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Quick summary on G-torsors, associated vector bundles and associated connec-
tions. Discussion on direct definition of V4 in terms of local gauges; independence of

local gauge. Lastly, RV versus Fy.

1 G-torsors

Let’s quickly introduce the language of G-torsors, as it will be useful for the dis-
cussion later.

Definition 1

A set X is called a (left) G-torsor if it is equipped with a free and transitive action
G O X. Equivalently, it is a G-set for which the enriched map

GxX>3(x,g) — (x,g-x) e XxX

is an isomorphism.

Remark. Right G-torsors are defined on a similar way and the theory is unchanged,
as a left G-torsor can be changed into a right G-torsor, and vice-versa. Affine spaces
with translation vector space V' are nothing more than right V-torsors.

Given x/,x” € X, there is a unique element ¢ € G such that x” = ¢ - x’. We will
denote it by x”/x’. So, on a G-torsor, one can “multiply” elements of G by elements of
X, but one cannot multiply two elements of X. What one can do, instead, is to “divide”
elements of X to obtain elements in G. The division notation is precise, because all
algebraic manipulations you think should hold, will hold.

Proposition 1

Let X be a G-torsor, ¥/, x”,x"" € X and ¢ € G. Then:

1" 1/ "
X

X X

@ =
/
X

b) 5 =e.
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o (5)'-2
@ 8 =g 5
Proof:

(a) Compute

(b) Obvious.

(c) Compute

-1 -1
x// . x/l xl/
X X X

(d) Compute

2 Review

We work on the smooth category. Let 7r: P — M be a principal G-bundle, and
p: G — GL(V) be a representation of the Lie group G on a vector space V. Given
g € Gand v € V, we'll write gv for p(g)v. Then we have a right action (P x V) O G
givenby (p,v)-¢ = (p-g,¢ 'v). The quotient E(P,p) = P x,V = (P x V)/G (written
as E, for short) turns out to be a manifold. Elements of E are equivalence classes [p, 7],
subject to the rule [p - g,v] = [p,gv]. Since the action P O G is fiber-preserving, the
projection P x V 3 (p,v) — m(p) € M induces a projection rg: E — M. The fibers
ngl (x) will be vector spaces, all isomorphic to V, by using that each Py is a G-torsor.

Namely, we write

1/

p

P, o)+ [ o) = [p’,v'+?v“} and  Alp, o] = [p, Avl.
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The scalar multiplication doesn’t require explanation, but for the sum, the idea is that
one cannot add (p/, ') and (p”,v") if p’ # p”. In the quotient, if p/, p” € Py, we may

write that
P’ P
[p//, ,U//] — |:p/?’ ,U//:| — |:P/’ ?’U :| ,
and this last expression is admissible to add with [p/,?/].

Proposition 2

The above operations are well-defined.

Proof: Let’s verify that the sum is well-defined first. Replace p’ and v’ with p’ - ¢’ and
(¢')~'v', and similarly for p” and v”. Then compute

p// . g// r p//
P8l (8) T (8T = (gl (8) T (g')l_/vﬂ]
P8 ! p
o /A n—1 ! PN "
=(p-8.(&) (v+ P
r p//
= _p', v+ ?v”} .

For the scalar multiplication, take [p,v] € 7'[]:?1 (x), A € R, replace p with p - g, v with
¢ 'v, and compute

p-8.A87 0] = [p- 8,87 (Av)] = [p, Av],
since the representation p takes values in GL(V). O

To get trivializations for E in terms of trivializations for P, one proceeds as follows:
let (U, ®) be a principal G-chart, where U C M is open. So ®: n 1 [U] — U x G
has the form ®(p) = (7t(p), ®c(p)), with G-equivariant ®g: 7~ 1[U] — G. We set
OF: 1 [U] — U x V via ®F[p, 0] = (n(p), Pc(p)v).

Proposition 3

®F is a well-defined VB-chart for E with inverse (®F)~1: U x V — ;! [U] given
by (@%)7!(x,0) = [@7(x,¢), 0].

