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Quick summary on G-torsors, associated vector bundles and associated connec-
tions. Discussion on direct definition of ∇A in terms of local gauges; independence of
local gauge. Lastly, R∇

A
versus FA.

1 G-torsors

Let’s quickly introduce the language of G-torsors, as it will be useful for the dis-
cussion later.

Definition 1

A set X is called a (left) G-torsor if it is equipped with a free and transitive action
G � X. Equivalently, it is a G-set for which the enriched map

G× X 3 (x, g) 7→ (x, g · x) ∈ X× X

is an isomorphism.

Remark. Right G-torsors are defined on a similar way and the theory is unchanged,
as a left G-torsor can be changed into a right G-torsor, and vice-versa. Affine spaces
with translation vector space V are nothing more than right V-torsors.

Given x′, x′′ ∈ X, there is a unique element g ∈ G such that x′′ = g · x′. We will
denote it by x′′/x′. So, on a G-torsor, one can “multiply” elements of G by elements of
X, but one cannot multiply two elements of X. What one can do, instead, is to “divide”
elements of X to obtain elements in G. The division notation is precise, because all
algebraic manipulations you think should hold, will hold.

Proposition 1

Let X be a G-torsor, x′, x′′, x′′′ ∈ X and g ∈ G. Then:

(a)
x′′′

x′′
· x′′

x′
=

x′′′

x′
.

(b)
x′

x′
= e.
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(c)
(

x′′

x′

)−1

=
x′

x′′
.

(d)
g · x′′

x′
= g · x′′

x′
.

(e)
x′′

g · x′ =
x′′

x′
· g−1.

Proof:

(a) Compute (
x′′′

x′′
· x′′

x′

)
· x′ = x′′′

x′′
·
(

x′′

x′
· x′
)
=

x′′′

x′′
· x′′ = x′′′.

(b) Obvious.

(c) Compute(
x′′

x′

)−1

· x′′ =
(

x′′

x′

)−1

·
(

x′′

x′
· x′
)
=

((
x′′

x′

)−1

·
(

x′′

x′

))
· x′ = e · x′ = x′.

(d) Compute (
g · x′′

x′

)
· x′ = g ·

(
x′′

x′
· x′
)
= g · x′′.

(e) Use the previous items:

x′′

g · x′ =
(

g · x′
x′′

)−1

=

(
g · x′

x′′

)−1

=
x′′

x′
· g−1.

2 Review

We work on the smooth category. Let π : P → M be a principal G-bundle, and
ρ : G → GL(V) be a representation of the Lie group G on a vector space V. Given
g ∈ G and v ∈ V, we’ll write gv for ρ(g)v. Then we have a right action (P× V) 	 G
given by (p, v) · g = (p · g, g−1v). The quotient E(P, ρ) = P×ρ V .

= (P×V)/G (written
as E, for short) turns out to be a manifold. Elements of E are equivalence classes [p, v],
subject to the rule [p · g, v] = [p, gv]. Since the action P 	 G is fiber-preserving, the
projection P× V 3 (p, v) 7→ π(p) ∈ M induces a projection πE : E → M. The fibers
π−1

E (x) will be vector spaces, all isomorphic to V, by using that each Px is a G-torsor.
Namely, we write

[p′, v′] + [p′′, v′′] .
=

[
p′, v′ +

p′′

p′
v′′
]

and λ[p, v] .
= [p, λv].
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The scalar multiplication doesn’t require explanation, but for the sum, the idea is that
one cannot add (p′, v′) and (p′′, v′′) if p′ 6= p′′. In the quotient, if p′, p′′ ∈ Px, we may
write that

[p′′, v′′] =
[

p′
p′′

p′
, v′′
]
=

[
p′,

p′′

p′
v′′
]

,

and this last expression is admissible to add with [p′, v′].

Proposition 2

The above operations are well-defined.

