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Abstract

This work aims to fill in the gaps and provide additional details in the first four chapters of
Daniel Freed’s notes [13], offering a more complete and accessible treatment of the material
presented there.

We begin by introducing the Data of States and Observables (DOSO) framework, an axiomatic
structure encoding states as convex sets and observables as complex topological vector spaces,
linking measurement, dynamics, and probability in a common language applicable to both clas-
sical and quantum theories.

Building upon this, we develop the geometric foundations through a study of Riemannian and
symplectic manifolds, highlighting their algebraic structures, global topological constraints, and
canonical examples such as cotangent bundles. The theory of symmetries and moment maps is
explored, emphasizing their role in conserved quantities and connections to geometric quantiza-
tion.

The foundations of Hamiltonian and Lagrangian mechanics are then examined from a geo-
metric and variational viewpoint. We rigorously formulate Hamiltonian flows on symplectic
phase spaces and variational principles on path spaces, showcasing the connection between the
Lagrangian and Hamiltonian formalisms via differential forms, conserved quantities, and sym-
plectic structures on solution spaces.

Finally, we present an introduction to spectral theory, bridging finite-dimensional linear al-
gebra and infinite-dimensional operator analysis. Key results include spectral decompositions
via projection-valued measures, functional calculi, and the spectral theorem for self-adjoint op-
erators. These concepts underpin the mathematical formulation of quantum observables and
dynamics, linking to unitary group representations and C∗-algebraic structures.
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About

Introduction: This text grew out of a reading course at Williams College, MATH 497: Geometry
and Quantum Theory, during the Spring 2025 term. The course was based on reading [13], and we
met once a week for two hours to discuss the material in depth.

These notes were prepared collaboratively by four undergraduate students: Brennan Halcomb, Gary
Hu, Rauan Kaldybayev, Theodore Mollano. We gratefully acknowledge the guidance and support
of our advisor, Ivo Terek, whose expertise and encouragement greatly enriched this project.

Goal: Daniel Freed discusses quantum and classical physics from a geometric viewpoint. In our
notes, we aim to fill in some of the gaps in [13], providing additional background, details, and
motivation where helpful.

Background: We assume familiarity with functional analysis and differential geometry at the level
of introductory graduate courses. A basic understanding of classical and quantum mechanics will
also be helpful.

Remarks on Specific Chapters:

• Chapter 1: States and Observables

Freed begins by introducing DOSO (Data of States and Observables), an abstract framework
that unifies classical, quantum, and statistical mechanics in a precise, formal way. It specifies
some general properties we expect from a physical system. We recommend skimming Lecture
1 initially and returning to it as needed when specific concepts arise in later chapters. This
approach lets you focus first on the more concrete and accessible material before revisiting the
formal foundations.

• Chapter 2: Riemannian and Symplectic Manifolds

This chapter takes a geometric detour to contrast Riemannian and symplectic structures.
Rather than developing either theory in depth, we focus on their foundational similarities and
differences. The material sets the stage for the symplectic viewpoint on classical mechanics
developed in the next chapter.

• Chapter 3: Hamiltonian and Lagrangian Mechanics

We approach classical mechanics from a geometric perspective, prioritizing geometric structure
over physical intuition. Rather than modeling real-world systems, we use symplectic and
Riemannian geometry to explore the underlying mathematics. Physical examples appear only
to clarify abstract ideas; for a more physics-centered approach, traditional physics texts are
recommended.

• Chapter 4: Spectral Theorems

Instead of looking at spectral theorems just from an analytic point of view, we also consider
the algebraic and geometric parts to tell a more connected story. We also briefly explore
generalizations using harmonic analysis, including ideas like Pontryagin duality.
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1 States and Observables

Abstract

We begin by introducing the Data of States and Observables (DOSO) framework, a foundational
axiomatic system for the mathematical description of physical systems. DOSO aims to unify
core concepts of states, observables, measurement, and dynamics across different physical the-
ories. It axiomatizes a state space S as a real convex set (pure states being its extreme points)
and a space of potential observables O as a complex topological vector space with structures like
a real structure, a Lie algebra on a dense subspace, and a functional calculus. A measurement
pairing links observables and states to probability distributions, and a mechanism for dynamics
describes transformations generated by observables.

We then illustrate how to apply the DOSO framework to classical mechanics. Here, pure states
correspond to points in phase space, observables to real-valued functions, the Lie algebra to
Poisson brackets, and dynamics to Hamiltonian flows. The framework naturally accommodates
statistical classical mechanics through probability measures on phase space.

Finally, we discuss how to apply DOSO to quantum mechanics. States are represented by den-
sity operators on a Hilbert space (pure states by rank-one projectors), observables by self-adjoint
operators, the Lie algebra by commutators, and dynamics by unitary evolution. The abstract
DOSO structure provides a common language compare classical and quantum mechanics.

Contents

1.1 Our Basic Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Data of States and Observables (DOSO) . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Axiom 1: The Space of States (S) . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Axiom 2: The Algebra of Observables (O) . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Axiom 3: Dynamics and Symmetries . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.5 Summary of DOSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.6 Compatibilities Among DOSO Data . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.7 Expectation Values and Separability . . . . . . . . . . . . . . . . . . . . . . . 14
1.1.8 Further Remarks on the Axiom System . . . . . . . . . . . . . . . . . . . . . 14
1.1.9 Motion and Mechanical Systems . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 DOSO for Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 A Particle in Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 DOSO Data for the Classical Particle . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 The Symplectic Form for the Particle Example . . . . . . . . . . . . . . . . . 20
1.2.4 Dynamical Systems: Local versus Global Perspectives . . . . . . . . . . . . . 21

1.3 DOSO for Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1 Hilbert Spaces and Planck’s Constant . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2 DOSO Data for Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . 23

References: For foundational texts on the mathematical foundations of quantum mechanics, see
[7], [35], [31], [22]. For more modern treatments of quantum theory, see [16], [34], and [10]. For
essential mathematical tools like functional analysis, see [5], [28], [30], [26], [6], and [25]. For classical
mechanics, including Hamiltonian systems and symplectic geometry, see [1], [32], and [24]. For
geometric tools related to Lie groups, see [36] and [15].
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1.1 Our Basic Axioms

1.1.1 Data of States and Observables (DOSO)

Describing physical reality mathematically requires a precise language, which we develop here. Cen-
tral to any physical theory are the notions of state (a complete description of a system at a given
time), observable (a measurable property), and dynamics (how states or observables evolve in time).
We adopt a general axiomatic framework encompassing classical mechanics, statistical mechanics,
and, of particular interest, quantum mechanics and quantum field theory.

A physical system consists of its states, observables, and the pairing that assigns a value to each
observable in a given state. For example, fix an integer k > 0 and consider k particles moving in
Euclidean space. A state is the collection of the particles’ positions and velocities at a fixed time.
An observable is a real-valued function on trajectories: for instance, the distance between the 2nd
and 13th particles at 4:45 AM on January 10, 2023.

Now that we have the intuition down, we describe our axiomatization of states and observables.

Definition 1.1 (Data of States and Observables (DOSO)). The data describing a physical system
in terms of its states and observables comprises the following structures and their interactions:

1. (States.) A real convex space S. Elements of S are states, extreme points of S are pure states,
and non-extreme points are mixed states. Let PS ⊂ S denote the subset of pure states.

2. (Observables.) A complex topological vector space O called the algebra of observables1,
equipped with a real structure, i.e., an antilinear involution A 7→ A∗. Elements of

OR = {A ∈ O | A∗ = A},

the subspace of real (or self-adjoint) elements of O, are called observables. There are the
following additional structures.

(a) A measurement pairing :
OR × S −→ Prob(R)

(A, σ) 7→ σA

where Prob(R) is the space of probability measures on R (equipped with its Borel σ-
algebra).

(b) A map, called functional calculus for observables:

Borel(R;R)×OR −→ OR

(f,A) 7→ f(A).

3. (Dynamics.) A dense subspace O∞ ⊆ O equipped with a complex Lie algebra structure. Let
O∞

R be the space of real elements of O∞. For each A ∈ O∞
R , there exist

(a) a one-parameter group of automorphisms of S;

(b) a one-parameter group of automorphisms of O.

