Brief notes on covariant exterior derivatives Ivo Terek

Formulas with the covariant exterior derivative

Ivo Terek”

Fix throughout the text a smooth vector bundle E — M over a smooth manifold.
Here we will discuss some basics about exterior covariant derivatives for vector bundle-
valued forms and register some general formulas. Hopefully this will build some
intuition for the object, and justify why people don’t bother computing higher order
covariant exterior derivatives ad infinitum — we will see that it is unnecessary, as every-
thing ends up in terms of the usual curvature tensor.

Let V: X(M) x T'(E) — T'(E) be a Koszul connection on E. An E-valued differ-

ential k-form is a section of the exterior bundle (/\k(T*M)) ® E. We will denote the
space of E-valued differential k-forms by QF(M;E). In particular, if E = M x R is
the trivial line bundle, the (M x R)-valued differential k-forms are identified with the
usual differential k-forms from calculus courses, and we set QOF(M) = QF(M; M x R).
The exterior derivative operator d: (M) — QFF1(M), given in a coordinate-free
way by the formula
k . —~
dw(Xo, ..., Xk) = Y (-1)'Xi(w(Xo, ..., Xi, ..., X))
i=0
+ Y (DMo(X, X, X X, X0,

0<i<j<k

can be extended to the covariant exterior derivative dV : (OF(M; E) — QF1(M; E) with
the aid of V, and we define
(dYw)(Xo, ..., Xx) =) (-1)'Vx,(w(Xo, ..., Xi, ..., Xx))
i=0
+ Y (-DYo(X, X, X X, X
0<i<j<k

Choosing a torsion-free connection in TM to form covariant derivatives of w, we may
rewrite the above as

k

(dVw)(Xo, ..., Xx) = Y. (-1 (Vx,w)(Xo, ..., X, .., Xz)
i=0

We have that d2 = 0, since the standard connection in M x R is flat, but this is no
longer the case for arbitrary connections in vector bundles, and the curvature tensor

RY of V, defined by
RV(X,Y)p = VxVyy — VyVxy — Vix v ¥,
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plays an important role. Let’s illustrate that with the:
Proposition. Given ¢ € T(E) = Q°(M; E), we have:
(i) (dV¢>(X) = Vx¢.

(ii) ((dV)?9)(X,Y) =RV(X,Y)y.
(iii) ((dV ) (X,Y,Z) = RY(X,Y)Vzp +RV(Y,Z)Vxp + RV (Z,X)Vyip.
(iv) ((dV)*)(X,Y,Z,W) =RY(X,Y)RV(Z, W) +RY(Z,X)RY (Y, W)y

+RY(X,W)RV(Y,Z)p + RV (Y, Z)RV (X, W)
+RY(W,Y)RY(X,Z)yp + RV (Z, W)RY (X, Y)y.
Proof:

(i) Obvious.
(i) We have that

((d¥)) (X, Y) = (dVdVp) (X, V)
= Vx((dVy)(Y)) = Vy((dV ) (X)) — (dV9)([X, Y])
= VxVyyp - VyVxyp — V[X,Y]¢
= RV(X,Y)y.

(iii) This time, we have:

((@Y)’9)(X,Y,Z) = (7 ((dV)*y))(X,Y, Z)

= Vx ((dV)*y)(¥,2) — Vy((dV)*9) (X, Z) + Vz((dV)*p) (X, Y)
— ((@V)29) (1X, Y], 2) + ((d¥)29) (1X, 2], Y) - ((d¥)%¢) ([Y, 2], X)

= VxRY(Y,Z)p — VyRY (X, Z)p + VzRY (X, Y)
~ R([X, Y], Z)¢ + R(IX, Z], )y — RV(]Y, Z], X)y

= VvaVZIP — VXv2VylP — VXV[Y,Z]IP — VvaVZ1P + VszVXlP
+ VyV[X,Z]IIJ +VzVxVyp = VzVyVxip — VZV[X,Y]IIJ - V[X,Y}VZ¢
+VzVixy¥+ Vixyz¥ + VixzVyy = VyVix 219 — Viix zj v|§
—Viy,z)Vx¥+ VxViy z1¥ + Vi z x¢

= RY(X,Y)Vzyp +RY(Y,Z)Vxp+ RV (Z,X)Vyi,

since the V.V | terms cancel in pairs and the three V| ; j terms add to zero in
view of the Jacobi identity for the Lie bracket.