Proof: First, take [p,v] € 7z '[U], and replace p and v with p - g and g~'v. Now
(m(p-8), clp-8)g™'0) = (7m(p), Pc(p)gg™'v) = (n(p), Pc(p)o),

as required, since ®¢ is G-equivariant. Next, we have that
OE[@(x,e),0] = (P (x,e), P (P (x,e))v) = (x,e0) = (x,0),

as well as

(@~ (7(p),e), Pg(p)o] = [ (7(p),e)Pc(p),v] = [ (n(p), Ps(p)), o] = [p, ).

So, what we claim to be (®£)~!, indeed is. Finally, let’s show that restrictions of ®F to
tibers of 7t are linear isomorphisms.
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¢ Linearity.
p//
@E([p/, Z)/] + [P”/ Z)N]) — QDE [p/’ Z)/ + p_v//}

(e ( )
(71 )0 + ®g (p)%v)
R

n(p’), v+®<’%)v)

n(p"), @c(p')v' + c(p")0")

= (n(p"), ®c(p)o') + (m(p"), P (p”)0")
OE[p', o] + DF[p", 0",

using that @ is G-equivariant and 7t(p’) = 7t(p”). Also:

F (Alp,v]) = ®F[p, Av] = (n(p), Pc(p)Av)
= (1t(p), A®@c(p)v) = M7 (p), Pc(p)v),

using that p takes values in GL(V) and that the vector space structure on the
fiber {rt(p)} x V is the obvious one, happening only on the V-factor.

* Injectivity. Assume that ®F[p,v] = (7(p),0). This means that ®¢(p)v = 0.
But v — ®g(p)v is an isomorphism (because p takes values in GL(V), so this
immediately gives that v = 0.

* Surjectivity. Assume given (7t(p),v) € {m(p)} x V. Then we clearly have that
OE[p, @6 (p)~'o] = (7t(p), Pc(p)Pc(p)~'0) = (7(p), ).

]

Proceeding, to understand local sections s of E properly, we'll use local gauges for
P. Namely, on some open set U C M, fix a local gauge ¢: U — P. Writing the section
s as s(x) = [¢(x),sp(x)] (this can be arranged for since s(x) € Ex and ¢(x) € DPy),
we obtain a bijective correspondence between local sections s: U — E and functions
sy: U — V — to be regarded as matter fields. The gauge group €(P) acts not only on
P by evaluation, but also on E. We set ® - [p, v] = [®(p), v].

Proposition 4

The action 6(P) O E is well-defined.

Proof: Replace p and v with p - ¢ and g~ 'v. Then

[@(p-8).87 0] = [®(p) - 8,87 '0] = [@(p), 7],
since ® € G(P) is G-equivariant. O
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With this in place, €(P) acts on local sections of E as well, pointwise. To express
how this happens relative to a local gauge, recall that €(P) = €*(P,G)C as follows:
since ®(p) and p are on the same fiber, there is 0o (p) € G such that ®(p) = p - 0o (p).
Moreover, the G-equivariance relation, ®(p - g) = ®(p) - g, now implies that we have

(p-g)-co(p-8) = (p-oa(p))-g sooa(p-g) = g_laq>(p)g. The correspondence is
D+ 0p.

Proposition 5

Let s be a local section of E, € €(P), and ¢ be a local gauge for P. Then we have

(@-5)(x) = [$(x), 00 (P(x))sp (x)].

Proof: Directly compute

(®-5)(x) = @lip(x),59(x)] = [D(p(x

), sy (%)]
= [¢(x) - 00 (p(x)), 5y (x)] =

[ (x), 00 (P (x))sy(x)]-

3 Differential forms

Recall that if Q is a smooth manifold and we have an action G O Q which is
free and proper (so Q/G is a smooth manifold), then QF(Q/G) = Qﬁor(Q)G, where
Qﬁ Or(Q)G consists of all the G-invariant horizontal k-forms. Here, horizontal means
that the differential form produces zero whenever one of its arguments in the kernel of
the derivative of the quotient projection Q — Q/G. In our setting, similar arguments
work, considering V-valued forms instead. Since the principal G-bundle P — M
is such that P/G = M, we have that Qf (P, V)P = Of(M,E). Suggestively, each
w € OF (P, V)P satisfies Ryw = p( ¢~ 1) ow and w produces zero whenever one of its
arguments is horizontal (relative to the fixed A € Q'(P, g).