Now, we briefly explain the purpose of each part of the axiomatization. Simultaneously, we introduce
the full set of mathematical tools that this axiom provides us access to.

1It is OR whose elements are observables. We consider the larger vector space O for mathematical convenience.
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1.1.2 Axiom 1: The Space of States (S)

Axiom 1: A real convex space S. Elements of S are states, extreme points of S are pure states, and
non-extreme points are mixed states. Let PS ⊂ S denote the subset of pure states.

Remark 1.2. Typically, S is a convex subset of a real topological vector space.

Remark 1.3. In addition to making possible a unified treatment of pure states and mixed states,
the introduction of a convex structure opens the door to tools from convexity theory, such as the
Krein-Milman Theorem2 and Choquet’s Theorem3.

Before we discuss why convex structure constitutes part of the “correct axiomatization,” let’s first
define all of the relevant terms.

Definition 1.4.

• Let V be a real vector space. A subset C ⊆ V is called a convex set if for any two elements
x, y ∈ C and for any real number t ∈ [0, 1], the element tx+(1−t)y is also in C. The expression
tx+ (1− t)y is called a convex combination of x and y.

• Let C be a convex set. An element e ∈ C is called an extreme point of C if it cannot be written
as a non-trivial convex combination of two distinct points in C. More formally, e ∈ C is an
extreme point if for any x, y ∈ C and any t ∈ (0, 1) (note the open interval), the condition
e = tx+(1− t)y implies that x = y = e. A non-extreme point of a convex set S is any element
σ ∈ S that is not an extreme point.

Given two states σ1 and σ2 with probabilities p1 and p2 such that p1 + p2 = 1, there should be
a state σ′ representing the system being in σ1 with probability p1 and in σ2 with probability p2.
We call this a statistical mixture and write it as p1σ1 + p2σ2. Although it may not be obvious at
first that statistical mixtures can be treated as linear combinations of states, this approach works
well due to key properties of these mixtures. For instance, p1σ1 + p2σ2 = p2σ2 + p1σ1. Statistical
mixtures play a fundamental role in statistical physics, and the framework of convex sets provides
the proper mathematical setting for understanding and manipulating these combinations.

We choose the extreme points of the convex space to be our pure states because physically, pure
states represent states of maximal knowledge. They are “indecomposable” in the sense that they
cannot be viewed as statistical mixtures of other, different states. Identifying pure states is important
as they often form the “building blocks” of the theory. Then, it naturally follows that we should
define the mixed states as the non-extreme points.

Example 1.5 (Classical mechanics). In classical statistical mechanics, states are probability mea-
sures on the phase space, and the space of such measures is convex. A pure state is a Dirac measure

2A compact convex subset of a Hausdorff locally convex topological vector space is equal to the closed convex hull
of its extreme points.

3Let C be a compact convex subset of a normed space V . Given c ∈ C, there exists a probability measure w
supported on the set E of extreme points of C such that, for any affine function f on C,

f(c) =

∫
f(e) dw(e).
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at some phase space point, representing the system certainly being in that phase space configuration.

Example 1.6 (Quantum mechanics). In quantum mechanics, states are density operators ρ on a
Hilbert space H. These are positive trace-class operators4 with Tr(ρ) = 1. The set of such operators
is convex. A pure state is equal to a projection |ψ⟩⟨ψ| for some unit vector |ψ⟩ ∈ H. Such a state
cannot be written as ρ = p ρ1+(1−p) ρ2 for 0 < p < 1 and ρ1, ρ2 ̸= ρ being other density operators.

Let’s move onto the next axiom.

1.1.3 Axiom 2: The Algebra of Observables (O)

Axiom 2: A complex topological vector space O called the algebra of observables5, equipped with a
real structure, i.e., an antilinear involution A 7→ A∗. Elements of

OR = {A ∈ O | A∗ = A},

the subspace of real (or self-adjoint) elements of O, are called observables. There are the following
additional structures.

1. A measurement pairing:
OR × S −→ Prob(R)

(A, σ) 7→ σA

where Prob(R) is the space of probability measures on R (equipped with its Borel σ-algebra).

2. A map, called functional calculus for observables:

Borel(R;R)×OR −→ OR

(f,A) 7→ f(A).

The space O and its associated structures provide the mathematical representation of physical
quantities that can be measured. There is quite a few properties to discuss, and we survey them
one by one.

Definition 1.7 (Complex Topological Vector Space). A complex topological vector space is a vector
space over the field of complex numbers C that is endowed with a topology such that vector addition
(u, v) 7→ u+ v and scalar multiplication (λ, v) 7→ λv are continuous functions.

Topological vector space structure. If A1 and A2 are observables and λ a real number, then, of
course, we can define observables A1 +A2 and λA1 – therefore, the mathematical object containing
all observables should be a real vector space. Thus, we put observables into the real vector space O.

Approximation is an invaluable technique in physics. Therefore, we require O to be a topological vec-
tor space, meaning that there is a reasonable notion of continuity and limits. Any finite-dimensional
vector space has an obvious topology, namely, the Euclidean one – yet one has to be careful in the

4Let H be a separable Hilbert space. A (not necessarily positive) bounded operator T : H → H is called trace-class
if and only if Tr(|T |) < ∞ where |T | :=

√
T ∗T .

5It is OR whose elements are observables. We consider the larger vector space O for mathematical convenience.
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infinite-dimensional case. Many observables, like position and momentum, are unbounded opera-
tors, requiring operator topologies (norm, strong, weak) for rigorous treatment. This topological
structure enables the use of functional analysis, the most useful tool for infinite-dimensional systems
in quantum mechanics and field theory.

Complex vector space structure. We go a step further and say that O is a complex vector
space. Making O a complex vector space is motivated partly by quantum mechanics, a theory that
is naturally expressed in complex vector spaces. Considering complex numbers is also mathematically
convenient. Firstly, they offer a richer algebraic structure essential for tools like spectral theory and
Fourier transforms. Secondly, complexifying function spaces, such as C(X,C), simplifies analysis.

Example 1.8. In classical mechanics, O might be a space of functions on phase space, like C(M)
(continuous functions on the phase space manifold M) or Lp(M,dµ) (functions whose p-th power
is integrable with respect to a measure µ), which are often Banach spaces and thus topological
vector spaces. In quantum mechanics, O is typically related to the algebra B(H) of bounded linear
operators on a Hilbert space H, or more generally, a C∗-algebra or a von Neumann algebra.

Definition 1.9 (Real Structure on a Complex Vector Space). A real structure on a complex vector
space V is an antilinear map J : V → V (often denoted by A 7→ A∗) such that J2 = id (i.e.,
J(J(A)) = (A∗)∗ = A for all A ∈ V ). An antilinear map J satisfies J(λA+ µB) = λ̄J(A) + µ̄J(B)
for all A,B ∈ V and λ, µ ∈ C. The set of fixed points of J , VR = {A ∈ V | J(A) = A}, forms a real
vector space.

Real structure. Complexifying O comes with the obvious drawback that not every A ∈ O is an
observable. Intuitively, the complex structure of O would conflict with the fact that outcomes of
physical measurements are always real numbers. (We will discuss measurement in later.) Complex
numbers are nice to work with, yet the outcomes of physical measurements are always real numbers.
The usefulness of a real structure lies in its ability to bridge the potentially complex algebraic
framework of O with the real-valued nature of physical measurements.

Example 1.10. In classical mechanics, if O is taken as the space of complex-valued functions on
phase space M , C(M,C), then the star operation A∗ corresponds to pointwise complex conjugation
f 7→ f̄ , and observables OR are the real-valued functions C(M,R). In quantum mechanics, if O is
an algebra of operators on a Hilbert space H (like B(H)), then A∗ is the standard operator adjoint,
and OR comprises the self-adjoint (Hermitian) operators.

This axiom formalizes the important connection between the abstract mathematical objects of the
theory (states and observables) and the empirical results obtained from physical measurements. It
essentially defines how to extract predictions for experimental outcomes from the theory.