(iv) One can explore symmetries to deal efficiently with what would be a total of 90
terms, but you can check the black box in the end of the text for the gory details.

]
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Remark.

e One can make reasonable guesses for what happens to (dV)*y with k > 5. Tt is
probably possible to write a neat summation in terms of certain elements of the
symmetric group Si. I will not pursue this further, given that everything will be
expressed in terms of RV.

o If we take coordinates (x) for M and local trivializing sections (e,) for E, we see
that in the same way that df = (9;f) dx’ = f,; dx’, we have that

(dV9)(X) = Vxtp = X'Vop = X' e = ¢, dx' (X)es,
soif i = ¢, thendVy = (I dx’ ® e,. Also, item (ii) becomes
(d¥)% = Ry, 'y dv @ dxf @,

Compare the relation between the coordinate expressions for dV¢ and (dV )%y
with the coordinate Ricci identity R].kabtp”’ = ’vbb,-jk — tpb;k i obtained with the aid
of a torsion-free connection in TM. The coordinate-free version of this identity

is RV(X,Y)y = (Vx(V))Y — (Vy(V9))X, and the second order covariant
derivatives are defined by (V5. (V¢p))d = ¢, e

So we have seen how dV acts over Q°(M; E). What about Q' (M; E)?

Proposition. Let « € QY (M) and ¢ € T(E), and consider a @ p € QY (M; E). Then
dVaey)=da@yp—a AV,

where the wedge product is naturally extended as a map OF (M) x QY (M; E) — QF¢(M; E),
forany k, ¢ > 0.

Proof: Take X,Y € X(M) and compute
d¥(@®¢)(X,Y) = Vx(a(Y)$) - Vy(a(X)y) —a([X,Y])yp

= X(a(Y)yp +a(Y)Vxy - Y(a(X))p — a(X)Vyp — a([X, Y])y
= da(X, Y)Y — a(X)Vyyp +a(Y)Vxip,

as wanted. O
This is a particular instance of a more general phenomenon about “simple” forms:

Proposition. Let « € (M) and v € T(E), and consider « @ y € QX(M;E). Then
dV(a® ) € QFY(M; E) is given by the formula

dVa®p) =da®yp+ (—1)fa A V.
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Proof: Take Xy, ..., Xy € X(M) and compute

k
dV@@y)(Xo,..., Xp) = Y (-1)'Vx, (2@ ¢)(Xo,..., Xj ..., Xx)
i=0
+ Y ()Yaey) (X, X)X, X, Xp)

0<i<j<k

k
=Y (' Xi(a(Xo, ., Xy X))

+ Y (D)Ya(X, X X X, XY

0<i<j<k

= da(Xo,..., X + (=) a A V) (X, ..., X).

]

The curvature RV itself may be regarded as a End(E)-valued 2-form. That is, we
have RY € O*(M;End(E)). Since the connection V in E induces a connection in
End(E) via Leibniz rule, it makes sense to talk about dVRY € O3(M;End(E)). Beware
of the abuse of notation in this last dV, as it refers to the connection in End(E), also
denoted by V. We have the:

Proposition. dVRY = 0.
Proof: We start looking at the endomorphism level

(dVRY)(X,Y,Z) = VxRV (Y,Z) — VyRY(X,Z) + VZRV(X,Y)
—RY([X,Y],Z) + RV (]X,Z],Y) — RY([Y, Z], X).

Now let’s probe the above expression with a section ¢ € I'(E) and use the definition
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of the connection in End(E):

(AVRY)(X,Y,Z)p = VxRV (Y, Z)y — RY(Y,Z)Vxyp — VyRY (X, Z)y

+RY(X,Z)Vyp + VzRY (X, Y)p — RV(X,Y)Vzy
—RY([X,Y],Z)p + RY([X,Z],Y)p — RV([Y, Z], X)¢

— VxVy V2§ — VxV2Vyth — VxViy 2% — VyVzVxp
+ V2V Vx + Viy 7V — VyVxVzgp + Vy V2 Vxy
+VyVix 7219 + VxVzVyh = VzVxVyp — Vix 21\ Vy
+V2VxVy — V2VyVx§p — VzVixy$ — VxVyVzy
+Vy VYV + Vixy Vo — Vixy Vap + V2V ixy
+Vixy,z¥ + VixzVyy — VyVix,z1¥ — Vix,z, v ¥
—Viyz)Vx¢+VxVyz19 + Viy z,x)¥

=0,
since terms in the same color group cancel in pairs, and the V. | i terms add to zero
in view of the Jacobi identity for Lie brackets. O

Remark. In the above proof, note that we do not form VxRV at any moment — as this
would require a choice of connection in TM.