Proof: Let’s verify that the sum is well-defined first. Replace p′ and v′ with p′ · g′ and
(g′)−1v′, and similarly for p′′ and v′′. Then compute[

p′ · g′, (g′)−1v′ +
p′′ · g′′
p′ · g′ (g′′)−1v′′

]
=

[
p′ · g′, (g′)−1v′ + (g′)−1 p′′

p′
v′′
]

=

[
p′ · g′, (g′)−1

(
v′ +

p′′

p′
v′′
)]

=

[
p′, v′ +

p′′

p′
v′′
]

.

For the scalar multiplication, take [p, v] ∈ π−1
E (x), λ ∈ R, replace p with p · g, v with

g−1v, and compute

[p · g, λg−1v] = [p · g, g−1(λv)] = [p, λv],

since the representation ρ takes values in GL(V).

To get trivializations for E in terms of trivializations for P, one proceeds as follows:
let (U, Φ) be a principal G-chart, where U ⊆ M is open. So Φ : π−1[U] → U × G
has the form Φ(p) = (π(p), ΦG(p)), with G-equivariant ΦG : π−1[U] → G. We set
ΦE : π−1

E [U]→ U ×V via ΦE[p, v] = (π(p), ΦG(p)v).

Proposition 3

ΦE is a well-defined VB-chart for E with inverse (ΦE)−1 : U ×V → π−1
E [U] given

by (ΦE)−1(x, v) = [Φ−1(x, e), v].

Proof: First, take [p, v] ∈ π−1
E [U], and replace p and v with p · g and g−1v. Now

(π(p · g), ΦG(p · g)g−1v) = (π(p), ΦG(p)gg−1v) = (π(p), ΦG(p)v),

as required, since ΦG is G-equivariant. Next, we have that

ΦE[Φ−1(x, e), v] = (πΦ−1(x, e), ΦG(Φ−1(x, e))v) = (x, ev) = (x, v),

as well as

[Φ−1(π(p), e), ΦG(p)v] = [Φ−1(π(p), e)ΦG(p), v] = [Φ−1(π(p), ΦG(p)), v] = [p, v].

So, what we claim to be (ΦE)−1, indeed is. Finally, let’s show that restrictions of ΦE to
fibers of πE are linear isomorphisms.
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• Linearity.

ΦE([p′, v′] + [p′′, v′′]) = ΦE
[

p′, v′ +
p′′

p′
v′′
]

=

(
π(p′), ΦG(p′)

(
v′ +

p′′

p′
v′′
))

=

(
π(p′), ΦG(p′)v′ + ΦG(p′)

p′′

p′
v′′
)

=

(
π(p′), ΦG(p′)v′ + ΦG

(
p′

p′′

p′

)
v′′
)

= (π(p′), ΦG(p′)v′ + ΦG(p′′)v′′)
= (π(p′), ΦG(p′)v′) + (π(p′′), ΦG(p′′)v′′)

= ΦE[p′, v′] + ΦE[p′′, v′′],

using that ΦG is G-equivariant and π(p′) = π(p′′). Also:

ΦE(λ[p, v]) = ΦE[p, λv] = (π(p), ΦG(p)λv)
= (π(p), λΦG(p)v) = λ(π(p), ΦG(p)v),

using that ρ takes values in GL(V) and that the vector space structure on the
fiber {π(p)} ×V is the obvious one, happening only on the V-factor.

• Injectivity. Assume that ΦE[p, v] = (π(p), 0). This means that ΦG(p)v = 0.
But v 7→ ΦG(p)v is an isomorphism (because ρ takes values in GL(V), so this
immediately gives that v = 0.

• Surjectivity. Assume given (π(p), v) ∈ {π(p)} × V. Then we clearly have that
ΦE[p, ΦG(p)−1v] = (π(p), ΦG(p)ΦG(p)−1v) = (π(p), v).

