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The correct setup to study Hamiltonian dynamics is symplectic geometry. The
most prominent example is T∗Q, where Q is the configuration manifold of a mechan-
ical system, with the following structure (described relative to cotangent coordinates
(qi, pi) induced from coordinates (qi) on Q):

λ = ∑
i

pi dqi, and ωcan = −dλ = ∑
i

dqi ∧ dpi ∼
[

0 Id
−Id 0

]
The 1-form λ ∈ Ω1(T∗Q) is called the tautological form and is characterized by the
relations σ∗λ = σ, for each σ ∈ Ω1(Q). The 2-form ωcan ∈ Ω2(T∗Q) is called the
canonical symplectic form; it is closed (in fact, exact) and non-degenerate (the matrix
describing it has full rank).

To proceed, we will twist it with a closed 2-form B ∈ Ω2(Q), by letting

ωB
.
= ωcan + π∗B ∼

[
B Id
−Id 0

]
,

where π : T∗Q → Q is the bundle projection. As before, ωB is closed and non-
degenerate. We call B a magnetic field on Q and ωB the associated magnetic sym-
plectic form. Goal: understand the motion of a particle on Q subject to the action of a
magnetic field B.

Magnetic cotangent bundles (T∗Q, ωB) have plenty of “symmetries” (i.e., symplec-
tomorphisms):

(i) cotangent lifts f̂ : T∗Q → T∗Q given by f̂ (x, p) = ( f (x), p ◦ (d fx)−1), for every
diffeomorphism f : Q→ Q such that f ∗B = B.

(ii) fiberwise translations for every closed σ ∈ Ω1(Q), namely, the diffeomorphisms
τσ : T∗Q → T∗Q given by τσ(x, p) = (x, p + σx). As a consequence, whenever
[B1] = [B2] ∈ H2

dR(Q), then (T∗Q, ωB1)
∼= (T∗Q, ωB2), so the magnetic symplectic

structure depends only on the cohomology class of the magnetic field.
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Now, assume that g is a Riemannian metric on Q, and define a Hamiltonian func-
tion H : T∗Q→ R by setting

H(x, p) =
‖p‖2

x
2

=
1
2 ∑

i,j
gij(x)pi pj.

With this in place, non-degeneracy of ωB defines a vector field X ∈ X(T∗Q) by the
relation ωB(X, ·) = dH, and we obtain the Lorentz force as the skew-adjoint bundle
morphism F : TQ → TQ characterized by gx(Fx(v), w) = Bx(v, w), for every x ∈ Q
and v, w ∈ TxQ. The reason why we care about this is because integral curves of
X project down to solutions γ : I → Q of the magnetic geodesic equation (i.e., the
Lorentz force law):

Dγ̇

dt
(t) = Fγ(t)(γ̇(t)), for all t ∈ I.

Assuming that Q is compact, for example, we obtain a complete flow φt : TQ → TQ
and, when B = 0, we recover the classical geodesic equation and the geodesic flow
from Riemannian geometry. Proofs of the claims made so far are either presented or
left as exercises with hints on [3].

There are, however, many other similarities. For example, whenever we have that
B = dA for some A ∈ Ω1(Q), called a magnetic potential, magnetic geodesics appear
as critical points of the action functional

EA[γ] =
1
2

∫
I
gγ(t)(γ̇(t), γ̇(t))dt +

∫
I

Aγ(t)(γ̇(t))dt.

Replacing A with A + d f only adds a constant to EA, and this gauge-invariance has
vague interpretations similar in spirit to the Aharonov-Bohm effect.

Lastly, we know that geodesic flows induced by metrics with negative sectional
curvature are Anosov, but it has been shown in [1] that “weak” magnetic flows in
negative sectional curvature are again Anosov. There, the second variation of EA has
been computed, suggesting the correct notion of a Jacobi field in the magnetic setting.
In [2], these results have been generalized to give conditions for not only magnetic
flows being Anosov in negative sectional curvature, but also for potential flows and
Gaussian thermostats.
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