Definition 1.11 (Probability Measure on R). A probability measure on R (more precisely, on the
Borel σ-algebra of R, denoted Borel(R)) is a function P : Borel(R)→ [0, 1] such that:

1. P (E) ≥ 0 for all E ∈ Borel(R) (non-negativity).

2. P (R) = 1 (normalization).

3. For any countable sequence of pairwise disjoint Borel sets E1, E2, . . . , P (
⋃∞
i=1Ei) =

∑∞
i=1 P (Ei)

(countable additivity or σ-additivity).
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The space of all such probability measures on R is denoted by Prob(R).

Measurement pairing. This bullet point should come rather naturally. Observables are physical
quantities that can be measured. If some observable is measured in some state, the outcome is
not always deterministic – in quantum mechanics, for example, measurement includes an intrinsic
element of randomness. For this reason, we say that measuring an observable A in a state σ produces
results distributed according to some distribution σA.

Example 1.12. In classical mechanics, if the state σ is a pure state, corresponding to a specific
point x0 in phase space, and A is an observable represented by a function A(x) on phase space,
the measurement is deterministic. The resulting probability measure σA is then the Dirac delta
measure δA(x0), which assigns probability 1 to the single value A(x0) and 0 to any set not containing
A(x0). If σ is a classical mixed state, represented by a probability measure µ on phase space (e.g., a
Liouville distribution), then σA is the pushforward measure A∗µ, defined by (A∗µ)(E) = µ(A−1(E))
for any Borel set E ⊂ R. This gives the probability distribution for the values of A(x) when x is
sampled according to µ. In quantum mechanics, the probabilistic nature is even more apparent. If
σ is a pure state represented by a normalized vector |ψ⟩ in a Hilbert space H, and A is a self-adjoint
operator, the spectral theorem associates A with a unique projection-valued measure (PVM) ΠA.
The probability that a measurement of A yields a value in a Borel set E ⊂ R is then given by
⟨ψ,ΠA(E)ψ⟩. This expression defines the measure σA(E). For a quantum mixed state described by
a density operator ρ, this generalizes to σA(E) = Tr(ρΠA(E)). This formulation, often referred to
as the Born rule (or its generalization), is very important in quantum theory.

Definition 1.13 (Borel Measurable Function). Let (X, T ) be a topological space, and let B(X) be
the Borel σ-algebra on X (the smallest σ-algebra containing all open sets in T ). Let (Y,F) be a
measurable space (a set Y with a σ-algebra F of subsets of Y ). A function h : X → Y is Borel
measurable (or simply Borel) if for every set S ∈ F , the preimage h−1(S) = {x ∈ X | h(x) ∈ S} is
in B(X). For the functional calculus, f : R→ R, both the domain and codomain are equipped with
their standard Borel σ-algebras.

Functional calculus. Intuitively, if A is an observable and f is a function, it is natural that we
can define an observable f(A) as follows: for a physical measurement in which A would have been
measured to have value a ∈ R, the observable f(A) is f(a). The definition of a functional calculus
for observables only makes this intuition precise.

The functional calculus, a map (f,A) 7→ f(A) from Borel(R;R)×OR to OR, allows for the construc-
tion of new real observables from existing ones by applying real-valued Borel measurable functions.
If A is an observable representing a physical quantity, and f : R→ R is such a function, then f(A)
is also considered a well-defined observable. The choice of Borel functions is significant because this
class is sufficiently broad to include most functions of practical interest in physics, such as polyno-
mials (e.g., forming A2), exponentials (e.g., ecA), and characteristic functions of intervals or other
Borel sets (e.g., χE(A), which acts as a projector onto measurement outcomes of A lying in the
set E). Furthermore, the set of Borel functions is well-behaved with respect to pointwise limits of
sequences of functions.

Example 1.14. In classical mechanics, if an observable A is represented by a real-valued function
A(q, p) on phase space, then f(A) is simply the composite function (f ◦ A)(q, p). In quantum
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mechanics, for a self-adjoint operator A, the functional calculus f(A) is rigorously defined via the
spectral theorem. If A has a spectral decomposition A =

∫
σ(A)

λ dPλ, where Pλ is its spectral

measure and σ(A) its spectrum, then f(A) is defined as f(A) =
∫
σ(A)

f(λ) dPλ.

1.1.4 Axiom 3: Dynamics and Symmetries

Axiom 3: A dense subspace O∞ ⊆ O equipped with a complex Lie algebra structure. Let O∞
R be the

space of real elements of O∞. For each A ∈ O∞
R , there exist

1. a one-parameter group of automorphisms of S;

2. a one-parameter group of automorphisms of O.

This axiom introduces the notion of evolution or transformation within the system, establishing how
changes, such as time evolution or symmetry operations, are generated by certain well-behaved real
observables. It provides the framework for dynamics and continuous symmetries.

Definition 1.15 (Complex Lie Algebra). A complex Lie algebra is a vector space L over the complex
numbers C, equipped with a binary operation [·, ·] : L × L → L, called the Lie bracket, satisfying
the following properties for all A,B,C ∈ L and α, β ∈ C:

1. Bilinearity: [αA+ βB,C] = α[A,C] + β[B,C] and [A,αB + βC] = α[A,B] + β[A,C].

2. Antisymmetry: [A,B] = −[B,A].

3. Jacobi Identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

The existence of a complex Lie algebra structure is a natural axiom motivated by the evolution of
observables in the Heisenberg picture, which we talk about later. In classical mechanics, the Poisson
bracket {f, g} plays a similar role in Hamiltonian dynamics and canonical transformations. The
“complex” nature of the Lie algebra makes the bracket C-bilinear. Compatibility conditions like
[A1, A2]

∗ = [A∗
1, A

∗
2] ensure the real structure interacts coherently with the Lie bracket, implying

that the real subspace O∞
R forms a real Lie subalgebra. This Lie algebra structure is essential for

understanding the non-commutative nature of observables, central to both classical and quantum
Hamiltonian mechanics, continuous symmetries (via Noether’s theorem), and quantization proce-
dures that relate classical Poisson algebras to quantum Lie algebras.

Definition 1.16 (Dense Subspace). Let X be a topological space and S be a subspace of X (i.e.,
S ⊆ X with the induced topology). S is a dense subspace of X if the closure of S in X is X itself
(S̄ = X). Equivalently, for every point x ∈ X and every open neighborhood U of x, U ∩ S ̸= ∅.

Putting the Lie algebra structure a dense subspace O∞ ⊂ O addresses the common situation in
physics where certain algebraic operations (like forming Lie brackets) or analytical procedures (such
as differentiation with respect to parameters) are well-defined or exhibit better behavior only on
a smaller, more “regular” or “smoother” subset of observables. This O∞ represents such a well-
behaved subset. The property of density is critical because it ensures that properties defined on
O∞, or elements within it, can often be extended by continuity or approximation to the entirety of
O. Thus, this dense subspace provides a well-behaved domain for structures like the Lie algebra,
which might not be definable or manageable on all of O.
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Example 1.17. In classical mechanics, if O is a space like L2(M) or C0(M) (continuous functions
vanishing at infinity), O∞ might be C∞(M), the space of smooth functions on phase space. Poisson
brackets, important to Hamiltonian dynamics, are naturally and rigorously defined on C∞(M),
which is dense in many relevant larger function spaces. In quantum mechanics, if dealing with
unbounded operators, O∞ could be a common, dense domain of important self-adjointness for a set
of operators, or it might represent operators that are “smooth” with respect to a given dynamical
evolution. For instance, the commutator of two unbounded self-adjoint operators might not be
densely defined or lead to another self-adjoint operator without careful consideration of domains,
necessitating the selection of a suitable O∞.

Definition 1.18 (One-Parameter Group of Automorphisms). A one-parameter group of automor-
phisms on a space X (either S or O) is a family of automorphisms {ϕt}t∈R indexed by a real
parameter t (often representing time or a continuous symmetry parameter) such that:

1. ϕ0 = id (the identity map on X).

2. ϕt ◦ ϕs = ϕt+s for all t, s ∈ R (group homomorphism property).