4 Connections

Assume that the principal bundle 7r: P — M is equipped with an Ehresmann con-
nection. That is, a 1-form A € Q!(P, g) such that A(X*) = X for all X € g (where
X* € X(P) stands for the action field generated by X) and RA = Ad( g Yo A, for
all ¢ € G, where Ry: P — P is the right action of the element g. Choosing such A is
equivalent to choosing a horizontal distribution # — TP with TP = # & 7V, where
%, = ker drr, is the natural vertical distribution of the bundle, and d(Ry ), [#] = #).¢.
The correspondence is A <> ker A. The restriction of d7r, gives an isomorphism

#Hp = Tn(p)M.
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Proposition 6

Given y: [0,1] = M withy(0) = xand (1) =y, for each p € P, there is a unique
horizontal lift ')/;}: [0,1] — P with ')/;;(O) = p.

Proof: Since P — M is a bundle and [0, 1] is contractible, there is a lift 7: [0,1] — P of
7, which is not, in general, horizontal. So, we must correct it. Let’s solve a differential
equation for ¢: [0,1] — G making «(t) = ¥(¢) - ¢(f) horizontal. We have that

i(t) = d(Rg(p) )7 () (7(£)) + d(Og5)) () (§(£))

by the chain rule, but the second term can be simplified, by using the general relation

This reads

Apply A to obtain

0= Ad(g(t) ") Az (7(t) + g(t)'g(h).
So, simplifying Ad, we consider the initial value problem for g:
g(t) = = Az (7(£)g(t)
g(0) =e
This system has a unique solution defined for all t € [0, 1]. O

With this, we define I1#: P, — P, by IT}(p) = 72(1). This is called the parallel
transport operator along -y, induced by A.

Proposition 7

(a) Hé: Py — Py is G-equivariant.

(b) Hé*ﬂ = I—IUA o H,‘;‘, where * denotes concatenation and the initial point of #

equals the terminal point of 7.

(c) (Hé)_1 = Hée, where Y () = (1 — t) is y travelled in the reverse order.

(d) If ® € €(P), then 'ygé) (1) = (75 A(t)). Hence I12'4 = @10 114 0 .

Proof:

(a) This is a general consequence of the fact that 'y;‘,_g(t) = 'y;‘,(t) -gforall t € [0,1].
Indeed, for t = 0 we have that 72(0) g=p-gandt — 'y';,(t) - ¢ is horizontal,
since ker A is G-invariant (so that the derivative of R, takes horizontal vectors to
horizontal vectors).
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(b) Clear.
(c) Follows from (b).

(d) If #4 and #® 4 are the horizontal distributions of A and ®*A, recall that we
have the relation d®, [%F?*A] = %g(p), for all p € P. For t = 0, we have that

@(72’@‘4(0)) = ®(p). And moreover, we have that

d

h,d*A _ . -h,d*A
Gi|_ POETA0) =40 (1H7AW)

is A-horizontal. This establishes the relation between horizontal lifts. Now plug
t =1 to conclude that H,‘;‘(d)(p)) = (ID(H?*A(p)), as required.
O

Keeping this notation, every parallel transport operator also acts on E. Namely, we
define HEY’A: Ex — Ey by HE'A[p, 0] = [115(p), 0.

Proposition 8

HE’A is well-defined.

