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Conformal flatness

We start by recalling the notion of conformal flatness:

Definition
A pseudo-Riemannian manifold (M, g) is conformally flat if every x ∈ M
has an open neighborhood U ⊆ M and a smooth function ρ : U → R such
that the manifold (U, e2ρg) is flat.

If the signature of g is (p, q), p + q = n, then the conformal class of g
determines a reduction of the structure group of the frame bundle of M from
GL(n) to CO(p, q). Conformal flatness of (M, g) amounts to integrability
of this CO(p, q)-structure.

When dim M ≥ 4, conformal flatness is controlled by the Weyl curvature
tensor W: (M, g) is conformally flat if and only if W = 0.

In the case where dim M = 3, it is controlled by the Cotton tensor C instead:
(M, g) is conformally flat if and only if C = 0.
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The Cotton tensor

But what is the Cotton tensor?

Definition
Let (M, g) be an n-dimensional pseudo-Riemannian manifold. Then:
(a) The Schouten tensor is P given by

P = Ric− scal
2(n− 1)g.

(b) The Cotton tensor is C given by

C(X, Y, Z) = (∇XP)(Y, Z)− (∇YP)(X, Z),

for all vector fields X, Y, Z ∈ X(M).

Note: P is the “div− d ◦ tr”-less part of Ric, and C = d∇P.
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Properties of C

Here are the three properties characteristic to C:

C(X, Y, Z) + C(Y, X, Z) = 0; (clear)

C(X, Y, Z) + C(Y, Z, X) + C(Z, X, Y) = 0; (6 terms cancel in pairs)

trg
(
(X, Z) 7→ C(X, Y, Z)) = 0. (div P = d(trgP) in disguise)

With this in place, the condition we will discuss today, focusing on the
three-dimensional case, is ∇C = 0.
A three-dimensional pseudo-Riemannian manifold (M, g) is sometimes called
essentially conformally symmetric if ∇C = 0, but C 6= 0.
We begin with an example:
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Example (Conformally symmetric pp-wave manifold)
Given any smooth function a : R→ R, consider the Lorentzian manifold

(M̂, ĝ) =
(
R3, (x3 + a(t)x)dt2 + dt ds + dx2).

Important facts about (M̂, ĝ):
∂s is a null parallel field, spanning a rank-one distribution D;
Ric = −3x dt ⊗ dt, and the Ricci operator −6x dt ⊗ ∂s is D-valued;
C = 3(dt ∧ dx)⊗ dt, and so Dp = {u ∈ TpM̂ | Cp(u, ·, ·) = 0}.

Finally, Iso(M̂, ĝ) is isomorphic to the subgroup of Z2 nρ R2 (where
ρ(−1) = −IdR2) consisting of the triples (ε, p, r ) with a(εt + p) = a(t),
acting on M̂ via (ε, p, r ) · (t, s, x) = (εt + p, εs + r , x).

There are no subgroups Γ ≤ Iso(M̂, ĝ) producing compact quotients M̂/Γ,
as (t, s, x) 7→ x would induce a continuous unbounded function M̂/Γ→ R.
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Example (Conformally symmetric pp-wave manifold)
Given any smooth function a : R→ R, consider the Lorentzian manifold

(M̂, ĝ) =
(
R3, (x3 + a(t)x)dt2 + dt ds + dx2).

Important facts about (M̂, ĝ):
∂s is a null parallel field, spanning a rank-one distribution D;
Ric = −3x dt ⊗ dt, and the Ricci operator −6x dt ⊗ ∂s is D-valued;
C = 3(dt ∧ dx)⊗ dt, and so Dp = {u ∈ TpM̂ | Cp(u, ·, ·) = 0}.

The above example is locally universal [1]:

Theorem (Garćıa-Ŕıo et al., 2014)
Let (M, g) be a pseudo-Riemannian three-manifold satisfying ∇C = 0 and
C 6= 0. Then, reversing g if needed, any point in M has a neighborhood
isometric to an open subset of (M̂, ĝ), for some suitable choice of a.
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The structure theorem’s proof sketch
Their argument consisted in three big steps:
Step 1: Proving that (M, g) must carry a null parallel distribution D,
by discussing the possibilities for the multiplicities of the eigenvalues of
the Cotton operator (associated with the Cotton-York density, specific to
dim M = 3).
Step 2: Invoking Walker’s Theorem about canonical coordinates adapted
to degenerate parallel distributions on pseudo-Riemannian manifolds. For
rank-one null parallel distributions on three-manifolds, we have

g = κ(t, s, x)dt2 + dt ds + dx2.

Step 3: Solving the PDE for κ corresponding to the condition ∇C = 0 for
the above metric, and then performing a sequence of suitable coordinate
changes, it follows that

g = (x3 + a(t)x)dt2 + dt ds + dx2.
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General conclusions

As a consequence of this local structure theorem,

everything that holds on (M̂, ĝ), holds locally on (M, g).

Here are some explicit conclusions:

(M, g) must be Lorentzian (or anti-Lorentzian);

the distinguished null parallel rank-one distribution D associated with
(M, g) via C is explicitly given by Dx = {u ∈ Tx M | Cx (u, ·, ·) = 0},
for every x ∈ M.

the connection induced by (M, g) in the distribution D is flat.

the Ricci operator of (M, g) is D-valued;

the scalar curvature of (M, g) vanishes.
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The algebraic structure of C

Inspired by the expression C = 3(dt ∧ dx)⊗ dt, valid in (M̂, ĝ), we have:

Lemma
Let (V , 〈·, ·〉) be a three-dimensional pseudo-Euclidean vector space, C 6= 0
be a Cotton-like tensor on V , and D = {u ∈ V | C(u, ·, ·) = 0}. Then:
(a) D consists only of null vectors, and thus dimD ≤ 1.
(b) dimD = 1 if and only if C = (u ∧ v)⊗ u, for some u ∈ Dr {0} and
unit vector v ∈ D⊥.
(c) In (b), u is unique up to sign and v is unique modulo D.

Proof.
Linear Algebra . .

^
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The main result

Theorem (T., 2023)
A compact three-dimensional pseudo-Riemannian manifold with parallel
Cotton tensor must be conformally flat.

Proof.
Let (M3, g) have ∇C = 0, but C 6= 0.

Pull back all the geometry of (M, g) to its universal covering manifold M̃,
so that the covering projection π : M̃ → M becomes a local isometry
between (M̃, g̃) and (M, g).

Write M = M̃/Γ, for a group Γ ∼= π1M acting freely and properly
discontinuously on (M̃, g̃) by deck isometries.

As M̃ is simply-connected, there is a smooth vector field u and a rough
vector field v such that C = (u∧ v)⊗ u on M̃.
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The main result

Proof. (cont’d)
As D is parallel, item (c) of our previous Lemma tells us that:
(i) u is a null parallel field spanning D;
(ii) every γ ∈ Γ pushes u forward onto either u or −u.

Next, the fact that Ric is self-adjoint and D-valued allows us to write
Ric = −f u⊗ u, for some smooth function f : M̃ → R.

On the other hand, it follows that C = (u∧∇f )⊗ u.

Now, Γ-invariance of Ric and of u⊗ u implies Γ-invariance of f .

Hence, f survives as a smooth function on the quotient M̃/Γ = M.

If M were compact, f would have a critical point x : then (∇f )x = 0
means that Cx = 0, and so C = 0 (because ∇C = 0).
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Thank you for your attention!

(scan here for more
on my research)
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