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ABSTRACT

A non-degenerate submanifold of a pseudo-
Riemannian manifold is called marginally trapped
when its mean curvature vector is lightlike at
all points. This is particularly relevant in Ge-
neral Relativity when the ambient manifold is a
spacetime. Related geometric conditions include,
among others, having lightlike second fundamen-
tal form, pseudo-umbilicity, and λ-isotropy. Buil-
ding up on previous work from Cabrerizo, Fer-
nández and Gómez [1], and adapting some pre-
liminary results by Anciaux [2], we characterize
(under reasonable assumptions) codimension 2
0-isotropic submanifolds of pseudo-Riemannian
space forms now of arbitrary dimension and in-
dex, which turn out to be marginally trapped.

WHY CARE ABOUT MARGINALLY TRAPPED
SUBMANIFOLDS?

When (M, 〈·, ·〉) is a spacetime, that is, a four-
dimensional Lorentzian manifold equipped with
a time orientation (a non-vanishing timelike vec-
tor field), we call a spacelike surface S ⊆ M future-
trapped if all the future-outgoing light rays from
S converge — geometrically, this means that the
mean curvature vector of S if timelike and future-
directed. This concept was introduced by Penrose
in 1965, and its relation with gravitational collapse
and formation of black holes ultimately led to him
being awarded a Nobel Prize in 2020. Marginally
trapped surfaces are the ones that separate trap-
ped surfaces from non-trapped surfaces, can be
used to try and detect event horizons of black ho-
led, and have intrinsic geometric interest.

DEFINITIONS

Definition 1. Let (Mn+2, 〈·, ·〉) be a pseudo-
Riemannian manifold and M be a non-degenerate sub-
manifold of M, with second fundamental form II and
mean curvature vector H. We’ll say that M is:
• critical if H = 0;
•marginally trapped if H is lightlike at all points;
• pseudo-umbilic if there is ρ ∈ C∞(M) such that

AH = ρ Id, where AH is the Weingarten operator
of H — in this case, ρ = 〈H, H〉;
• λ-isotropic, where λ ∈ C∞(M), if for all vector fi-

elds X ∈ X(M) we have 〈II(X), II(X)〉 = λ — we
say just isotropic when λ is not specified.

Let’s write

Mn
ν(c) =


Rn

ν , if c = 0;
Sn

ν , if c = 1, and;
Hn

ν , if c = −1,

for n ≥ 3 and 0 ≤ ν ≤ n. We will only consi-
der c ∈ {−1, 0, 1}. As usual, Rn

ν is the space Rn

equipped with the pseudo-Euclidean scalar pro-
duct whose matrix relative to the standard basis
is Idn−ν⊕ (−Idν), and

Sn
ν = {p ∈ Rn+1

ν | 〈p, p〉 = 1},
Hn

ν = {p ∈ Rn+1
ν+1 | 〈p, p〉 = −1}.

If Mn ⊆ Mn+2
ν (c) is a non-degenerate subma-

nifold with Lorentzian normal spaces, we’ll call
a pair (L+, L−) a Penrose frame (or null frame,
asymptotic frame, etc.) if both L+ and L− are
normal and lightlike vector fields normal to M,
whose product is a non-zero constant — here,
we’ll take it to be 2. In Minkowski space, here’s
a picture:

Figure: A Penrose frame for Mn ⊆ Rn+2
1 .

BASIC LEMMAS AND THE NULL II CASE

We start with a useful computational lemma:

Lemma 2. Let Mn ⊆ Mn+2
ν (c) be a non-degenerate

submanifold with Lorentzian normal spaces, (L+, L−)
a Penrose frame, and (Ei)

n
i=1 a (local) tangent frame

for M. Writing

AL±(Ej) =
n
∑
i=1

h±i
jEi and II(Ei, Ej) = h+ijL++ h−ijL−,

we have that
(i) 〈II(Ei, Ej, L±〉 = 2h∓ij

(ii) d(L±)(Ej) = −
n
∑
i=1

h±i
jEi +

1
2
〈d(L±)(Ej), L∓〉L±.

(iii) 2nH = tr(AL−)L++ tr(AL+
)L−.

With this in place, we adapt and correct a result
from [1]:
Lemma 3. Let Mn ⊆ Mn+2

ν (c) be a non-degenerate
submanifold with Lorentzian normal spaces, (L+, L−)
a Penrose frame. If II is always proportional to L+,
then so is H and the rank of d(L+) is at most 1. If
Mn ⊆Mn+2

1 (c) is spacelike, the converse holds.
This leads to:

Theorem 4. Let L0 ∈ R
n+2+|c|
ν+(c2+c)/2 be a lightlike vec-

tor and Mn ⊆ Mn+2
ν (c) be a non-degenerate sub-

manifold such that Mn ⊆ L⊥0 . Then M has null II,
constant sectional curvature c, and flat normal bundle.
Conversely, if Mn has lightlike II, every point in M has
a neighborhood contained in a lightlike hyperplane.
A small variation of the proof gives the:

Theorem 5. Let Mn ⊆Mn+2
ν (c) be a (simply connec-

ted) marginally trapped submanifold with flat normal
bundle. Then Mn is contained in a lightlike hyperplane
(and hence has lightlike II and constant sectional cur-
vature c).

FUNDAMENTAL EQUIVALENCES FOR
MARGINALLY TRAPPED SURFACES IN 4-DIM

AMBIENT SPACES

Now following [2], we obtain the following
lemma (originally stated only for spacelike surfa-
ces in Lorentzian ambient spaces:

Lemma 6. Let (Mn, 〈·, ·〉) be a pseudo-Riemannian
manifold and M2 ⊆ Mn be a non-degenerate λ-
isotropic surface. Then M is pseudo-umbilic and

3〈H, H〉 = 2λ + Kext,

where Kext is the extrinsic curvature of M.

Thus, we have:

Theorem 7. Let (M4, 〈·, ·〉) be a pseudo-Riemannian
manifold and M2 be a non-degenerate and marginally
trapped surface in M4. The following are equivalent:

(i) M is pseudo-umbilic;

(ii) M is 0-isotropic;

(iii) M is isotropic.

RIGIDITY IN SPACE-FORMS Mn+2
ν (c)

Theorem 4 here, together about generalities about
pseudo-Riemannian coverings (see [3]) give our
last result here:

Theorem 8. Fix c ∈ {−1, 0, 1}. Let Mn ⊆Mn+2
ν (c)

be a non-degenerate submanifold. Assume that M is
complete, simply connected, 0-isotropic and free of flat
points (i.e., where II = 0). Then:

(i) M is isometric to Mn
ν−1(c);

(ii) M is congruent to the image of a map
x : Mn

ν−1(c)→Mn+2
ν (c) given by

x(u) = (τ(u), u, τ(u)) ∈ R×Mn
ν−1(c)×R1,

where τ ∈ C∞(Mn
ν−1(c)), whose mean curvature

vector is given by

H ◦ x =
4τ + ncτ

n
(1, 0, 1).

Remark. Provided the function τ is not an eigenfunc-
tion of the spherical Laplacian (in Sn), this is a source
of compact marginally trapped submanifolds in the de
Sitter space Sn+1

1 .
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