Proof: Replace p with p - ¢ and v with ¢~ 1v. Then

5 (p-8),8 0] = 117 (p) - 8,8~ 0] = I3 (p), 7],
as required. O

To explore things further, we’ll use the expressions for A relative to a local gauge
: U — P. The pull-back 9*A is denoted simply by A, € Q(U, g). Generally, we
know that parallel transport operators between fibers of a vector bundle allow us to

reconstruct the covariant derivative V. We'll use the I—LE’A to define a connection V4
on E, as follows:

(1) Pick x € M and v € TyM. Take a curve 7: [0,1] — M with ¢(0) = x. For each
t € [0,1], write vt = 7]

(2) Take a (local) section s of E. Then s(7y(t)) € E, 4 forall t € [0,1]. Then transport it
back: (TT5*)~'(s(y(t)) € Ex.

(3) Take the derivative:
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Proposition 9

Relative to ¢, if 7(0) = v, we have

% tO(H%A)—l(S(’Y(t))) = [(x),d(sy)x(v) + ps (Ay(v))sy(x)].

Proof: We clearly have
(IEA)s(y(1)) = (TEA) (1), sy (v ()] = [T (0 s8]
but since (IT4,) 'y (y(t)) € Py forall £, there is g: [0,1] — G such that

(I15) " (r (1) = p(x) - g (1)
for all t € [0,1]. This immediately gives that

(5 s (v (1) = [(x), 8(1)sy(v(1))):
Now, 7g is the constant curve x, meaning that the corresponding parallel transport
operator is the identity, and thus g(0) = e. We will also need to find ¢(0) € g, since

% t_0<H$;A)‘1S('Y(t)) = [(x), d(sp)x(0) + p+(£(0))sy (¥)]

by the product rule (and recalling that the juxtaposition g(t)sy((t)) was a shorthand
for p(g(t))sy(v(t))). Taking derivatives at 0, we immediately see that

P - 5(t) = (04) "p(r(t) = Oy = S ) )

but differentiating this last expression on the right requires the little usual trick: define
Fls, 1) = T (T) " p((6)))

and note that (y(t)) = F(t,t), and compute
oF oF " d

(o) = 5(0.0) + 0.0 = Oy + g ).

Since the curve t — ITZ ((x)) is horizontal, applying A to everything gives that
Ay(v) = ¢(0), as required. O
In particular, such expression depends on 7(0) and §(0), but not on 7 itself. So if,

again, 7(0) = v € T,M, we define

Vis= G| () s00),

and if X € X(M), we also define V4s. Relative to i, we write V4s = [¢), V{sy], where
Vs = d(sy)(X) +p(Ap(X))sy.
SoVA =d+ p«Ay. For this reason, Ay is called the Christoffel form of A relative
to .
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Proposition 10

V4 is a Koszul connection on E.

Proof: All the properties are local, so we may verify them with a local gauge ¢, as
usual. The expression for V4sy is clearly additive in X and sy, and 6% (M)-linear in
the variable X. Let’s verify the Leibniz rule. Let f € €°(M). Clearly (fs)y = fsy, so

V& (fsp) = d(fsy) (X) + 0« (Ap(X)) (fy)
= X(f)sy + fd(sy)(X) + fo(Ayp(X))sy
= X(f)syp + fV g5y,
0

Remark. A shorter argument: V4 = d + p, Ay equals a connection (d) plus a tensor
(0xAyp), so it is a connection.

Last three remarks:

e If F is a smooth endofunctor of the category of finite-dimensional real vector
spaces and linear maps (smooth means that the action on the level of morphisms
is smooth), then for each p: G — GL(V) we get Fp: G — GL(FV), and so we
can form the associated bundle P X, FV. But & also acts fiberwise on the as-
sociated vector bundle P x, V, producing F(P x, V). These two bundles are
isomorphic simply because they are described by the same cocycles (relative to
trivializations induced by principal G-charts for P). If 7,4 is an element of the
cocycle, then p o 7,4 is an element of the cocycle defining P X, V. And the asso-
ciativity law F o (p 0 T,5) = (F 0 p) 0 Tp holds. If F is a multivariable smooth
functor, a similar argument applies. So, for example, the associated vector bun-
dle to P under the dual representation of p is in fact the dual of the associated
vector bundle to P under p. And so on.

