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Setup

The curvature tensor of a pseudo-Riemannian manifold (M, g), n = dim M,
admits the orthogonal decomposition

R =
s

n(n− 1)g©∧ g +
2

n− 2g©∧
(

Ric− s
ng
)
+ W ,

where Ric, s and W are the Ricci, scalar, and Weyl curvatures of (M, g).

We will assume throughout this talk that n ≥ 4, in which case (M, g) is
conformally flat if and only if W = 0.

The condition we are interested in is ∇W = 0.

Definition (ECS manifold)
A pseudo-Riemannian manifold (M, g) is called essentially conformally sym-
metric if ∇W = 0 but neither W = 0 nor ∇R = 0.
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The metric signature

ECS manifolds are objects of strictly indefinite nature:

Theorem (Roter, 1977)
For a Riemannian manifold (M, g): ∇W = 0 ⇐⇒ W = 0 or ∇R = 0.

Roter has also shown that ECS manifolds exist in all dimensions starting
from 4, and realizing all possible indefinite metric signatures.

Every ECS manifold carries a distinguished null parallel distribution, which
helps control its geometry:

Definition
The Olszak distribution of an ECS manifold (M, g) is D ↪→ TM given by

Dx = {v ∈ Tx M | gx (v , ·) ∧Wx (v ′, v ′′, ·, ·) = 0, for all v ′, v ′′ ∈ Tx M},

for every x ∈ M.
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More on the Olszak distribution

The Olszak distribution was originally introduced for the more general study
of conformally recurrent manifolds, and in this setting it is already true that
D is indeed smooth, parallel and null.

In the ECS case, the rank of D is always equal to 1 or 2. For this reason,
we speak of rank-one/rank-two ECS manifolds.

Theorem (Derdzinski-Roter, 2009)
Let (M, g) be an ECS manifold, and D be its Olszak distribution. Then:

i The Ricci endomorphism of (M, g) is D-valued.
ii The connection induced in the quotient bundle D⊥/D over M is flat.
iii The connection induced in D itself is flat when (M, g) is of rank one.

Lorentzian ECS manifolds are all of rank-one and, up to a double isometric
covering, pp-wave spacetimes.
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A rank-one example

Example (Conformally symmetric pp-wave manifolds)
Let (V , 〈·, ·〉) be a pseudo-Euclidean vector space of dimension n− 2 ≥ 2,
A ∈ sl(V ) be self-adjoint, I ⊆ R be an open interval and f : I → R be a
smooth function. Consider

(M̂, ĝ) = (I ×R× V , κ dt2 + dt ds + 〈·, ·〉),
where κ : M̂ → R is given by κ(t, s, v) = f (t)〈v , v〉+ 〈Av , v〉.
Then (M̂, ĝ) has ∇W = 0, with:

W = 0 ⇐⇒ A = 0;
∇R = 0 ⇐⇒ f is constant.

In the ECS case, the Olszak distribution D is spanned by the null parallel
coordinate vector field ∂s , and (V , 〈·, ·〉) is isometrically identified with the
vector space of parallel sections of D⊥/D.
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Intuition
We consider such examples because any point in a rank-one ECS manifold
(Mn, g) has a neighborhood isometric to an open subset of some (M̂, ĝ).
The idea relies on two general facts about rank-one ECS manifolds:

Ric is D-valued.
the connections induced on D and D⊥/D are flat.

Locally, consider: a null parallel vector field w spanning D, and a function
t such that dt = g(w , ·). This way:

Ric = (2− n)f (t)dt ⊗ dt for some suitable function f .
The Weyl tensor acts as a traceless self-adjoint endomorphism A of
V = D⊥/D via A(v +D) = W (u, v)u +D (where u is any vector
field with g(u, w) = 1).

