V) = {0}).
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So, from the above decomposition, we see that W may be regarded as the “remain-
der of the©∧ -division” of R by g. This gives us a last corollary:

Corollary 18. Two curvaturelike tensors R1, R2 ∈ R(V) have the same Weyl-component if
and only if the difference R1 − R2 is©∧ -divisible by g.
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