* Generally, if V carries a linear G-structure, then we have an induced G-structure
on Fr(E), which is parallel relative to V4. Here’s one concrete example: if we
take a covariant k-tensor T € (V*)®k on V which is T invariant, then we have
TE € T((E*)®%) defined by TE([p,v1],...,[p,vk]) = T(vy,...,0x) (it is well-
defined). Now, suppressing p and p., differentiating the G-invariance relation
T(gv1,...,8v) = T(v1,...,v;) relative to the variable g and evaluating at X € g,

we obtain
n

ZT(Z}l,...,XUZ',...,Uk) =0.
i=1

This means that, choosing a local gauge ¢ for P, we have

n

n
Z TE(s1,...,V5si,...,5¢) = Z T(s1,p,- - .,Vf}si,w, s Skyp)
i=1 i=1
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I
M:

T 81 s '/d(si,lp)(X)/' . -/Sk,yl))

T(sy, Pr - -/Sk,lP)
E(si,...,50)),
for all X € X(M) and (local) sections s1, . .., 5; of E. This means that VATE = 0.

In particular, a G-invariant inner product on V' (which always exists when G is
compact, by Weyl’s unitary trick) induces a parallel fiber metric on E.

Nﬂ
AAH

X(T

e If we denote V4 by VA#, and noting that if E has a connection, then FE also in-
herits one (usually by requiring some structure to be parallel — e.g., connections
in hom-bundles are characterized by making the evaluation map parallel), then
it turns out that F(V4#) = V47 by default, so there is no ambiguity when
writing things like VATE as in the previous item.

5 Gauge independence of direct definition of V~

Often, one defines V# on E by choosing a local gauge i: U — P and declaring

Vis = [, d(sy) (X) + 0« (Ay(X))sy].

Then it is necessary to check that this definition is independent of i. So, let’s make a
change of gauge ¢ — ¢/ = ¢ - g, where ¢: U — G is a physical gauge transformation.
More precisely, ¢’ (x) = ¢(x) - g(x) for all x € U.

Proposition 11

(@) sp.g =g sy

(b) d(syg)x(v) = —p+((g7©)x(v))p(g(x) sy (x) + p(g(x)~H)d(sy)x(2).

© (- £)+(9) = d(Ry(x)) (o) (Ax(0)) + (§"@)x(0) 1) 410y, for all x € U and
v € T, M.

(d) Apg = Ad(g) 0 Ay +5°O.

Remark. Above, ® € O!(G, g) is the left-invariant Maurer-Cartan form on G, given
1

by ©,(w) = d(L,-1),w. Occasionally, we'll just write a~~ w.
Proof:
(@) s =[P - g sp.q] = [P, gSy-¢] implies that sy = gsy.¢, and the conclusion follows.

(b) The usual trick of separating variables works: define F(x,y) = p(g(x)™1)sy(v)
and note that sl/,.g(x) = F(x,x), so

d(sp.g)x(v) = (01F) (x,0)(0) + (92F) (x 1) (V).
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But
(02F) (x,0)(®) = p(g(x)"")d(sp)x(0),
and
(01F) (1,x)(0) = dpy(y)-1(—g(x) 1 dgx(0)g(x) " H)sy(x)
= —dpg(1)-1((870)x(v)g(x) )sy(x)
= —0:((870)x(v))p(g(x) )sp(x).

We're using the standard formulas for the derivative of the inversion in any Lie
group, the chain rule to differentiate p o Ry(1y-1 = R (1)-1) 0 p (because p is a

homomorphism) at the identity e € G, and that multiplication in GL(V) is the
restriction of a linear map gl(V) — gl(V) (so its derivative is itself).