3. The map t 7→ ϕt(x) is continuous for each x ∈ X (continuity property, with respect to the
topology on X and R). The type of continuity (e.g., strong, weak) depends on the context and
topology of X.

Physical transformations, such as time evolution, spatial translations, or rotations, are typically
understood to be generated by specific real physical quantities: the Hamiltonian generates time
evolution, momentum generates spatial translations, angular momentum generates rotations, and so
on. The restriction of generators to O∞

R ensures that these are indeed real observables and that they
are “sufficiently well-behaved” (due to being in O∞) for the generated transformations to be well-
defined, for example, leading to differentiable paths for states or observables, or forming strongly
continuous one-parameter groups as per Stone’s theorem, which we discuss in Lecture 4.

By Axiom 3, every A ∈ O∞ has associated with it a one-parameter group of automotphisms of
S (evolution of states) and another such group for O (evolution of observables). The first map,
where a generator A ∈ O∞

R gives rise to a one-parameter group of automorphisms {αAt }t∈R on S,
corresponds to the Schrödinger picture. In this picture, the observables are considered fixed (or only
explicitly time-dependent), while the state of the system σ evolves according to σ(t) = αAt (σ(0)).
The second map, where A generates a group {βAt }t∈R on O, corresponds to the Heisenberg picture.
Here, the state σ is considered fixed, while the observables A evolve according to A(t) = βAt (A(0)).
For the framework to be consistent, these two pictures must yield equivalent physical predictions for
the measurement outcomes σA(t). This implies a compatibility condition between how states and
observables transform, ensuring that the probability measure (σ(t))A (Schrödinger) is the same as
σ(A(t)) (Heisenberg).

Example 1.19. In quantum mechanics, time evolution is governed by the Hamiltonian operator
H ∈ O∞

R . In the Schrödinger picture, state vectors evolve as |ψ(t)⟩ = Ut |ψ(0)⟩, where Ut = e−itH/ℏ

is a one-parameter unitary group. This induces automorphisms on the space of density operators
(states S) via ρ(t) = Utρ(0)U

∗
t . Observables (operators) do not evolve in time unless explicitly

specified. In the Heisenberg picture, observables evolve as A(t) = U∗
t A(0)Ut, while states do not

evolve in time. Both Ut(·)U∗
t and U∗

t (·)Ut are one-parameter groups of automorphisms on the
appropriate spaces.
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Example 1.20. In classical mechanics, a Hamiltonian function H ∈ C∞(M) ⊂ O∞
R generates a

Hamiltonian flow ϕt on phase space M , which is a one-parameter group of symplectomorphisms,
which we discuss in Lecture 2. This flow induces an evolution of states (probability measures on
M) via the pushforward, µt = (ϕt)∗µ0, and an evolution of observables (functions on M) via the
pullback, ft = f ◦ ϕ−t.

The usefulness of Axiom 3 lies in how it allows the theory to make predictions about how physical
systems change over time. Beyond time evolution, it provides the mathematical machinery to
describe continuous symmetries of the system. If a transformation leaves the system’s properties
invariant, its generator (an element of O∞

R ) is often a conserved quantity associated with that
symmetry. This is the concept behind Noether’s theorem, linking symmetries to conservation laws,
an important principle in physics.

1.1.5 Summary of DOSO

The following table summarizes the relationship between DOSO and three physical frameworks:
classical mechanics, statistical mechanics, and quantum mechanics. The three physical theories are,
of course, not mutually exclusive: statistical physics studies classical as well as quantum systems. We
show how DOSO translates into the terms and conventions commonly used in classical mechanics,
statistical mechanics, and quantum mechanics.

DOSO Component Classical Mechanics (CM) Statistical Mechanics (SM) Quantum Mechanics (QM)

1. Space of States (S) Pure: Phase space point.
Mixed: Probability measure on
phase space.

State: Probability measure on
phase space.
Pure (SM): Dirac delta measure (mi-
crostate).
Mixed: Ensemble.

State: Density operator.
Pure: Rank-one projector.
Mixed: Non-projector density oper-
ator.

2. Space of Operators (O) & Struc-
tures

Observables: Real functions on
phase space.
Smooth Subspace: Smooth functions.
Lie Algebra: Poisson bracket.
Functional Calculus: Function com-
position.

Observables: Real functions on
phase space.
Smooth Subspace: Smooth functions.
Lie Algebra: Poisson bracket (for Li-
ouville eq.).
Functional Calculus: Function com-
position (for averages).

Observables: Self-adjoint operators.
Smooth Subspace: E.g., Bounded op-
erators or specific domains.
Lie Algebra: Commutator.
Functional Calculus: Defined via the
spectral theorem.

3. Measurement Pairing Deterministic value for pure states. Pushforward measure for ensem-
bles.

Born Rule (probabilistic out-
comes).

4. Dynamics & Symmetries Hamilton’s equations for phase
space points.
Poisson bracket with the Hamilto-
nian for observables.

Liouville’s equation for probability
density.

Schrödinger equation for states
(density operators/wavefunctions).
Heisenberg equation of motion for
operators.

1.1.6 Compatibilities Among DOSO Data

The structures outlined in Axiom System 1.1 are not independent but must satisfy certain important
compatibility conditions for the framework to be coherent and physically meaningful. The following
are some examples of such requirements.

For f ∈ Borel(R;R), A,A1, A2 ∈ O, σ, σi ∈ S, and positive real numbers xi (more accurately
pi ∈ [0, 1]) with

∑
pi = 1 (for a convex combination p1σ1 + p2σ2 + . . . ), we require:

1. Linearity of measurement with respect to state mixing: If σ =
∑
i piσi is a mixed state,

then the probability distribution of A in state σ is the corresponding mixture of probability
distributions: (∑

i

piσi

)
A

=
∑
i

pi(σi)A

This condition is important to the interpretation of mixed states as statistical ensembles. The
probability distribution obtained from a mixed state is precisely the weighted average of the
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probability distributions obtained from its underlying states. This applies to the probability
measures themselves, implying linearity for expectation values as well.

2. Behavior of measurement for sums/functions of independent observables:

σA1+A2
= σA1

∗ σA2
=

∫ ∞

−∞
σA1

(y) · σA2
(x− y) dy

This states that the probability distribution for the sum of two independent observables A1, A2

is the convolution of their individual probability distributions. This is a standard probability
assumption that is true in classical, statistical, and quantum mechanics.

3. Compatibility of the Lie bracket with the real structure:

[A1, A2]
∗ = [A∗

1, A
∗
2] for A1, A2 ∈ O∞

This condition ensures that the real structure (the ∗-involution) is compatible with the Lie
algebra structure on O∞. It means that ∗ is an antilinear Lie algebra automorphism. An
important consequence is that if A1, A2 are real observables (i.e., A∗

1 = A1, A
∗
2 = A2), then

[A1, A2]
∗ = [A1, A2]. This implies that [A1, A2] is also a real observable, provided the Lie

bracket itself maps pairs of real observables to real observables.

In classical mechanics, the compatibility of the Poisson bracket with the real structure ensures
that the evolution of observables in phase space preserves their real values, while maintain-
ing the consistency of symmetries and conserved quantities (e.g., energy, momentum) under
canonical transformations. In statistical mechanics, the real structure guarantees that macro-
scopic thermodynamic quantities, such as the partition function and free energy, remain real
and well-defined, while ensuring that the statistical evolution respects the symmetries of the
system (e.g., time-reversal or gauge invariance). In quantum mechanics, this ensures that
commutation relations between Hermitian operators preserve the Hermitian property, thus
guaranteeing real eigenvalues for physical observables.

For H ∈ O∞
R (a real, well-behaved observable, often the Hamiltonian or a symmetry generator), let

σ 7→ σ(t)

A 7→ A(t)

denote the generated one-parameter groups of automorphisms of S and O, respectively. Then:

1. The Heisenberg equation of motion:

d

dt
A(t) + [H,A(t)] = 0, for A ∈ O∞, t ∈ R

This is the abstract form of the Heisenberg equation of motion. It describes how an observable
A (from the “smooth” set O∞) evolves in time, A→ A(t), under the influence of the generator
H. The Lie bracket [H,A(t)] dictates the rate and manner of this change.