Proceeding, to understand local sections s of E properly, we’ll use local gauges for
P. Namely, on some open set U ⊆ M, fix a local gauge ψ : U → P. Writing the section
s as s(x) = [ψ(x), sψ(x)] (this can be arranged for since s(x) ∈ Ex and ψ(x) ∈ Px),
we obtain a bijective correspondence between local sections s : U → E and functions
sψ : U → V — to be regarded as matter fields. The gauge group G(P) acts not only on
P by evaluation, but also on E. We set Φ · [p, v] = [Φ(p), v].

Proposition 4

The action G(P) � E is well-defined.

Proof: Replace p and v with p · g and g−1v. Then

[Φ(p · g), g−1v] = [Φ(p) · g, g−1v] = [Φ(p), v],

since Φ ∈ G(P) is G-equivariant.
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With this in place, G(P) acts on local sections of E as well, pointwise. To express
how this happens relative to a local gauge, recall that G(P) ∼= C∞(P, G)G as follows:
since Φ(p) and p are on the same fiber, there is σΦ(p) ∈ G such that Φ(p) = p · σΦ(p).
Moreover, the G-equivariance relation, Φ(p · g) = Φ(p) · g, now implies that we have
(p · g) · σΦ(p · g) = (p · σΦ(p)) · g, so σΦ(p · g) = g−1σΦ(p)g. The correspondence is
Φ↔ σΦ.

Proposition 5

Let s be a local section of E, Φ ∈ G(P), and ψ be a local gauge for P. Then we have

(Φ · s)(x) = [ψ(x), σΦ(ψ(x))sψ(x)].

Proof: Directly compute

(Φ · s)(x) = Φ[ψ(x), sψ(x)] = [Φ(ψ(x)), sψ(x)]
= [ψ(x) · σΦ(ψ(x)), sψ(x)] = [ψ(x), σΦ(ψ(x))sψ(x)].

3 Differential forms

Recall that if Q is a smooth manifold and we have an action G � Q which is
free and proper (so Q/G is a smooth manifold), then Ωk(Q/G) ∼= Ωk

hor(Q)G, where
Ωk

hor(Q)G consists of all the G-invariant horizontal k-forms. Here, horizontal means
that the differential form produces zero whenever one of its arguments in the kernel of
the derivative of the quotient projection Q → Q/G. In our setting, similar arguments
work, considering V-valued forms instead. Since the principal G-bundle P → M
is such that P/G ∼= M, we have that Ωk

hor(P, V)ρ ∼= Ωk(M, E). Suggestively, each
ω ∈ Ωk

hor(P, V)ρ satisfies R∗gω = ρ(g−1) ◦ω and ω produces zero whenever one of its
arguments is horizontal (relative to the fixed A ∈ Ω1(P, g).

4 Connections

Assume that the principal bundle π : P→ M is equipped with an Ehresmann con-
nection. That is, a 1-form A ∈ Ω1(P, g) such that A(X#) = X for all X ∈ g (where
X# ∈ X(P) stands for the action field generated by X) and R∗g A = Ad(g−1) ◦ A, for
all g ∈ G, where Rg : P → P is the right action of the element g. Choosing such A is
equivalent to choosing a horizontal distribution H ↪→ TP with TP = H⊕ V, where
Vp = ker dπp is the natural vertical distribution of the bundle, and d(Rg)p[Hp] = Hp·g.
The correspondence is A ↔ ker A. The restriction of dπp gives an isomorphism
Hp ∼= Tπ(p)M.
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Proposition 6

Given γ : [0, 1]→ M with γ(0) = x and γ(1) = y, for each p ∈ Px there is a unique
horizontal lift γh

p : [0, 1]→ P with γh
p(0) = p.

Proof: Since P→ M is a bundle and [0, 1] is contractible, there is a lift γ̃ : [0, 1]→ P of
γ, which is not, in general, horizontal. So, we must correct it. Let’s solve a differential
equation for g : [0, 1]→ G making α(t) .

