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Riemannian manifolds – a lightning review

Recall that a Riemannian metric on a smooth manifold M is a smooth
assignment of positive-definite inner products gx on each tangent space
Tx M, for every x ∈ M. We call (M, g) a Riemannian manifold.
In particular, each individual tangent space (Tx M, gx ) is linearly isometric
to (Rn, 〈·, ·〉), where 〈·, ·〉 is the standard Euclidean inner product in Rn.
On every Riemannian manifold there is a unique covariant derivative oper-
ator ∇, called the Levi-Civita connection, mapping any two vector fields X
and Y on M to a third one, ∇X Y .
Relative to a coordinate system (x1, . . . , xn) for M, we may write

∇∂i ∂j =
n

∑
k=1

Γk
ij ∂k , for all i , j = 1, . . . , n,

where the Γk
ij are called the Christoffel Symbols of ∇ in the given system.
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Geodesics and completeness

A curve γ : I → M is called a geodesic if it is a solution of the system of
differential equations

ẍk +
n

∑
i ,j=1

Γk
ij ẋ i ẋ j = 0, k = 1, . . . , n,

for every coordinate system (x1, . . . , xn) on M.
We also say that γ is complete if its maximal domain of definition is the
entire real line R, and that (M, g) is complete if all of its geodesics are
complete. The following theorem is well-known:

Theorem
Compact Riemannian manifolds are complete.
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... but we are not here to talk about Riemannian manifolds.
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Lorentz-Minkowski space
Consider a point-particle in Euclidean space R3, moving from its initial posi-
tion to its final position by following a displacement vector v = (∆x , ∆y , ∆z).
As the motion of the particle cannot have a speed greater than the speed
of light c = 1, we have(

∆x
∆t

)2
+

(
∆y
∆t

)2
+

(
∆z
∆t

)2
< 1,

which may be reorganized as (∆x)2 + (∆y)2 + (∆z)2 − (∆t)2 < 0.

Definition
The n-dimensional Lorentz-Minkowski space is the pair Rn

1 = (Rn, 〈·, ·〉1),
where the symmetric and non-degenerate bilinear form 〈·, ·〉1 is defined by

〈x, y〉1 = x1y1 + · · ·+ xn−1yn−1 − xnyn,

for all vectors x, y ∈ Rn.
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Lorentz-Minkowski space

Definition
The n-dimensional Lorentz-Minkowski space is the pair Rn

1 = (Rn, 〈·, ·〉1),
where the symmetric and non-degenerate bilinear form 〈·, ·〉1 is defined by

〈x, y〉1 = x1y1 + · · ·+ xn−1yn−1 − xnyn,

for all vectors x, y ∈ Rn.

Here, non-degenerate means that even though 〈·, ·〉1 is not positive-definite,
it still induces an isomorphism between Rn and (Rn)∗. (i.e., v 7→ 〈v, ·〉1)
A non-zero vector v ∈ Rn

1 is called:
spacelike, if 〈v, v〉1 > 0;
lightlike, if 〈v, v〉1 = 0;
timelike, if 〈v, v〉1 < 0;

The type of v, according to the above sorting, is called its causal character.
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Lorentz-Minkowski space

For example, for v = (x , y , z) ∈ R3
1, we have that 〈v, v〉1 = x2 + y2 − z2.

See below the level sets of 〈v, v〉1 = a, for a ∈ {−1, 0, 1}:
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Lorentz-Minkowski space

For example, for v = (x , y , z) ∈ R3
1, we have that 〈v, v〉1 = x2 + y2 − z2.
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Lorentzian manifolds

Definition
A Lorentzian metric on a smooth manifold M is a smooth assignment of
Lorentzian scalar products gx on each tangent space Tx M, for x ∈ M. We
call (M, g) a Lorentzian manifold.

In other words, for a Lorentzian manifold (M, g), each individual tangent
space (Tx M, gx ) is linearly isometric to Rn

1 instead of Rn!
The concepts of geodesic and completeness still make sense for Lorentzian
manifolds — but completeness becomes much more subtle.

From here on, we’ll discuss some of those subtleties and relations
between compactness and completeness in the Lorentzian setting.
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Multiple notions of Lorentzian completeness

Let (M, g) be a Lorentzian manifold and γ be a geodesic in M. The causal
character of γ (spacelike/timelike/lightlike) is the causal character of one
of its velocity vectors.
And (M, g) is said to be spacelike-complete (resp. timelike-complete or
lightlike-complete) if all of its spacelike (resp. timelike or lightlike) geodesics
are complete.