The existence and uniqueness of solutions to this differential equation are very important, but
we will not discuss it here.
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2. Equivalence of Schrödinger and Heisenberg pictures for measurement outcomes:

(σ(t))A = σA(t) , for σ ∈ S, A ∈ O, t ∈ R

This is a important consistency condition. It states that the probability distribution for mea-
suring a fixed observable A in an evolved state σ(t) (Schrödinger picture) is identical to the
probability distribution for measuring the evolved observable A(t) in the initial state σ (Heisen-
berg picture). This ensures that the physical predictions are independent of the “picture” we
artificially adopted, establishing a duality between the two pictures.

1.1.7 Expectation Values and Separability

From the measurement pairing, we can define the expectation value (or average measured value) of
an observable.

Definition 1.21 (Expectation Value). Given a state σ ∈ S and a real observable A ∈ OR, the
probability measure σA ∈ Prob(R) describes the distribution of outcomes if A is measured in state
σ. The expectation value of A in state σ, denoted ⟨A⟩σ, is defined as the mean of this distribution:

⟨A⟩σ :=

∫
R
λ dσA(λ)

provided the integral exists. This defines a real-valued pairing S ×OR → R.

The expectation value ⟨A⟩σ represents the average result that would be obtained from a large number
of independent measurements of the observable A on identical copies of the system, each prepared
in the state σ. It is one of the most important quantities extracted from the probability distribution
σA.

An important property of this pairing is that it “separates points”:

1. If σ1, σ2 ∈ S satisfy ⟨A⟩σ1
= ⟨A⟩σ2

for all A ∈ OR for which the expectation values are defined,
then σ1 = σ2.

This means that distinct states must be distinguishable by at least one observable’s expectation
value. If two states yield the same average outcome for every possible measurement, they are
the same state. This ensures that the space of states S does not contain redundant information.

2. If A1, A2 ∈ OR satisfy ⟨A1⟩σ = ⟨A2⟩σ for all σ ∈ S for which the expectation values are defined,
then A1 = A2 (in OR).

This is the same thing, but for observables. Distinct observables must be distinguishable by
their expectation value in at least one state. If two observables yield the same average outcome
in every possible state of the system, they are the same observable. This ensures that OR does
not contain operationally redundant elements.

This separation property implies that the pairing ⟨·, ·⟩ : S ×OR → R is non-degenerate.

1.1.8 Further Remarks on the Axiom System

We make several remarks about Axiom System 1.1.
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Remark 1.22 (Interpretations and Implications).

1. Schrödinger vs. Heisenberg Pictures: The equation σ(t)
A = σA(t) is the mathematical expres-

sion of the physical equivalence between the Schrödinger picture (where states evolve in time
and observables are fixed) and the Heisenberg picture (where states are fixed and observables
evolve). The laws of physics should not depend on which calculational framework one chooses
to describe the evolution of measurement outcome probabilities.

2. Probabilistic Nature of Measurement: Measurement is inherently probabilistic in quantum me-
chanics. In classical mechanics, if a system is in a pure state σ (e.g., a specific point in phase
space detailing all positions and momenta), then the outcome σA of measuring an observable A
(a function on phase space) is a point measure (Dirac delta measure at the value A(σ)). Thus,
for pure classical states, measurement is deterministic. Probability enters classical mechanics
only through mixed states (statistical ensembles, e.g., in statistical mechanics), where σA will
generally be a measure with positive variance, reflecting our ignorance of the precise pure state.

In quantum mechanics, by contrast, even for a pure state (e.g., a state vector |ψ⟩), the result
of measuring most observables A is probabilistic, and σA will have positive variance (unless
|ψ⟩ is an eigenstate of A). This probabilistic nature is inherent to quantum mechanics.

3. Construction of Mixed States from Pure States: There is a map

Prob(PS0) −→ S

(where PS0 is the set of pure states) that averages pure states over a probability measure to
produce a general (mixed) state. If µ is a probability measure on PS0, then a state σµ ∈ S
can be defined by σµ =

∫
PS0

π dµ(π). This expresses the idea that any state can be seen as
a statistical mixture of pure states. This is formally captured by Choquet theory for compact
convex sets, where states are represented by barycentric integrals over extreme points.

4. Symmetries of DOSO: A symmetry of the “Data of States and Observables” (DOSO) is a
collection of automorphisms of S and of O that preserve all the defining structures and com-
patibilities: the convex structure of S, the algebraic and topological structure of O, the real
structure, the Lie bracket on O∞, the functional calculus, and the measurement pairing. The
group of all such symmetries is typically very large. Physical theories often study specific sub-
groups of this full symmetry group, which correspond to physical invariances (e.g., Poincaré
symmetry in relativistic theories). Wigner’s theorem in quantum mechanics provides a useful
characterization of symmetries.

1.1.9 Motion and Mechanical Systems

The general DOSO framework provides the static structure. Dynamics is introduced by selecting a
specific notion of “motion.”

Definition 1.23 (Motion and Mechanical System). Suppose a DOSO (Axiom System 1.1) is given.

• A motion is the data of compatible one-parameter groups of automorphisms of S and of O.
These are denoted

σ 7→ σ(t)

A 7→ A(t)

for t ∈ R.
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• The compatibility condition is that these flows are adjoint with respect to the measurement
pairing:

σ(t)
A = σA(t)

• A mechanical system is a DOSO together with a fixed, specified motion.

A “motion” singles out a particular way the system evolves, typically interpreted as time evolution.
A mechanical system is thus not just the set of possible states and measurements, but also the
rule governing how these change over time. We have ensured that this rule is physically consistent
regardless of whether we view states or observables as evolving.

Remark 1.24 (Properties of Motion).

1. Generation by a Hamiltonian: In many important cases (Hamiltonian systems), the flows
defining the motion are generated by a specific real observable H ∈ O∞

R , called the Hamiltonian
of the system, via the mechanism described in Axiom 4. The Hamiltonian represents the total
energy of the system in many physical contexts. If the flow is generated by H, then H itself is
conserved under this flow (i.e., H(t) = H, or [H,H] = 0).

2. Time Translation Group: The flows typically represent an action of the additive group R of
real numbers, interpreted as time translations. This is the idea that the laws of physics are
invariant under shifts in time.

3. Structure of Time: Time is modeled as an affine line A1(R), whose group of translations is
R. For simplicity, one often uses the standard real line R. More sophisticated models might
involve relativistic notions where time is part of a spacetime manifold, but for non-relativistic
mechanics, this simple model of a uniform, universal time is usually sufficient. The affine
structure means there’s a notion of duration, but no preferred origin. If a Euclidean structure
is added, one has a metric for time intervals.

4. Symmetries of a Mechanical System: The symmetry group of a mechanical system is a sub-
group of the full symmetry group of its underlying DOSO. In addition to preserving the static
structures, these symmetries must also preserve the specific motion (dynamics). That is, if α
is a symmetry transformation, it must commute with the time evolution: α(σ(t)) = (α(σ))(t)

and α(A(t)) = (α(A))(t) (or, if the symmetry itself is time-dependent, a more general condi-
tion applies). For Hamiltonian systems, this often means the symmetry transformation must
commute with the Hamiltonian, or leave the Hamiltonian invariant.

The possibility of time-reversal symmetries requires special treatment (e.g., they are often re-
alized by anti-unitary operators in quantum mechanics), which we will not do now.

Often, a particular state σ ∈ S (e.g., a vacuum state or ground state) might be fixed as part
of the data of a mechanical system, and symmetries might be required to preserve this special
state.

Definition 1.25 (Stationary State). Fix a mechanical system with its defined motion σ 7→ σ(t). A
state σ ∈ S is called a stationary state (or an equilibrium state, or a time-invariant state) if it does
not change under this motion, i.e.,

σ(t) = σ for all t ∈ R.

16



Stationary states are very important. In quantum mechanics, eigenstates of the Hamiltonian are
stationary states (their corresponding density operators are invariant under unitary evolution gener-
ated by the Hamiltonian). In statistical mechanics, equilibrium ensembles (microcanonical, canon-
ical, grand canonical) are described by stationary states. Identifying and characterizing stationary
states is often a primary goal when studying a mechanical system.