= γ̃(t) · g(t) horizontal. We have that

α̇(t) = d(Rg(t))γ̃(t)( ˙̃γ(t)) + d(Oγ̃(t))g(t)(ġ(t))

by the chain rule, but the second term can be simplified, by using the general relation
Op·g = Op ◦ Lg:

α̇(t) = d(Rg(t))γ̃(t)( ˙̃γ(t)) + d(Oα(t))e(g(t)−1 ġ(t)).

This reads
α̇(t) = d(Rg(t))γ̃(t)( ˙̃γ(t)) + (g(t)−1 ġ(t))#

α(t).

Apply A to obtain

0 = Ad(g(t)−1)Aγ̃(t)( ˙̃γ(t)) + g(t)−1 ġ(t).

So, simplifying Ad, we consider the initial value problem for g:{
ġ(t) = −Aγ̃(t)( ˙̃γ(t))g(t)
g(0) = e

This system has a unique solution defined for all t ∈ [0, 1].

With this, we define ΠA
γ : Px → Py by ΠA

γ (p) = γh
p(1). This is called the parallel

transport operator along γ, induced by A.

Proposition 7

(a) ΠA
γ : Px → Py is G-equivariant.

(b) ΠA
γ∗η = ΠA

η ◦ ΠA
γ , where ∗ denotes concatenation and the initial point of η

equals the terminal point of γ.

(c) (ΠA
γ )
−1 = ΠA

γ← , where γ←(t) = γ(1− t) is γ travelled in the reverse order.

(d) If Φ ∈ G(P), then γh,A
Φ(p)(t) = Φ(γh,Φ∗A

p (t)). Hence ΠΦ∗A
γ = Φ−1 ◦ΠA

γ ◦Φ.

Proof:

(a) This is a general consequence of the fact that γh
p·g(t) = γh

p(t) · g for all t ∈ [0, 1].
Indeed, for t = 0 we have that γh

p(0) · g = p · g, and t 7→ γh
p(t) · g is horizontal,

since ker A is G-invariant (so that the derivative of Rg takes horizontal vectors to
horizontal vectors).

Page 6



CONNECTIONS ON ASSOCIATED VECTOR BUNDLES Ivo Terek

(b) Clear.

(c) Follows from (b).

(d) If HA and HΦ∗A are the horizontal distributions of A and Φ∗A, recall that we
have the relation dΦp[HΦ∗A

p ] = HA
Φ(p), for all p ∈ P. For t = 0, we have that

Φ(γh,Φ∗A
p (0)) = Φ(p). And moreover, we have that

d
dt

∣∣∣∣
t=0

Φ(γh,Φ∗A
p (t)) = dΦ

γh,Φ∗A
p (t)(γ̇

h,Φ∗A
p (t))

is A-horizontal. This establishes the relation between horizontal lifts. Now plug
t = 1 to conclude that ΠA

γ (Φ(p)) = Φ(ΠΦ∗A
γ (p)), as required.

Keeping this notation, every parallel transport operator also acts on E. Namely, we
define ΠE,A

γ : Ex → Ey by ΠE,A
γ [p, v] = [ΠA

γ (p), v].

Proposition 8

ΠE,A
γ is well-defined.

Proof: Replace p with p · g and v with g−1v. Then

[ΠA
γ (p · g), g−1v] = [ΠA

γ (p) · g, g−1v] = [ΠA
γ (p), v],

as required.

To explore things further, we’ll use the expressions for A relative to a local gauge
ψ : U → P. The pull-back ψ∗A is denoted simply by Aψ ∈ Ω1(U, g). Generally, we
know that parallel transport operators between fibers of a vector bundle allow us to
reconstruct the covariant derivative ∇. We’ll use the ΠE,A

γ to define a connection ∇A

on E, as follows:

(1) Pick x ∈ M and v ∈ Tx M. Take a curve γ : [0, 1] → M with γ(0) = x. For each
t ∈ [0, 1], write γt = γ|[0,t]

(2) Take a (local) section s of E. Then s(γ(t)) ∈ Eγ(t) for all t ∈ [0, 1]. Then transport it
back: (ΠE,A

γt )−1(s(γ(t)) ∈ Ex.

