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The Weyl curvature tensor

We will start by recalling the definition of the Weyl curvature tensor W of
a pseudo-Riemannian manifold (M, g).

The curvature tensor of Sn equipped with its round metric is given by

R(X , Y , Z , V ) = g(Y , Z )g(X , V )− g(X , Z )g(Y , V )

R(X , Y , Z , V ) = g(Y , Z )g(X , V )− g(X , Z )g(Y , V )︸ ︷︷ ︸
(g©∧ g)(X ,Y ,Z ,V )

This is a quadratic expression in g. Polarize!

2(T ©∧ S)(X , Y , Z , V )
.
= T (Y , Z )S(X , V )− T (X , Z )S(Y , V )

+ S(Y , Z )T (X , V )− S(X , Z )T (Y , V )

The ©∧ -multiplication between symmetric type (0, 2) tensor fields is always
a type (0, 4) tensor field with the “symmetries of a curvature”.
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In any pseudo-Riemannian manifold (M, g), we may ©∧ -divide R by g:

R = g©∧ P + W , W = Weyl curvature tensor of (M, g).

Here are the main facts about W :
W is the remainder of the ©∧ -division of R by g.
W is the “Ricci-traceless” part of R.
W is the part of R not constrained by Einstein’s field equations.
R has n2(n2 − 1)/12 independent components, while Ric has
n(n + 1)/2: the remaining ones all come from W .
W = 0 whenever dim M ≤ 3.
If dim M ≥ 4, (M, g) is conformally flat if and only if W = 0.

The condition we are interested in is ∇W = 0.

Definition (ECS manifold)
A pseudo-Riemannian manifold (M, g) is called essentially conformally sym-
metric if ∇W = 0 but neither W = 0 nor ∇R = 0.
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What is known

ECS manifolds are objects of strictly indefinite nature:

Theorem (Roter, 1977)
For a Riemannian manifold (M, g): ∇W = 0 ⇐⇒ W = 0 or ∇R = 0.

Other important facts:
The local structure of ECS manifolds has been completely described
by Derdzinski and Roter in 2009.
Every ECS manifold carries a distinguished null parallel distribution
D, whose rank equals 1 or 2. We call D the Olszak distribution of
(M, g) and refer to the rank of D as the rank of (M, g).
There are compact ECS manifolds of all dimensions of the form
3j + 2, j ≥ 1, realizing all indefinite metric signatures
(Derdzinski-Roter, 2010).
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A rank-one example

Example (Conformally symmetric pp-wave manifolds)
Let (V , 〈·, ·〉) be a pseudo-Euclidean vector space of dimension n− 2 ≥ 2,
A ∈ sl(V ) be self-adjoint, I ⊆ R be an open interval and f : I → R be a
smooth function. Consider

(M̂, ĝ) = (I ×R× V , κ dt2 + dt ds + 〈·, ·〉),
where κ : M̂ → R is given by κ(t, s, v) = f (t)〈v , v〉+ 〈Av , v〉.
Then (M̂, ĝ) has ∇W = 0, with:

W = 0 ⇐⇒ A = 0;
∇R = 0 ⇐⇒ f is constant.

In the ECS case, the Olszak distribution D is spanned by the null parallel
coordinate vector field ∂s , and (V , 〈·, ·〉) is isometrically identified with the
vector space of parallel sections of D⊥/D.
(M̂, ĝ) is complete if and only if I = R (which we’ll assume from now on).
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Intuition
We consider such examples because any point in a rank-one ECS manifold
(Mn, g) has a neighborhood isometric to an open subset of some (M̂, ĝ).
The idea relies on two general facts about rank-one ECS manifolds:

Ric is D-valued.
the connections induced on D and D⊥/D are flat.

Locally, consider: a null parallel vector field w spanning D, and a function
t such that dt = g(w , ·). This way:

Ric = (2− n)f (t)dt ⊗ dt for some suitable function f .
The Weyl tensor acts as a traceless self-adjoint endomorphism A of
V = D⊥/D via A(v +D) = W (u, v)u +D (where u is any vector
field with g(u, w) = 1).

Any null geodesic t 7→ x(t) with g(ẋ(t), wx(t)) = 1 gives rise to a mapping

F (t, s, v) = expx(t)

(
vx(t) +

swx(t)
2

)
, with F ∗g = ĝ.

Ivo Terek, OSU Compactifying Weyl-parallel manifolds

6
/
15



The isometry group of (M̂, ĝ)

Again: (V , 〈·, ·〉) with dim V = n− 2 ≥ 2, A ∈ sl(V )r {0} is self-adjoint,
f ∈ C∞(R) is nonconstant, and κ(t, s, v) = f (t)〈v , v〉 + 〈Av , v〉. Our
“rank-one ECS model” is (M̂, ĝ) = (R2 × V , κ dt2 + dt ds + 〈·, ·〉).

1 S is the group of the triples σ = (q, p, C) ∈ Aff(R)×O(V ) with
CAC−1 = q2 and q2f (qt + p) = f (t).

2 (E, Ω) is the symplectic vector space of solutions u : R→ V of
ü(t) = f (t)u(t) + Au(t), with Ω(u, û) = 〈u̇, û〉 − 〈u, û·〉. Note: S

acts on E and R via (σu)(t) = Cu(q−1(t − p)) and σt = qt + p.
3 The Heisenberg group H = R× E associated with (E, Ω), with

operation given by (r , u)(r̂ , û) = (r + r̂ −Ω(u, û), u + û).

Theorem
Iso(M̂, ĝ) is isomorphic to a semidirect product SnH.