(c) The usual trick works again: define F(x,y) = ¢(x) - g(y), note that ¢’ (x) = F(x, x),

d(¢")x(v) = (01F) (x,x) (0) + (92F) (3,1) (©)-
But
(01F) (x.2) (v) = d(Rg(x) ) y(x) (d¢px (),
and

(
(Op(r)-g())e((d(Lg(x)) 53y d8x(2))))
(Op(x).-g(x))e((8§7@)x(v))

= (€70)x(0)jx) (0

(d) From (c), we have that

(Apg)x(v) = Ap(x)glx
)+ (8*@)x(z’)z(x).g(x))
)

Now everything is in place. Since

(- g d(spg) + px(Apg)syp-g] = [, g(d(sp-g) + s+ (Ap-g)Sp-g)],

there is only one computation left to do. Let’s carry p, x and v in full detail.
p(8(x)) (d(sp-g)x(0) + px ((Apg)x(v))syg(x)) =

Page 11



CONNECTIONS ON ASSOCIATED VECTOR BUNDLES Ivo Terek

= p(3(x)) (= p+((8®)x(0))o(8(x)sy(x) +p(g(x) ) (sy)x(0)
+ 0 (Adg(y) 1 (A)x(2) + (8°0)x(0)) p(g(x) sy (x))
(8()) (P(&(x) ™) d(59)x(0) + el Adggy 1 (Ag)x(2))o(8(x) sy (x))

o
= d(sp)x(v) + p«((Ap)x(v))sy(x),

where in (1) we cancel all the terms with ®, and in (}) we use that p is a homomor-
phism and g(x) Ady )1 ((Ay)x(v))g(x) ™! = (Ay)x(v).

(1)

—
++
~—

6 Curvature

The curvature of A € Q!(P, g) is F4 € Q?(P, g) given by

1
Fp=dA+ §[A’A]
or, more explictly, Fo(X,Y) = dA(X,Y) + [A(X),A(Y)], for all X, Y € X(P). If we
have coordinates (x#) for the base manifold, and a local gauge ¢, all on some open set
U C M, then we have Fy y = p*(Fa) € O?(U, g), and we set Fn = PA,l,,(ay,av). Then,
we have
F]/“/ — ayAV - a]/A]/[ + I:A]’l’ A]/],

where A, = (Ay)(9,). Note that Ay, F,, are smooth functions on U, valued on g.
When G is abelian, [Ay, Ay] = 0. It remains to establish what is the relation between
RV" and F,. We do this using 1.

Proposition 12

RVA (a’,{, a]/)slp — p*(F]/lV)Sll)'

Proof: It’s a direct computation:
A
RY"(3y,8v)sp = V3§ Vi sy — V5 V5 sy
= 0,0u5y + P+ (Ap)9usy + O [p«(Av)sy] + o+ (Ap)ps (Av)sy
— 0y0usy + P+ (Av) sy — Ov [« (Ap)sy] — P« (Av)p+(Ap)sy
= P+ (Ap)0usy + p+(0pAv)sy + P+ (Av)dysy
— p«(Av)9usy — P« (9 Ap)sy — P+ (Ap)dusy + ps ([An, Av])sy

= 0+(01Av)sy — P« (0vAp)sy + p«([Ap, Av])sy

= P*(Fyv)szp/

as required. O
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Remark. It's not clear how to write such an expression without relying on a local
gauge. If X € g, trying to define p.(X)[p, v] as [p, p«(X)v] doesn’t work, as replacing
p and v with p - g and p(g~!)v leads to [p, p«(Adg(X))v] instead.

7 Arbitrary associated fiber bundles

Essentially everything that happened here can be done replacing p and V with a
manifold F and an action G ) F. We have that (P x F) O G via (p,y)g = (pg, 8" 'y),
and P xg F = (P x F)/G is a manifold whose elements are classes [p,y|. This is
a locally trivial fiber bundle with typical fiber F, and local trivializations (U, ®) are
constructed from principal G-charts (U, ®) for P, via ®[p,y] = (7(p), Pc(p)y), as
before (it is well-defined). Inverses are ®~1(x,y) = [®~!(x,e),y|. Restrictions to fibers
are diffeomorphisms onto F. One can locally define horizontal lifts (but the domains
pay the price: given x € M and 7[0,1] — M with (0) = x, the map y — ’y;(t) is not
necessarily defined for ally € (P x¢ F), and/or t € [0,1]). And so on.
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