(3) Take the derivative:
d
dt

∣∣∣∣
t=0

(ΠE,A
γt

)−1(s(γ(t))).
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Proposition 9

Relative to ψ, if γ̇(0) = v, we have

d
dt

∣∣∣∣
t=0

(ΠE,A
γt

)−1(s(γ(t))) = [ψ(x), d(sψ)x(v) + ρ∗(Aψ(v))sψ(x)].

Proof: We clearly have

(ΠE,A
γt

)−1s(γ(t)) = (ΠE,A
γt

)−1[ψ(γ(t)), sψ(γ(t))] =
[
(ΠA

γt
)−1ψ(γ(t)), sψ(γ(t))

]
,

but since (ΠA
γt
)−1ψ(γ(t)) ∈ Px for all t, there is g : [0, 1]→ G such that

(ΠA
γt
)−1ψ(γ(t)) = ψ(x) · g(t)

for all t ∈ [0, 1]. This immediately gives that

(ΠE,A
γt

)−1s(γ(t)) = [ψ(x), g(t)sψ(γ(t))].

Now, γ0 is the constant curve x, meaning that the corresponding parallel transport
operator is the identity, and thus g(0) = e. We will also need to find ġ(0) ∈ g, since

d
dt

∣∣∣∣
t=0

(ΠE,A
γt

)−1s(γ(t)) = [ψ(x), d(sψ)x(v) + ρ∗(ġ(0))sψ(x)]

by the product rule (and recalling that the juxtaposition g(t)sψ(γ(t)) was a shorthand
for ρ(g(t))sψ(γ(t))). Taking derivatives at 0, we immediately see that

ψ(x) · g(t) = (ΠA
γt
)−1ψ(γ(t)) =⇒ ġ(0)#

ψ(x) =
d
dt

∣∣∣∣
t=0

(ΠA
γt
)−1ψ(γ(t)),

but differentiating this last expression on the right requires the little usual trick: define

F(s, t) = ΠA
γs((Π

A
γt
)−1ψ(γ(t)))

and note that ψ(γ(t)) = F(t, t), and compute

dψx(v) =
∂F
∂t

(0, 0) +
∂F
∂s

(0, 0) = ġ(0)#
ψ(x) +

d
dt

∣∣∣∣
t=0

ΠA
γt
(ψ(x)).

Since the curve t 7→ ΠA
γt
(ψ(x)) is horizontal, applying A to everything gives that

Aψ(v) = ġ(0), as required.

In particular, such expression depends on γ(0) and γ̇(0), but not on γ itself. So if,
again, γ̇(0) = v ∈ Tx M, we define

∇A
v s =

d
dt

∣∣∣∣
t=0

(ΠE,A
γt

)−1(s(γ(t))),

and if X ∈ X(M), we also define∇A
Xs. Relative to ψ, we write∇A

Xs = [ψ,∇A
Xsψ], where

∇A
Xsψ = d(sψ)(X) + ρ∗(Aψ(X))sψ.

So ∇A = d + ρ∗Aψ. For this reason, Aψ is called the Christoffel form of A relative
to ψ.
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Proposition 10

∇A is a Koszul connection on E.

Proof: All the properties are local, so we may verify them with a local gauge ψ, as
usual. The expression for ∇A

Xsψ is clearly additive in X and sψ, and C∞(M)-linear in
the variable X. Let’s verify the Leibniz rule. Let f ∈ C∞(M). Clearly ( f s)ψ = f sψ, so

∇A
X( f sψ) = d( f sψ)(X) + ρ∗(Aψ(X))( f sψ)

= X( f )sψ + f d(sψ)(X) + f ρ∗(Aψ(X))sψ

= X( f )sψ + f∇A
Xsψ,

Remark. A shorter argument: ∇A = d + ρ∗Aψ equals a connection (d) plus a tensor
(ρ∗Aψ), so it is a connection.