Remark 1.26. The DOSO framework, along with its compatibility conditions and the definition of
a mechanical system, provides a sophisticated and abstract foundation for a vast range of physical
theories. Its power lies in its generality, allowing for a unified discussion of concepts in classical,
statistical, and quantum mechanics.

1.2 DOSO for Classical Mechanics

We now illustrate how to apply the DOSO formulation to classical, non-relativistic mechanics. This
serves not only to ground the axiomatic framework in familiar territory but also to highlight the
unifying power of the DOSO formulation. The chosen example, a single particle in Euclidean space,
while elementary, is sufficiently rich to exhibit the important features.

1.2.1 A Particle in Euclidean Space

For concreteness, consider a single particle of constant mass m ∈ R>0 moving in a standard d-
dimensional Euclidean space Ed, where d ∈ Z>0. The particle’s motion is impacted by a potential
energy function V : Ed → R. For the purposes of defining smooth dynamics, we typically assume V
to be sufficiently regular, e.g., V ∈ Ck(Ed,R) for k ≥ 2, often V ∈ C∞(Ed,R). For convenience, we
denote the configuration space M := Ed.

A motion or trajectory of the particle is a sufficiently regular map x : R → M , t 7→ x(t), where
t represents time. The space of all such conceivable motions (prior to imposing physical laws)
can be taken as F := Ck(R,M) for appropriate k; if we desire maximal regularity, we consider
F = C∞(R,M). This F can be endowed with the structure of an infinite-dimensional Fréchet
manifold, but we will not say more about that here.

Physical, or classical, trajectories are those that satisfy Newton’s second law:

mẍ(t) = −∇V (x(t))

where ẍ(t) = d2x
dt2 (t) is the acceleration and ∇V (x(t)) is the gradient of V evaluated at the particle’s

position x(t). Newton’s second law is a system of d second-order ordinary differential equations.
An important assumption for simplifying the structure of the space of solutions is that for any
given initial conditions (x0, v0) ∈M ×Rd (initial position and initial velocity), there exists a unique
solution x(t) to Newton’s second law for all t ∈ R. This global existence and uniqueness is a strong
condition, not always satisfied (e.g., for potentials that lead to finite-time singularities). However,
when it holds, the set N ⊂ F of all physical trajectories forms a 2d-dimensional differentiable
manifold.

This manifold N can be explicitly parameterized. For any chosen reference time t0 ∈ R, the map

Ψt0 : N −→M × Rd ∼= Ed × Rd

x(·) 7−→ (x(t0), ẋ(t0))
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is a diffeomorphism. This map, which we may call the initial data map at time t0, provides a global
chart for N . It’s important to note that while N itself is defined as the solution space, the specific
parameterization explicitly breaks the inherent time-translation symmetry of Newton’s equations
(if V is time-independent). The space Ed × Rd can be identified with the tangent bundle TM of
M = Ed.

1.2.2 DOSO Data for the Classical Particle

We now proceed to write the components of DOSO for this classical system.

In this deterministic classical framework, a state of maximal information corresponds to knowing the
entire trajectory of the particle. Thus, the space of pure states is precisely the manifold of classical
trajectories:

PS := N

Each point x(·) ∈ N represents a unique, complete history of the particle satisfying the laws of
motion.

For classical systems, mixed states arise from statistical uncertainty about the pure state. The
encompassing space of states S is the space of all Borel probability measures on N :

S := Prob(N)

This space S is a convex set. A pure state xN ∈ N can be identified with the Dirac delta measure
δxN ∈ S. These are the extreme points of S. A general mixed state σ ∈ S \PS describes a statistical
ensemble where the particle follows one of the classical trajectories in N according to the probability
distribution σ. This is the domain of classical statistical mechanics.

Recall that an observable is a physical quantity whose value can be determined if the state of the
system is known. In the pure state picture, an observable is a function on N .

• The Algebra O and its “Smooth” Subspace O∞: We define the space of complex-valued ob-
servables as

O := Borel(N ;C)
the space of complex-valued Borel-measurable functions on N . This is a complex vector space.
The subspace of “smooth” observables is

O∞ := C∞(N ;C)

the space of complex-valued smooth functions on N . Given that N is a 2d-dimensional smooth
manifold, C∞(N ;C) is well-defined and forms a dense subspace of O under suitable topologies
(e.g., Lp-like topologies if N carries a natural measure, or in the sense of approximating con-
tinuous functions). Endowing F (the space of all paths) with an infinite-dimensional manifold
structure is a more complicated topic that we will not do. For defining observables that depend
only on the physical trajectory (elements of N), restricting to functions on N is sufficient and
avoids these complexities.

• Real Structure: The real structure A 7→ A∗ on O is given by pointwise complex conjugation:
if A ∈ O, then A∗(xN ) := A(xN ) for all xN ∈ N . Consequently, the space of real observables
OR (the fixed points of ∗) is

OR = Borel(N ;R)
These are the functions that correspond to physically measurable quantities, yielding real
numbers. Similarly, O∞

R = C∞(N ;R).
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• Lie Algebra Structure: The space O∞
R = C∞(N ;R) is endowed with a real Lie algebra structure

via the Poisson bracket, which requires the symplectic structure on N discussed below. For
A,B ∈ C∞(N ;R), their Poisson bracket {A,B} ∈ C∞(N ;R). The complexification O∞ =
C∞(N ;C) then becomes a complex Lie algebra. The compatibility [A1, A2]

∗ = [A∗
1, A

∗
2] is

satisfied by the Poisson bracket since {A,B}∗ = {A,B}, and if A∗ = A,B∗ = B, then {A,B}
is real, so {Ā, B̄} = {A,B}.

The measurement pairing connects observables to probability distributions of outcomes for a given
state. For σ ∈ S = Prob(N) and A ∈ OR = Borel(N ;R), the probability measure σA ∈ Prob(R) is
given by the pushforward measure:

σA := A∗σ

That is, for any Borel set E ⊂ R, (A∗σ)(E) := σ(A−1(E)).

• Deterministic Measurement for Pure States: If σ = δxN is a pure state (corresponding to
a specific trajectory xN ∈ N), then σA = (A∗)(δxN ) = δA(xN ). This is a point measure
concentrated at the value A(xN ). Thus, for pure states in classical mechanics, the measurement
of any observable yields a definite, deterministic outcome. This is a key distinction from
quantum mechanics.

• Functional Calculus: The functional calculus f,A 7→ f(A) is simply function composition:
if A ∈ OR and f ∈ Borel(R;R), then f(A) is the function xN 7→ f(A(xN )), which is also
in OR. The compatibility σf(A) = f∗σA is a standard property of pushforward measures:
(f ◦A)∗σ = f∗(A∗σ).

The motion described in DOSO is induced by a flow on the manifold of pure states N . This flow,
in turn, is governed by Hamiltonian mechanics, which relies on a symplectic structure on N . The
time evolution xN 7→ (xN )(t) on N (where (xN )(t)(s) = xN (s + t) by time translation along the
trajectory) defines a one-parameter group of automorphisms of N . This induces:

• Automorphisms on S = Prob(N): σ 7→ σ(t), where σ(t)(S) = σ({xN | (xN )(t) ∈ S}).

• Automorphisms on O = Borel(N ;C): A 7→ A(t), where A(t)(xN ) = A((xN )(−t)).

This motion is generated by a Hamiltonian function H ∈ C∞(N ;R) associated with the system’s en-
ergy. The Hamiltonian flow on N is a one-parameter group of symplectomorphisms. The symplectic
structure itself is therefore important. We will discuss this in more detail in Lecture 2.

Without going into too much detail, a pair (N,H), where N is a symplectic manifold (the space
of pure states) and H ∈ C∞(N ;R) is a Hamiltonian function, determines a complete classical
mechanical system in the DOSO framework. For our particle example, the symplectic structure
on N can be derived from a more foundational variational principle (the principle of least action)
applied to a Lagrangian function. This is the Lagrangian formulation. The transition to (N,H)
is the Hamiltonian formulation. The derivation of the symplectic structure within the Lagrangian
framework is detailed in Lecture 3. Here, we shall merely state the symplectic 2-form on N .