Any null geodesic t 7→ x(t) with g(ẋ(t), wx(t)) = 1 gives rise to a mapping

F (t, s, v) = expx(t)

(
vx(t) +

swx(t)
2

)
, with F ∗g = ĝ.
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About compact ECS manifolds

With the local structure of ECS manifolds being fully understood, the next
step is to address global aspects. The first question is whether compact
ECS manifolds exist.

Theorem (Derdzinski-Roter, 2010)
In every dimension n = 3j + 2, j = 1, 2, 3, . . ., there exists a compact
rank-one ECS manifold (M, g) of any prescribed indefinite metric signature,
which is diffeomorphic to a torus bundle over S1, but not homeomorphic to
(or even covered by) a torus.

These examples are all of the form M = M̂/Γ, where Γ is some cocompact
subgroup of Iso(M̂, ĝ) acting freely and properly discontinuously on M̂.
The strange dimensions n = 3j + 2 were a particularity of their construction,
which obtained a 5-dimensional example with dim V = 3, but turned out
to be “compatible” with taking cartesian powers of (V , 〈·, ·〉), leading also
to dimensions 8, 11, 14, etc..
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More compact examples

Generalizing the construction:

Theorem (Derdzinski-T., 2022)
There exist compact rank-one ECS manifolds of all dimensions n ≥ 5 and
all indefinite metric signatures, forming the total space of a nontrivial torus
bundle over S1 with its fibers being the leaves of D⊥, all geodesically com-
plete, and none locally homogeneous. In each fixed dimension and metric
signature, there is an infinite-dimensional moduli space of local-isometry
types.

Compact pp-wave spacetimes are complete (Leistner-Schliebner, 2016).

More generally, a compact Lorentzian manifold carrying a parallel null vector
field is complete (Mehidi-Zeghib, 2022).

There are geodesically incomplete and locally homogeneous odd-dimensional
examples too (Derdzinski-T., 2023), but none of them is Lorentzian.
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The topological structure

Q: What do all known compact rank-one ECS
manifolds presented so far have in common?

A: They are all bundles over S1, and D⊥

appears as the vertical distribution.

We will see next that this is not an accident.
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The main result

Theorem (Derdzinski-T., 2022)
Every non-locally-homogeneous compact rank-one ECS manifold (M, g) for
which the orthogonal distribution D⊥ is transversely orientable is the total
space of a locally trivial fibration over S1 whose fibers are the leaves of
D⊥. In addition, every leaf L of D̃⊥ in M̃ is simply connected and M̃ is
diffeomorphic to R× L.

The transverse orientability of D⊥ can be achieved by replacing (M, g) with
a suitable isometric double covering, if necessary.

This is a generalization to arbitrary indefinite signature of:

Theorem (Derdzinski-Roter, 2008)
Let (M, g) be a compact Lorentzian ECS manifold. Then some two-fold
covering of M is the total space of a C∞ bundle over S1, the fiber of which
admits a flat torsionfree connection with a nonzero parallel vector field.
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How does the generalization happen?

To understand how our main result generalizes the 2008 one, it remains to
argue that Lorentzian ECS manifolds cannot be locally homogeneous.

Here, we write M = M̃/Γ and again consider the space (V , 〈·, ·〉) of parallel
sections of D⊥/D, with the self-adjoint A ∈ sl(V ) resulting from W .

For every γ ∈ Γ there are (q, p) ∈ Aff(R) and C ∈ O(V , 〈·, ·〉) such that

t ◦ γ = qt + p, q2f (qt + p) = f (t), and CAC−1 = q2A.

If the image K of the obvious homomorphism Γ→ Aff(R) has an element
(q, p) with |q| 6= 1 and (M, g) is Lorentzian, then A = 0 and hence W = 0.

But if (M, g) is Lorentzian and locally homogeneous, then K ⊆ R is dense
in R, making f constant and thus (M, g) becomes locally symmetric.
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The strategy

The central concept used in the proof is what we call the dichotomy property
for a codimension-one foliation V in a smooth manifold M, which has two
alternatives (NC) and (AC) imposed on its compact leaves.