Last three remarks:

• If F is a smooth endofunctor of the category of finite-dimensional real vector
spaces and linear maps (smooth means that the action on the level of morphisms
is smooth), then for each ρ : G → GL(V) we get Fρ : G → GL(FV), and so we
can form the associated bundle P×Fρ FV. But F also acts fiberwise on the as-
sociated vector bundle P ×ρ V, producing F(P ×ρ V). These two bundles are
isomorphic simply because they are described by the same cocycles (relative to
trivializations induced by principal G-charts for P). If ταβ is an element of the
cocycle, then ρ ◦ ταβ is an element of the cocycle defining P×ρ V. And the asso-
ciativity law F◦ (ρ ◦ ταβ) = (F◦ ρ) ◦ ταβ holds. If F is a multivariable smooth
functor, a similar argument applies. So, for example, the associated vector bun-
dle to P under the dual representation of ρ is in fact the dual of the associated
vector bundle to P under ρ. And so on.

• Generally, if V carries a linear G-structure, then we have an induced G-structure
on Fr(E), which is parallel relative to ∇A. Here’s one concrete example: if we
take a covariant k-tensor T ∈ (V∗)⊗k on V which is T invariant, then we have
TE ∈ Γ((E∗)⊗k) defined by TE

x ([p, v1], . . . , [p, vk]) = T(v1, . . . , vk) (it is well-
defined). Now, suppressing ρ and ρ∗, differentiating the G-invariance relation
T(gv1, . . . , gvk) = T(v1, . . . , vk) relative to the variable g and evaluating at X ∈ g,
we obtain

n

∑
i=1

T(v1, . . . , Xvi, . . . , vk) = 0.

This means that, choosing a local gauge ψ for P, we have

n

∑
i=1

TE(s1, . . . ,∇A
Xsi, . . . , sk) =

n

∑
i=1

T(s1,ψ, . . . ,∇A
Xsi,ψ, . . . , sk,ψ)

=
n

∑
i=1

T(s1,ψ, . . . , d(si,ψ)(X) + ρ∗(Aψ(X))si,ψ, . . . , sk,ψ)
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=
n

∑
i=1

T(s1,ψ, . . . , d(si,ψ)(X), . . . , sk,ψ)

= X(T(s1,ψ, . . . , sk,ψ)

= X(TE(s1, . . . , sk)),

for all X ∈ X(M) and (local) sections s1, . . . , sk of E. This means that ∇ATE = 0.
In particular, a G-invariant inner product on V (which always exists when G is
compact, by Weyl’s unitary trick) induces a parallel fiber metric on E.

• If we denote ∇A by ∇A,ρ, and noting that if E has a connection, then FE also in-
herits one (usually by requiring some structure to be parallel — e.g., connections
in hom-bundles are characterized by making the evaluation map parallel), then
it turns out that F(∇A,ρ) = ∇A,Fρ by default, so there is no ambiguity when
writing things like ∇ATE as in the previous item.

5 Gauge independence of direct definition of ∇A

Often, one defines ∇A on E by choosing a local gauge ψ : U → P and declaring

∇A
Xs = [ψ, d(sψ)(X) + ρ∗(Aψ(X))sψ].

Then it is necessary to check that this definition is independent of ψ. So, let’s make a
change of gauge ψ 7→ ψ′ = ψ · g, where g : U → G is a physical gauge transformation.
More precisely, ψ′(x) = ψ(x) · g(x) for all x ∈ U.

Proposition 11

(a) sψ·g = g−1sψ.

(b) d(sψ·g)x(v) = −ρ∗((g∗Θ)x(v))ρ(g(x)−1)sψ(x) + ρ(g(x)−1)d(sψ)x(v).

(c) d(ψ · g)x(v) = d(Rg(x))ψ(x)(dψx(v)) + (g∗Θ)x(v)#
ψ(x)·g(x), for all x ∈ U and

v ∈ Tx M.