Remark 1.27 (General Symplectic Flows). More generally, a classical mechanical system can be
defined by a pair (N, {φt}t∈R), where N is a symplectic manifold and {φt} is a one-parameter group
of symplectomorphisms (diffeomorphisms preserving the symplectic form ω). Such a system always
fits the DOSO framework. However, not every such flow {φt} is Hamiltonian in the sense of being
generated by a time-independent Hamiltonian function H ∈ C∞(N ;R) (i.e., φt being the flow of the
Hamiltonian vector field XH). For instance, systems with explicitly time-dependent Hamiltonians in
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the traditional sense give rise to symplectic flows that are not necessarily Hamiltonian on N (which
is the space of solutions of an autonomous system). In Lecture 3 we will see a non-Hamiltonian
symplectic flow.

1.2.3 The Symplectic Form for the Particle Example

The symplectic structure on N (the space of physical trajectories) is naturally inherited from a
canonical structure on the cotangent bundle T ∗M of the configuration space M = Ed.

Let F = C∞(R,M) be the ambient space of smooth paths. One can define a presymplectic 2-
form6 on F . Let δ denote the exterior derivative (variational derivative) on this infinite-dimensional
manifold F . The evaluation map is

e : F × R −→M

(x(·), t) 7−→ x(t)

Consider variations δe (variation of position) and δė (variation of velocity). A 2-form on F ×R (or,
by fixing time, on F) can be defined as

Ω = m

∫
⟨δẋ(t) ∧ δx(t)⟩Rd dt

A more direct approach for the manifold of solutions N is to use the parameterization Ψt0 : N
∼=−→

TM ∼= Ed×Rd given by (x(t0), ẋ(t0)). Let (q
1, . . . , qd) be standard coordinates on Ed (representing

x(t0)) and (v1, . . . , vd) be coordinates for the velocities ẋ(t0) in Rd. The pullback (Ψt0)
∗ωTM of the

canonical symplectic form ωTM on TM (derived from the standard Lagrangian L(q, v) = 1
2m∥v∥

2−
V (q)) to N is given by:

ωN
∣∣
t0

=

d∑
i=1

m dvi ∧ dqi

This form is understood as follows: dqi and dvi are basis 1-forms on TM at (q, v). The important
insight is that this form on N is independent of the choice of t0. This is a consequence of Liouville’s
theorem for Hamiltonian flows (which implies that the Hamiltonian flow preserves the symplectic
form). Thus, N carries a canonical symplectic structure.

Remark 1.28 (Symplectic Form on Phase Space T ∗M). It is more conventional in Hamiltonian
mechanics to work with phase space T ∗M , with canonical coordinates (qi, pi), where pi =

∂L
∂q̇i are

the canonical momenta. For L = 1
2m
∑

(q̇i)2 − V (q), we have pi = mq̇i = mvi. In these (q, p)
coordinates, the canonical symplectic 2-form on T ∗M is

ωT∗M =

d∑
i=1

dpi ∧ dqi

The form from earlier becomes m
∑

dvi ∧ dqi. If we set pi = mvi, then dpi = mdvi, so the forms
are identical under this identification. Thus, the space of solutions N is naturally identified with
T ∗M (or TM), equipped with its canonical symplectic structure.

6A presymplectic 2-form is a closed differential 2-form of constant rank on a manifold
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1.2.4 Dynamical Systems: Local versus Global Perspectives

Remark 1.29 (Classical Dynamics: Short Times vs. Long Times, Particles vs. Fields). A sym-
plectic manifold (N,ω) together with a smooth function H : N → R (the Hamiltonian) constitutes
a Hamiltonian dynamical system. The dynamics are governed by Hamilton’s equations, which can
be written as ż(t) = XH(z(t)), where z(t) is a curve in N and XH is the Hamiltonian vector field
associated with H, uniquely defined by the relation iXHω = −dH.

Local Existence and Uniqueness: The theory of ordinary differential equations (e.g., the Picard-
Lindelöf theorem, applicable since XH is smooth if H is C2) guarantees the local existence and
uniqueness of a flow φt : N → N that integrates XH . This addresses the behavior of the system
for small times t. Constructing this local flow is relatively straightforward from a mathematical
standpoint, often relying on fixed-point theorems.

Global Dynamical Questions: The more interesting and challenging questions in dynamical systems
theory concern the long-time behavior of these flows. These include:

• Existence of Periodic Orbits: Do trajectories exist that return to their initial state after a finite
time? These are important to understanding stability and resonances.

• Stability of Orbits: How do trajectories behave under small perturbations of initial conditions
(Lyapunov stability)?

• Ergodicity and Mixing: Does the system explore the available phase space uniformly over long
times?

• Chaotic Dynamics: Does the system exhibit sensitive dependence on initial conditions, leading
to complex, unpredictable long-term behavior despite its deterministic nature? Hamiltonian
systems, despite preserving phase space volume (Liouville’s theorem, a consequence of LXHω =
0), can indeed be chaotic (e.g., KAM theory, Smale horseshoes).

• Limit Cycles: These are isolated periodic orbits towards which nearby trajectories converge.
While prominent in dissipative systems, classical Hamiltonian systems (which are volume-
preserving) do not possess attracting limit cycles in the usual sense. However, more complex
recurrent structures exist.

Observe that the foundational local existence and uniqueness concerns operate at small time scales,
whereas these deeper dynamical questions probe the system’s behavior as t→∞.

Analogy with Classical Field Theory: Classical field theory (describing systems with infinitely many
degrees of freedom, like electromagnetism or fluid dynamics) presents something similar, now involv-
ing both time and space.

• Local/Short-Range Questions: Here, “local” means small regions in spacetime (small time
differences and small spatial distances). The dynamics are typically governed by partial differ-
ential equations (PDEs), such as wave equations, Maxwell’s equations, or equations from fluid
dynamics (e.g., Euler or Navier-Stokes). The interesting mathematical questions about local
behavior are all similar: given suitable initial data, does a unique solution exist for a short
time, and does it depend continuously on the initial data? This is already a highly non-trivial
area of PDE theory.

• Global/Long-Range Questions: These pertain to the behavior of solutions for all times and
over large spatial domains. Examples include: Does a solution exist globally in time, or do
singularities (e.g., wave collapse, shock formation in fluids, gravitational singularities) develop
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in finite time? What is the asymptotic behavior of fields as t→∞? How do spatially extended
structures form and evolve?

Analogy with Quantum Field Theory (QFT): The questions of QFT can often be categorized into
kinematics and dynamics.

• Kinematics: This involves defining the important objects: quantum fields, state spaces, and
observables. A key challenge at short distances (high energies/momenta) is the appearance of
infinities (UV divergences) in perturbative calculations, necessitating the very complicated ma-
chinery of renormalization. The behavior of correlation functions at short distances (operator
product expansions) is important.

• Dynamics: Much of this concerns the behavior of the theory at large distances (low ener-
gies/momenta) and long times. Key questions include: The structure of the vacuum state,
the particle spectrum (existence of a mass gap), scattering theory (S-matrix), phase transitions
and critical phenomena, and long-range forces and phenomena like confinement in quantum
chromodynamics.

In relativistic QFTs, due to Lorentz invariance, long-time and large-distance behaviors are
related. The understanding of these long-range phenomena often leads to the most interest-
ing physical insights and drives the development of powerful non-perturbative mathematical
techniques.

The long-range questions in classical mechanics, classical field theory, and quantum field theory are
often the most intriguing, with significant mathematical implications. These questions frequently
lead to unexpected connections between physics and seemingly unrelated areas of mathematics.

1.3 DOSO for Quantum Mechanics

We now transition our focus to quantum mechanics, illustrating how its foundational structure can
be also be encapsulated via DOSO.