Alongside dVRY, we also could talk about VRY. But a priori this can have more
than one meaning. Let’s clarify this with the:

Proposition. Assume that we have a non-degenerate fiber metric (-,-) € T'(E* ® E*) which is
V-parallel, i.e., V(-,-) = 0. Fix any auxiliary connection in T M, to form covariant derivatives
of the curvature. Let’s adopt here different notations for different guises of the curvature of V:

R3: %(M) x (M) x T(E) — I'(E),
R%: (M) x X(M) xT(E) x T'(E) — €%(M)
R%?: x(M) x X(M) — End(E).

X
X

Then we have:
(i) (VxR™*)(Y,Z,¢,¢) = (VxR)(Y, Z,¢),¢).
(i) (VxR%2)(Y,Z)y = (VxR'A)(Y,Z,¢).

In particular, VRY3 = 0 if and only if VR = 0, if and only if VR®? = 0. So VR = 0 has
only one possible meaning.

Proof: Unwind the definitions. There is no tricky term gathering this time. O

Corollary (Second Bianchi Identity). In the same setting as the previous proposition, we
have the following (equivalent) versions of the second Bianchi identity:

(i) (VxR)(Y, Z) + (VyR) (Z,X) + (VzR)(X, Y) =0
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(i) (VxR)(Y,Z,9) + (VyR)(Z, X, ¢) + (VZzR)(X,Y,¢) = 0;
(iii) (VxR)(Y,Z,¥,¢) + (VyR)(Z, X, ¢, ¢) + (VzR)(X,Y, ¢, ¢) = 0;

Here’s another important application of the derivative dV. Any €% (M)-bilinear
map B: X(M) x I'(E) — 6%°(M) can be seen as an element of I'(T*M ® E*), and also
as a E*-valued 1-form, simply by X ~ B(X,-). Thus B € Q'(M; E*). Since E* also
inherits a connection from E, which we’ll also denote by V, it makes sense to talk
about dVB € O%(M; E*).

Proposition. Let B € T(T*M ® E*). If V also denotes a torsion-free connection in TM, then
the formula

(dVB)(X,Y)y = (VxB)(Y,¢) — (VyB)(X, )

holds for every X,Y € X(M) and ¢ € T(E). Here, the covariant derivatives of B are formed
using the van der Waerden-Bortolotti (direct sum) connection in TM @ E.

Remark. If dVB = 0, we say that B is a Codazzi tensor.
Proof: We start with

(dVB)(X,Y) = VxB(Y,") - VyB(X,") — B(X,Y],"),
and now we evaluate at ¥ to get

(dVB)(X,Y)yp = X(B(Y,9)) — B(Y, Vx9) — Y(B(X,9)) + B(X, Vyp) — B([X, Y], )
= X(B(Y,v)) — B(VxY,¥) — B(Y, Vxy) = Y(B(X,¢)) + B(X, Vy9) + B(VyX, ¢)
= (VxB)(Y,¢) — (VyB)(X,¥),

as wanted. O

Remark. With respect to local coordinates (x/) on M and local trivializing sections (¢,)
for E, with duals (e”), write B = Bj, d¥/ ® e”. Then we have that

dVB = (Brgj — Bjax) d¥/ @ dx* @ " = ) (Bygyj — Bjgp) ¥/ Adxf @ ¢,
j<k

where the sum over a is still understood and we only use the summation in the last
step to indicate that the sum there is no longer taken over all values of j and k. Another
way to express this is by (dV B) jka = Bia;j — Bjajk-

If we apply the above for a usual differential form, how will d and dV relate?

Corollary. If &« € Q?(M) is seen as an element of Q' (M; T*M) and V is a torsion-free
connection in TM, then

da(X,Y,Z) = (dVa)(X,Y)Z+ (Vza)(X,Y),

forall X,Y,Z € X(M).
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For E = TM, there is one particular TM-valued 1-form we can consider: the iden-
tity Id: TM — TM. The torsion of V is also expressed in terms of the operation dV,
as

V(X,Y) = (dVId)(X,Y) = VxY — VyX — [X, Y].