(d) Aψ·g = Ad(g−1) ◦ Aψ + g∗Θ.

Remark. Above, Θ ∈ Ω1(G, g) is the left-invariant Maurer-Cartan form on G, given
by Θa(w) = d(La−1)aw. Occasionally, we’ll just write a−1w.

Proof:

(a) s = [ψ · g, sψ·g] = [ψ, gsψ·g] implies that sψ = gsψ·g, and the conclusion follows.

(b) The usual trick of separating variables works: define F(x, y) = ρ(g(x)−1)sψ(y)
and note that sψ·g(x) = F(x, x), so

d(sψ·g)x(v) = (∂1F)(x,x)(v) + (∂2F)(x,x)(v).
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But
(∂2F)(x,x)(v) = ρ(g(x)−1)d(sψ)x(v),

and

(∂1F)(x,x)(v) = dρg(x)−1(−g(x)−1dgx(v)g(x)−1)sψ(x)

= −dρg(x)−1((g∗Θ)x(v)g(x)−1)sψ(x)

= −ρ∗((g∗Θ)x(v))ρ(g(x)−1)sψ(x).

We’re using the standard formulas for the derivative of the inversion in any Lie
group, the chain rule to differentiate ρ ◦ Rg(x)−1 = Rρ(g(x)−1) ◦ ρ (because ρ is a
homomorphism) at the identity e ∈ G, and that multiplication in GL(V) is the
restriction of a linear map gl(V)→ gl(V) (so its derivative is itself).

(c) The usual trick works again: define F(x, y) = ψ(x) · g(y), note that ψ′(x) = F(x, x),
so

d(ψ′)x(v) = (∂1F)(x,x)(v) + (∂2F)(x,x)(v).

But
(∂1F)(x,x)(v) = d(Rg(x))ψ(x)(dψx(v)),

and

(∂2F)(x,x)(v) = d(Oψ(x))g(x)(dgx(v))

= d(Oψ(x)·g(x))e((d(Lg(x))
−1
g(x)dgx(v))))

= d(Oψ(x)·g(x))e((g∗Θ)x(v))

= (g∗Θ)x(v)#
ψ(x)·g(x).

(d) From (c), we have that

(Aψ·g)x(v) = Aψ(x)·g(x)(d(ψ · g)x(v))

= Aψ(x)·g(x)(d(Rg(x))ψ(x)(dψx(v)) + (g∗Θ)x(v)#
ψ(x)·g(x))

= Aψ(x)·g(x)(d(Rg(x))ψ(x)(dψx(v))) + (g∗Θ)x(v)

= (R∗g(x)A)ψ(x)(dψx(v)) + (g∗Θ)x(v)

= Ad(g(x)−1)(Aψ(x)(dψx(v)) + (g∗Θ)x(v)

= Ad(g(x)−1)((Aψ)x(v)) + (g∗Θ)x(v).

Now everything is in place. Since

[ψ · g, d(sψ·g) + ρ∗(Aψ·g)sψ·g] = [ψ, g(d(sψ·g) + ρ∗(Aψ·g)sψ·g)],

there is only one computation left to do. Let’s carry ρ, x and v in full detail.

ρ(g(x))
(
d(sψ·g)x(v) + ρ∗((Aψ·g)x(v))sψ·g(x)

)
=
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= ρ(g(x))
(
− ρ∗((g∗Θ)x(v))ρ(g(x)−1)sψ(x) + ρ(g(x)−1)d(sψ)x(v)

+ ρ∗
(
Adg(x)−1(Aψ)x(v) + (g∗Θ)x(v)

)
ρ(g(x)−1)sψ(x)

)
(†)
= ρ(g(x))

(
ρ(g(x)−1)d(sψ)x(v) + ρ∗(Adg(x)−1(Aψ)x(v))ρ(g(x)−1)sψ(x)

)
(‡)
= d(sψ)x(v) + ρ∗((Aψ)x(v))sψ(x),

where in (†) we cancel all the terms with Θ, and in (‡) we use that ρ is a homomor-
phism and g(x)Adg(x)−1((Aψ)x(v))g(x)−1 = (Aψ)x(v).