(σ, r , u)(σ̂, r̂ , û) = (σσ̂, r + q−1r̂ −Ω(u, σû), u + σû)
(σ, r , u)(t, s, v) = (σt,−〈u̇(σt), 2σv + u(σt)〉+ q−1s + r , σv + u(σt)〉
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About compact examples

The 2010 compact ECS examples all have rank one, and were obtained
by finding suitable subgroups Γ ⊆ Iso(M̂, ĝ) acting freely and properly
discontinuously on (M̂, ĝ) with compact quotient M = M̂/Γ.
The previously mentioned dimensions of the form 3j + 2 were a particularity
of the construction performed then: a 5-dimensional example was obtained
with dim V = 3, but the construction was “compatible” with taking carte-
sian powers of (V , 〈·, ·〉), leading also to dimensions 8, 11, 14, etc.

Theorem (Derdzinski-T., 2022)
There exist compact rank-one ECS manifolds of all dimensions n ≥ 5 and all
indefinite metric signatures, diffeomorphic to nontrivial torus bundles over
the circle, geodesically complete, and not locally homogeneous. Moreover,
in each fixed dimension and metric signature, there is an infinite-dimensional
moduli space of local isometry types of such manifolds.

P.S.: we seem to just have found incomplete and locally homogeneous examples too!
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Outline of proof (1/4): searching for Γ inside Iso(M̂, ĝ)

Fixing a period p > 0, we will look for subgroups Γ ≤ G(p) ≤ Iso(M̂, ĝ)
producing a compact quotient M̂/Γ, for suitable choices of f and A.

Here, G(p) = 〈(1, p, IdV )〉nH ∼= ZnH, and we consider the translation
operator T : E → E given by (Tu)(t) = u(t − p), associated with the
“generator” (1, p, IdV ) ∈ Iso(M̂, ĝ).

Then G(p) acts isometrically on (M̂, ĝ) by

(k, r , u) · (t, s, v) =
(
t + kp , s + r − 〈u̇(t), 2v + u(t)〉 , v + u(t)

)
,

and has its group operation given by

(k, r , u) · (`, r̂ , û) =
(
k + ` , r + r̂ −Ω(u, T `û) , T−`u + û

)
.
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Outline of proof (2/4): first-order subspaces of (E, Ω)

Such a subgroup Γ would give rise to a “lattice” Λ inside a T -invariant
first-order subspace L of (E, Ω). But what is a first-order subspace? It is a
subspace L ≤ E such that for every t ∈ R, the evaluation map δt : L→ V
is an isomorphism.

{L | L is a first-order subspace}� {B : R→ End(V ) | Ḃ + B2 = f + A}
L = {u ∈ E | u̇(t) = B(t)u(t) for all t ∈ R}

In this correspondence: L is Lagrangian ⇐⇒ each B(t) is self-adjoint.

The goal here is to reverse-engineer Γ from the spectrum of T |L while at
the same time finding f and A.

The projection G(p) → Z restricts to a homomorphism Γ → Z whose
kernel Σ projects to a subset Λ ⊆ E, which spans a first-order subspace L.

Either L is Lagrangian and Σ is a lattice in R× L which projects isomor-
phically onto Λ, or Λ itself is a lattice in L.
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Outline of proof (3/4): reverse-engineering the spectrum

Next:
Step 1: Choose mutually distinct positive reals λ1, . . . , λn−2, not

equal to 1: then {λ1, . . . , λn−2} is not of the form {λ} or
{λ, λ−1} for any λ > 0.

Step 2: As n ≥ 5, λ1, . . . , λn−2 are the roots of the characteristic
polynomial P of a matrix in GL(n− 2,Z).

Step 3: Using the Implicit Function Theorem, we may obtain an
infinite-dimensional space of p-periodic functions f for which
there are a diagonal traceless nonzero matrix A and a curve
t 7→ B(t) of diagonal matrices such that Ḃ + B2 = f + A
and

diag(log λ1, . . . , log λn−2) = −
∫ p

0
B(t)dt. (∗)
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Outline of proof (4/4): reconstructing Γ

Step 4: For L corresponding to B obtained in Step 3, the spectrum
of T |L is – due to (∗) – precisely λ1, . . . , λn−2 and its
characteristic polynomial is P, so that T [Λ] = Λ for some
lattice Λ ⊆ L.

Step 5: As L is Lagrangian, the action of Λ on L by vector space
translations coincides with its action by left-translations with
the group operation induced from H ↪→ G(p);

Step 6: Fixing any θ > 0, we let Γ be the group generated by
{0} ×Zθ×Λ and the element (1, 0, 0) ∈ G(p). This works.

For instance, one possible compact fundamental domain for the action of Γ
on M̂ is K = {(t, s, v) ∈ M̂ | s ∈ [0, θ] and (s, v) ∈ K ′}, where K ′ is the
image under the diffeomorphism

R×L 3 (t, w) 7→ (t, w(t)) ∈ R× V
of [0, p]×K ′′, K ′′ being a compact fundamental domain for Λ � L.
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Final considerations

Other features of M̂/Γ stated in the Theorem follow from the construction:

Γ not being virtually Abelian precludes coverings of M by tori;
The map M̂ 3 (t, s, v) 7→ t/p ∈ R is Γ-equivariant and induces a
fibration M → S1.
The fibers ({t} ×R× V )/({0} ×Zθ ×Λ) are tori, as they are
diffeomorphic to (R×L)/(Zθ ×Λ).

This bundle structure is not an accident:

Theorem (Derdzinski-T., 2022)
Every non-locally homogeneous compact rank-one ECS manifold is (up to a
double isometric covering) diffeomorphic to a bundle over S1 in such a way
that D⊥ becomes the vertical distribution.
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Thank you for your attention!
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