How far will this go?
Proposition.
(i) (dVTV)(X,Y,Z) = RV(X,Y)Z+RY(Y,Z)X +RY(Z,X)Y,
(i) ((dV)*TV)(X,Y,Z,W)=RY(X,Y)tV(Z, W) +RY(Z,X)tV (Y, W)
+RY(Y,Z)TV(X,W)+RY(W,X)TtV(Z,Y)
+RY(Z,W)TV(X,Y) +RY(W,Y)tV(X, Z).
Remark. This says that the content of the first Bianchi identity
RY(X,Y)Z+RY(Y,Z)X +RY(Z,X)Y =0
for torsion-free connections is just “the derivative of zero equals zero”.
Proof:
(i) We're going to brute force our way through:
(dVTV)(X,Y,Z) = VxtV(Y,Z) — VyTV(X,Z) + V2TV (X,Y)
- tV(X,Y],Z) +7V([X,2],Y) -tV (Y, Z], X)
=VxVyZ —-VxVzY — Vx[Y,Z] —VyVxZ +VyVzX
+ Vy[X, Z] +VzVxY -V, VyX — Vz[X, Y] — V[X,y}z
+Vz[ XY+ X Y], Z] + Vix 7)Y = Vy[X, Z] - [[X, Z], Y]
VX + Vx[Y,Z) + ([, Z),X]
=RY(X,Y)Z+RY(Y,Z)X+RY(Z,X)Y,

where the V| ; terms cancel in pairs, the Jacobi identity for Lie brackets takes
care of the three terms without V, and the remaining ones gather into curvatures
according to the colors above.

(ii) Black box #2.

Page 7



Brief notes on covariant exterior derivatives Ivo Terek

Black box #1:
Let’s compute (dV)*y for ¢ € T'(E).

(d)*) (XY, Z, W) =

= Vx((dV)*y)(Y,Z W) — ( ) (X,Z, W)
+VZ(( V) )(XY W) Vi ((dY)% )(XYZ)
= ((@)y) (X, +((d¥)y) (X, 2], Y, W)
= (@) (X, = ((dV)y) ([l W)
+ (@) ([, ) ((av)® )([ ]X,Y)

= VxRV (Y, Z)Vwy + VXRV(Z, W)Vyp + VxRY(W,Y)Vzp
~VyRY(X,Z)Vwy — VyRY(Z,W)Vxyp — VyRY (W, X)Vzyp
+VZRY (X, Y)Vw 4+ VZRY (Y, W)Vxp + VZzRY (W, X)Vy
~VwRVY(X,Y)Vzp — VWRY (Y, Z)Vxy — VWwRY(Z, X)Vyy

)
—RY([X,Y],Z)Vwi = RV(Z, W)V x v — RV (W, [X,Y])Vz¢p
+RY([X, Z], Y)Vwip + RV (Y, W)V x 71 + RV (W, [X, Z]) Vyp
—RY([X,W],Y)Vz = RV (Y, Z)Vix w — R¥ (Z, [X, W]) Vy¢p
—RY([Y,Z], X)Vwi — RY(X,W)V|y,z1p — RV (W, [Y, Z]) Vxp
+RY([Y, W], X)Vz + RY(X, Z)V iy w$ + RY(Z, [Y, W]) Vx¢p
—RY([Z, W], X)Vy§ = RY(X,Y)Vizwp — RV (Y, [Z, W]) Vxp

Since all the colored groups are (up to sign) permutations of the sum in red, it suffices
to analyze the combination in red. We have that
sum of terms inred = VxVyVzVwyp — VxVzVyVyy — VXV[Y,Z}VWIIJ
— VyVxVzVwyp + VyVzVxViwp + VyVix 2V
+ VzVxVyVwp — VzVyVxViwp — VzVix ) Ve
—VixyVzVwi¥ + VzVix yVwy + Vix v,z VW
+VixzVyVwy = VyVix 2aVw — Vix 71y Vwy
—Viyz1VxVwi + VxViy 271Vwyp + Viy 2, x Vw
= RY(X,Y)VZzVwy + RV (Y, Z)VxVwyp + RV (Z, X)Vy Vi,
since the V.V Vw1 terms cancel in pairs, the V. ; Vw1 terms add to zero in view

of the Jacobi identity for the Lie bracket, and the remaining terms gather into curva-
tures. Now, we have the symmetries:

¢ the sum in blue is minus the sum in red with Z and W switched;
¢ the sum in teal is minus the sum in red with Y and W switched;