The reason why we care about this property is that it turns out that if M is
compact, V is transversely orientable, and some compact leaf of V satisfies
(AC), then there is a locally trivial bundle projection M → S1 whose fibers
are the leaves of V.

There are two big steps to carry out:
i Establishing the dichotomy property for D⊥ (when transversely

orientable) in a rank-one ECS manifold (M, g).
ii Showing that some compact leaf of D⊥ satisfies (AC) when M is

compact.
Step (i) does not use compactness of M, and local homogeneity is an ob-
stacle for (ii).
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The dichotomy property

Definition
A codimension-one foliation V in a smooth manifold M has the dichotomy
property if every compact leaf L of V has a neighborhood U in M such that
the leaves of V intersecting U r L are either:
NC: all noncompact, or
AC: all compact, and some neighborhood of L in M saturated by compact

leaves of V may be diffeomorphically identified with the product R× L
in such a way that V corresponds to the foliation {{s} × L}s∈R.

Example
If both M and V are real-analytic and V is transversely orientable, then V

has the dichotomy property. If a compact leaf L of V does not satisfy (NC),
there are compact leaves of V arbitrarily close to L. Now analyticity implies
that L satisfies (AC).
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More examples of the dichotomy property

Example
If V is transversely orientable and has a finite number of compact leaves,
then V clearly has the dichotomy property. Examples of this situation include
the Reeb foliation on S3, and foliations on products T2 × K coming from
foliations on T2 having themselves a finite number of leaves.

Example
Let M be an orientable line bundle over a compact and connected manifold
L, equipped with a flat connection∇, and let V be the horizontal distribution
on M associated with ∇. The compact leaf L (and hence all others) satisfies
(NC) or (AC) according to whether the holonomy group Hol(∇) is infinite
or trivial.
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Establishing the dichotomy property for D⊥

The last example illuminates the way to proceed:

Theorem
Let (M, g) be a compact rank-one ECS manifold with transversely orientable
D⊥, and let L be a compact leaf of D⊥. Then, there is some neighborhood
U of L in M which can be identified with a neighborhood U ′ of the zero
section L ↪→ D∗L as to make the distribution D⊥ in U correspond in U ′ to
the horizontal distribution of the flat connection in D∗L.

Sketch of proof: Let t : M̃ → R is a function whose parallel gradient
w spans D̃, and φ be a flow on M which is transverse to D⊥. Define
U = φ[(−ε, ε)× L] and Ψ : U → U ′ = Ψ[U ] by

Ψ(φ(τ, x)) = [t(φ̃(τ, y))− t(y)]ξy ◦ (dπy )
−1,

where φ̃ is a lift of φ to M̃, ξ is the parallel section of D̃∗ with ξ(w) = 1,
and y ∈ π−1(x) is chosen at will. This works.
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Establishing the dichotomy property for D⊥

The last example illuminates the way to proceed:

Theorem
Let (M, g) be a compact rank-one ECS manifold with transversely orientable
D⊥, and let L be a compact leaf of D⊥. Then, there is some neighborhood
U of L in M which can be identified with a neighborhood U ′ of the zero
section L ↪→ D∗L as to make the distribution D⊥ in U correspond in U ′ to
the horizontal distribution of the flat connection in D∗L.

So:

Theorem
If (M, g) is a rank-one ECS manifold with transversely orientable D⊥, then
D⊥ satisfies the dichotomy property. Namely, for a compact leaf L of D⊥,
alternatives (AC) and (NC) correspond to whether the holonomy group of
the natural flat connection in the line bundle D∗L is finite or infinite.
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Towards a compact leaf with (AC): cohomology, F & P

Our next goal is to show that some compact leaf of D⊥ in M satisfies
alternative (AC) of the dichotomy property.