Theorem
The three types of Lorentzian completeness are logically independent.

This conclusion was obtained after a series of examples due to Kundt (1963),
Geroch (1968), and Beem (1976).
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Multiple notions of Lorentzian completeness

To continue with the discussion, we need the concept of curvature.
If (M, g) is either Riemannian or Lorentzian, its Riemann curvature tensor
is defined by

R(X , Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[X ,Y ]Z ,

and it is the obstruction for (M, g) to be locally isometric to Rn or Rn
1.

Theorem (Lafuente López, 1988)
For any locally symmetric Lorentzian manifold (that is, satisfying ∇R = 0),
all three types of completeness are equivalent.

Remark: It is an open question whether ∇kR = 0 with k ≥ 2 implies
that the three types of completeness are equivalent. (Contrast with the
Riemannian case, where ∇kR = 0 for some k ≥ 2 implies that ∇R = 0.)
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Back to compactness!
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Homogeneity

Recall that for any Riemannian or Lorentzian manifold (M, g), an isometry
of (M, g) is a diffeomorphism f : M → M such that

gf (x)(dfx (v), dfx (w)) = gx (v, w),

for all x ∈ M and v, w ∈ Tx M.
There is a natural group action of the group Iso(M, g) on M, given by
evaluation. We call (M, g) homogeneous if such action is transitive.

Theorem (Marsden, 1972)
Every compact homogeneous Lorentzian manifold must be complete.

Remark: This result is true for metrics of more general indefinite metric
signature, not just Lorentzian. When dim M = 3, it suffices to assume that
(M, g) is locally homogeneous (Dumitrescu-Zeghib, 2010).
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Completeness with special vector fields

A vector field X on a Riemannian or Lorentzian manifold (M, g) is called a
Killing vector field if its flow consists of isometries of (M, g). In terms of
Lie derivatives, LXg = 0.

Theorem (Kamishima, 1993)
Every compact Lorentzian manifold with constant sectional curvature, ad-
mitting a timelike Killing field, must be complete.

However, the two assumptions in Kamishima’s theorem are too restrictive!
More generally, we say that X is a conformal Killing vector field if its flow
consists of conformal transformations of (M, g). In terms of Lie derivatives,
LXg = f g for some function f .

Theorem (Romero-Sánchez, 1995)
Every compact Lorentzian manifold admitting a timelike conformal Killing
vector field must be complete.
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Completeness with curvature conditions

Another direction in which Kamishima’s theorem was generalized consisted
in removing the Killing field assumption instead of the constant curvature
condition. A first result in this direction actually came before Kamishima:

Theorem (Carrière, 1989)
Every compact flat Lorentzian manifold must be complete.

Carrière’s theorem was then extended:

Theorem (Klingler, 1996)
Every compact Lorentzian manifold with constant sectional curvature must
be complete.

Remark: As a consequence of Klingler’s theorem, together with a classical
result due to Calabi and Markus (1962), it follows that there are no compact
Lorentzian manifolds with constant positive sectional curvature.
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More recent results

Further conditions implying completeness become much more subtle.
A Lorentzian manifold (M, g) is called a pp-wave spacetime if it admits a
parallel lightlike field X such that R(X⊥, X⊥, ·, ·) = 0.

Theorem (Leistner-Schliebner, 2016)
Every compact pp-wave spacetime must be complete.

The above result combined with Klingler’s result and a little more extra
work shows the following:

Corollary (Leistner-Schliebner, 2016)
Every indecomposable and locally symmetric (∇R = 0) compact Lorentzian
manifold must be complete.
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More recent results

As in with Kamishima’s theorem, the existence of a parallel lightlike field
together with the pp-wave condition may sometimes be too restrictive. But
the pp-wave condition may be dropped:

Theorem (Mehidi-Zeghib, 2022)
A compact Lorentzian manifold admitting a parallel lightlike vector field
must be complete.

However, dropping the lightlike vector field condition is not possible without
paying the price with some other curvature condition:

Theorem (Derdzinski-T., 2023)
A generic compact Lorentzian manifold with parallel Weyl curvature which
is not conformally flat or locally symmetric must be complete.

Remark: Here, genericity refers to a technical condition satisfied by “almost
all” (M, g) satisfying the other conditions (∇W = 0, W 6= 0, ∇R 6= 0).
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Thank you for your attention!
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