¢ the sum in purple is minus the sum in red with X and W switched.
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Thus, organizing the entries of R (-, ), we have:

sum of terms in red = RV (X, Y)VzVwp + RV(Y,Z)VxVwi + RV (Z, X)Vy Vit
sum of terms in blue = —RY (X, Y)VwVzp + RV (W,Y)VxVzp + RY (X, W)VyV 2
sum of terms in teal = —RY (X, W)VzVyp + RV (Z, W)VxVyyp — RV (Z, X) Vi Vy
sum of terms in purple = —RV(W, Y)VzVxp — RV(Y,Z)vaxtp — RV(Z, W)VyVxy
Putting all of that together and recalling the six surviving RV (-, )V[. ¥ terms, we
get:
((dY)*y)(X,Y,Z,W) = RV(X,Y)RY(Z, W)y + RV (Z,X)RV (Y, W)y
+RY(X,W)RY(Y,Z)p + RV (Y, Z)RV (X, W)
+RY(W,Y)RY(X,Z)p+ RV (Z, W)RY (X,Y),

as wanted.
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Black box #2:
Let’s compute (dV)?7V.

(dV)*V)(X,Y,Z, W) =
= Vx(dVTV)(Y,Z, W) — Vy(dVTV)(X,Z,W)
+ Vz(dVTV)(X, Y, W) — Vi (dVTV)(X,Y, Z)
— (@VTV)([X, Y], Z, W) + (dVTV)([X, Z], Y, W)
— (@VTV)([x, W], Z) (@VeV)(ly, z], X, W)
+(@VTV)([Y, W], X, Z) - (dVV)([Z, W], X, Y)
= VxRY(Y,Z)W + VxRV (Z, W)Y + VxRV (W,Y)Z

~VyRVY(X,Z)W — VyRY(Z, W)X — VyRY (W, X)Z
+VZRY (X, Y)W + VzRY (Y, W)X 4+ VZzRV (W, X)Y
—VwRY(X,Y)Z - VwRV(Y,Z)X — VWRV(Z X)Y
—RY([X,Y],Z)W — RY(Z,W)[X,Y] - RY (W, [X,Y])Z
+RY([X,Z], Y)W + RY(Y,W)[X, Z] + RV (W, [X, Z])Y
—RY([X,W],Y)Z - RY(Y,Z)[X,W] - RY(Z,[X, W])Y
—RY([Y,Z], X)W — RY (X, W)[Y, Z] - RY (W, [Y, Z])X
+RY([Y, W], X)Z + RV (X, Z)[Y, W] + RV (Z,[Y, W])X
—RY([2, W], X)Y — RY(X,Y)[Z,W] - RV (Y, [Z, W]))X

We use the same strategy as before and gather the above terms in convenient groups,
sorted by colors.

sum of termsinred = VxVyVzW — VxVzVyW — VXV[Y,Z}W
— VyVxVzW + VyVzVxW+ VyVix 71 W
+ VzVxVyW = VzVyVxW — VzV x /W
—Vixy|VzW + VzVix yyW + Vx v,
+VixzVYW = VyVix 27 W — V(x 71 v
—ViyzVxW + VxViy z7W + Vv 7 x

zW
W
W
= RY(X,Y)VzW 4+ RV (Z,X)VyW + RV (Y

L Z)VxW

since the V.V W terms cancel in pairs the the V|, ;W terms add to zero in view of
the Jacobi 1dent1ty for the Lie bracket. The symmetries here are:

¢ the sum in blue is minus the sum in red with Y and W switched;
¢ the sum in teal is minus the sum in red with Z and W switched;

¢ the sum in purple is minus the sum in red with X and W switched.
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So:

sum of terms in red = RV (X,Y)VzW + RV (Z,X)VyW + RV (Y, Z)VxW

sum of terms in blue = —RY (X, W)VzY — RV(Z,X)VwY — RY (W, Z)VxY

sum of terms in teal = —RY (X, Y)VwZ — RY (W, X)VyZ — RV (Y, W)VxZ

sum of terms in purple = —RY (W, Y)VzX — RV (Z, W)VyX — RV (Y, Z)VyX

Together with the last six remaining terms, it follows that
((dV)*TV)(X,Y,Z,W) =RV (X,Y)TV(Z, W) + RV (Z,X)TV (Y, W)

+RY(Y,2)TV(X,W) + RV (W, X)TtV(Z,Y)
+RY(Z, W)TV(X,Y)+ RY(W,Y)tV(X, Z),

as wanted.
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