Closedness of a continuous 1-form ζ means its locally being the differential
of a C1 function. Thus it makes sense to consider a cohomology class
[ζ] ∈ H1

dR(M) ∼= Hom(π1(M), R).

We fix again the universal covering (M̃, g̃) of (M, g), a function t : M̃ → R

whose parallel gradient spans D̃, and express M = M̃/Γ with Γ ∼= π1(M).

Considering the space F of all continuous functions χ : M̃ → R such that
χ dt is closed and Γ-invariant, we may consider the operator

P : F → H1
dR(M), given by Pχ = [χ dt ].
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Special functions

Considering the space F of all continuous functions χ : M̃ → R such that
χ dt is closed and Γ-invariant, we may consider the operator

P : F → H1
dR(M), given by Pχ = [χ dt ].

Theorem
Let (M, g) be a compact rank-one ECS manifold such that D⊥ is trans-
versely orientable. If (M, g) is not locally homogeneous, then there exists a
nonconstant function µ ∈ C1(M) which is constant along D⊥.

Sketch of proof: It mainly consists in showing that either
i dimF < ∞ and (M, g) is locally homogeneous, or
ii dimF = ∞ and such µ exists.

In case (i), set-theoretical reasons imply that f (t) = ε(t − b)−2, where
Ric = (2− n)f (t)dt ⊗ dt. In case (ii), let χ ∈ ker P r {0} and take µ
such that dµ equals the projected χ dt.
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From special functions to compact leaves satisfying (AC)

Let µ ∈ C1(M) be nonconstant, but constant along D⊥.

By Sard’s theorem, the image of µ in R contains an open interval of regular
values of µ. Any connected component of a level set µ−1(c), with c in a
such open interval, is a compact leaf of D⊥ with (AC).

This completes the proof of our main result.

Note: Sard’s theorem usually applies for a Ck function from an n-manifold
into an m-manifold, where k ≥ max{n−m + 1, 1}. Here, k = m = 1 and
n ≥ 4, but compactness of M together with µ being locally a function of t
allows us to apply Sard with n = 1 instead of n ≥ 4.

Ivo Terek, OSU The topology of compact ECS Lorentzian manifolds

19
/
23



Appendix: why dimF < ∞ gives (M, g) LH

The “set-theoretical reasons” mentioned before ultimately boil down to:

Lemma
Let X be a set and F ⊆ RX be a finite-dimensional subspace which is closed
under the absolute value function | · | and has the property that

|ψ1 . . . ψk |1/k ∈ F, whenever k ≥ 1 and ψ1, . . . , ψk ∈ F.

Then, writing m = dimF, there is a basis {χ1, . . . , χm} of F consisting of
nonnegative functions with pairwise disjoint supports.

In other words, there is a disjoint-union decomposition

X = X0 ∪ X1 ∪ · · · ∪ Xm,

with Xj non-empty for each j = 1, . . . , m, such that χj > 0 on Xj and
χj = 0 on X r Xj .

Ivo Terek, OSU The topology of compact ECS Lorentzian manifolds

20
/
23



Appendix: why dimF < ∞ gives (M, g) LH

Applying this lemma to our space F (all χ ∈ C0(M̃) with χ dt closed and
Γ-invariant), we see that |ḟ |1/3/|f |1/2 is locally constant where f 6= 0.

Then it follows that f 6= 0 everywhere: otherwise, at a boundary point
of the zero set of f , the linear function |f |−1/2 would be unbounded on a
bounded t-interval.

It now follows that
i f = ε(t − b)−2,

and we can arrange for b = 0 and I = (0, ∞) by making an affine substitu-
tion on t.

Whitney’s theorem from algebraic geometry now implies that
ii for every q ∈ (0, ∞) there is C ∈ O(V ) such that CAC−1 = q2A.

Using (i) and (ii), one establishes local homogeneity of (M, g) through
homogeneity of the corresponding model (M̂, ĝ).
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Thank you for your attention!

(scan here for more
on my research)
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