6 Curvature

The curvature of A ∈ Ω1(P, g) is FA ∈ Ω2(P, g) given by

FA = dA +
1
2
[A, A]

or, more explictly, FA(X, Y) = dA(X, Y) + [A(X), A(Y)], for all X, Y ∈ X(P). If we
have coordinates (xµ) for the base manifold, and a local gauge ψ, all on some open set
U ⊆ M, then we have FA,ψ = ψ∗(FA) ∈ Ω2(U, g), and we set Fµν = FA,ψ(∂µ, ∂ν). Then,
we have

Fµν = ∂µ Aν − ∂ν Aµ + [Aµ, Aν],

where Aµ = (Aψ)(∂µ). Note that Aµ, Fµν are smooth functions on U, valued on g.
When G is abelian, [Aµ, Aν] = 0. It remains to establish what is the relation between
R∇

A
and FA. We do this using ψ.

Proposition 12

R∇
A
(∂µ, ∂ν)sψ = ρ∗(Fµν)sψ.

Proof: It’s a direct computation:

R∇
A
(∂µ, ∂ν)sψ = ∇A

∂µ
∇A

∂ν
sψ −∇A

∂ν
∇A

∂µ
sψ

= ∇A
∂µ
(∂νsψ + ρ∗(Aν)sψ)−∇A

∂ν
(∂µsψ + ρ∗(Aµ)sψ)

= ∂µ∂νsψ + ρ∗(Aµ)∂νsψ + ∂µ[ρ∗(Aν)sψ] + ρ∗(Aµ)ρ∗(Aν)sψ

− ∂ν∂µsψ + ρ∗(Aν)∂µsψ − ∂ν[ρ∗(Aµ)sψ]− ρ∗(Aν)ρ∗(Aµ)sψ

= ρ∗(Aµ)∂νsψ + ρ∗(∂µ Aν)sψ + ρ∗(Aν)∂µsψ

− ρ∗(Aν)∂µsψ − ρ∗(∂ν Aµ)sψ − ρ∗(Aµ)∂νsψ + ρ∗([Aµ, Aν])sψ

= ρ∗(∂µ Aν)sψ − ρ∗(∂ν Aµ)sψ + ρ∗([Aµ, Aν])sψ

= ρ∗(∂µ Aν − ∂ν Aµ + [Aµ, Aν])sψ

= ρ∗(Fµν)sψ,

as required.
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Remark. It’s not clear how to write such an expression without relying on a local
gauge. If X ∈ g, trying to define ρ∗(X)[p, v] as [p, ρ∗(X)v] doesn’t work, as replacing
p and v with p · g and ρ(g−1)v leads to [p, ρ∗(Adg(X))v] instead.

7 Arbitrary associated fiber bundles

Essentially everything that happened here can be done replacing ρ and V with a
manifold F and an action G � F. We have that (P× F) 	 G via (p, y)g = (pg, g−1y),
and P ×G F = (P × F)/G is a manifold whose elements are classes [p, y]. This is
a locally trivial fiber bundle with typical fiber F, and local trivializations (U, Φ̃) are
constructed from principal G-charts (U, Φ) for P, via Φ̃[p, y] = (π(p), ΦG(p)y), as
before (it is well-defined). Inverses are Φ̃−1(x, y) = [Φ−1(x, e), y]. Restrictions to fibers
are diffeomorphisms onto F. One can locally define horizontal lifts (but the domains
pay the price: given x ∈ M and γ[0, 1] → M with γ(0) = x, the map y 7→ γh

y(t) is not
necessarily defined for all y ∈ (P×G F)y and/or t ∈ [0, 1]). And so on.
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