A notable simplification adopted in this initial presentation is the restriction to bounded observables.
This is a common starting point in many rigorous treatments as it allows the full power of C*-algebra
theory to be deployed. However, it is important to recognize that many of the most important phys-
ical observables in quantum mechanics, such as position, momentum, and typically the Hamiltonian
itself (which generates time evolution), are represented by unbounded self-adjoint operators. The
theory of unbounded operators is significantly difficult. Nevertheless, the framework for bounded
observables provides a good foundation and its principles often extend to the unbounded case.

1.3.1 Hilbert Spaces and Planck’s Constant

At the center of quantum theory lies a universal constant of nature, Planck’s constant ℏ. This
constant has the physical dimensions of action:

[ℏ] =
mass · length2

time

Recalling that energy has units of mass · length2/time2, the units of ℏ are equivalently those of
energy · time. Planck’s constant quantifies the important scale at which quantum effects become
manifest, appearing often in commutation relations (e.g., [x, p] = iℏ), uncertainty principles (e.g.,
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∆x∆p ≥ ℏ/2), and the quantization of physical quantities (e.g., energy levels of bound systems,
angular momentum).

The entire DOSO structure of a quantum mechanical system is derived from a single, foundational
mathematical object: The Hilbert space. To every quantum mechanical system is associated a
separable complex Hilbert space H, which may be finite or countably infinite dimensional. This
space H is the place where the states and observables of the system are defined.

Complex numbers are essential in quantum mechanics for describing superposition, interference,
and time evolution via the Schrödinger equation. Probability amplitudes, central to the Born rule,
rely on the complex structure of Hilbert space. The Hilbert space’s inner product defines mea-
surement probabilities, orthogonality, and self-adjoint operators (observables), while completeness
ensures convergence and enables the spectral theorem. Foundational quantum systems typically use
separable Hilbert spaces with countable orthonormal bases, though non-separable spaces appear in
quantum field theory.

1.3.2 DOSO Data for Quantum Systems

With the Hilbert space H established, we can now define the components of the DOSO framework
for a quantum system.

In quantum mechanics, a pure state corresponds to a ray in the Hilbert space H.

Definition 1.30. A ray is an equivalence class of non-zero vectors differing by a non-zero complex
scalar multiple: ψ̃ = {cψ | c ∈ C, c ̸= 0}, where ψ ∈ H \ {0}.

Conventionally, rays are represented by unit vectors ∥ψ∥ = 1, with the understanding that vectors
differing only by a phase factor eiα (an unobservable global phase) represent the same physical state.
The space of all such rays is the projective Hilbert space P (H).

PS := P (H)

The general space of states S, encompassing both pure and mixed states, is the set of density
operators on H.

Definition 1.31. A density operator ρ is a linear operator on H satisfying:

1. ρ is self-adjoint: ρ = ρ∗.

2. ρ is non-negative (positive semi-definite): ⟨ϕ, ρϕ⟩ ≥ 0 for all ϕ ∈ H.

3. ρ is trace-class, and its trace is unity: Tr(ρ) = 1.

S := {ρ ∈ T1(H) | ρ = ρ∗, ρ ≥ 0,Tr(ρ) = 1}

where T1(H) is the space of trace-class operators on H.

The set S is a convex subset of the real Banach space of self-adjoint trace-class operators. A density
operator ρ represents a pure state if and only if ρ2 = ρ (in addition to the other defining properties),
or equivalently, if Tr

(
ρ2
)
= 1. Otherwise, if Tr

(
ρ2
)
< 1, ρ represents a mixed state, which can be

expressed as a convex combination of pure states (e.g., ρ =
∑
k pk |ψk⟩ ⟨ψk| with pk > 0,

∑
pk = 1).
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• The Algebra O and O∞: Bounded Operators on H
In this simplified exposition focusing on bounded observables, we define:

O = O∞ := End(H) ≡ B(H)

the complex Banach space (in fact, a C*-algebra) of all bounded linear operators mapping H
to itself. The restriction to bounded operators ensures that they are defined on the entirety of
H and possess desirable analytic properties.

• Real Structure: Operator Adjoint
The real structure A 7→ A∗ on O = B(H) is given by the standard Hilbert space adjoint
operation. An operator A∗ is the adjoint of A if ⟨ϕ,Aψ⟩ = ⟨A∗ϕ, ψ⟩ for all ϕ, ψ ∈ H. This map
is antilinear and involutive.

• Real Observables OR: Self-Adjoint Operators
Consequently, the space of real observables OR consists of all bounded self-adjoint operators
on H:

OR = {A ∈ B(H) | A = A∗}

These operators have real spectrum and correspond to physically measurable quantities whose
outcomes are real numbers.

• Lie Algebra Structure: The Quantum Commutator
The complex Lie algebra structure on O = B(H) is defined via a scaled commutator:

[A1, A2]ℏ :=
−i
ℏ
(A1A2 −A2A1)

for A1, A2 ∈ B(H). Here, A1A2 denotes operator composition.

If A1 and A2 are self-adjoint, their commutator C = A1A2−A2A1 is skew-adjoint (C∗ = −C).
Multiplication by −i/ℏ (or 1/(iℏ)) then makes [A1, A2]ℏ self-adjoint. Thus, this definition
ensures that the Lie bracket of two real (self-adjoint) observables is itself a real (self-adjoint)
observable, making OR a real Lie algebra under this bracket. This Lie algebra structure is the
quantum analogue of the Poisson bracket algebra in classical mechanics and is important to
the Heisenberg uncertainty principle and to the equations of motion. Thus, the compatibility
condition [X,Y ]∗ = [X∗, Y ∗] is satisfied by this definition.

• Functional Calculus for Observables
Functions of observables are defined via the spectral theorem for self-adjoint operators, which
we discuss in Lecture 4. If A ∈ OR is a bounded self-adjoint operator and f : R → R is a
Borel function, then f(A) is a well-defined bounded self-adjoint operator. This is important
for constructing observables like A2 or exp(A), and particularly for defining projection-valued
measures ΠA(E) := χE(A) (where χE is the characteristic function of a Borel set E ⊂ R),
which are central to the theory of measurement.

The measurement pairing connects an observable A ∈ OR and a state (pure or mixed) to a probability
distribution σA ∈ Prob(R) for the outcomes of measuring A. Let ΠA denote the projection-valued
measure associated with the self-adjoint operator A via the spectral theorem (so ΠA(E) is the
projection onto the subspace of states for which the value of A lies in the Borel set E ⊂ R).

• Measurement in a Pure State: Suppose the system is in a pure state represented by a unit vector
ψ ∈ H (equivalently, by the line L = span{ψ} ∈ P (H) or the density operator ρψ = |ψ⟩ ⟨ψ|).
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The probability measure σA ≡ (ρψ)A on R is given by the Born rule:

(ρψ)A(E) := ⟨ψ,ΠA(E)ψ⟩ = Tr(ρψΠA(E))

for any Borel subset E ⊂ R. This value is the probability that a measurement of A yields a
result in E. The independence of this probability from the choice of unit vector representing
the ray L is ensured by the quadratic dependence on ψ (an overall phase eiα cancels out:
⟨eiαψ,ΠA(E)eiαψ⟩ = ⟨ψ,ΠA(E)ψ⟩).

• Measurement in a Mixed State: If the system is in a general (possibly mixed) state described
by a density operator S ∈ S, then we can generalize to:

SA(E) := Tr(SΠA(E))

for any Borel subset E ⊂ R. This formula is linear in S, reflecting the convex nature of
states, and provides the statistical predictions of quantum theory for any preparation S and
any (bounded) observable A. If S =

∑
k pk |ψk⟩ ⟨ψk|, then SA(E) =

∑
k pk⟨ψk,ΠA(E)ψk⟩.

Quantum Motion (Dynamics) The motion (time evolution) of a quantum system is generated by
a specific self-adjoint observable H ∈ O∞

R (here, O∞
R = OR are bounded self-adjoint operators),

designated as the Hamiltonian of the system. In most realistic systems, H is unbounded, but the
principles extend via Stone’s theorem.

• Unitary Time Evolution Group: The Hamiltonian H generates a one-parameter group of
unitary transformations {Ut}t∈R on H:

Ut := e−itH/ℏ, t ∈ R

This is defined using the functional calculus for self-adjoint operators (applying ft(λ) = e−itλ/ℏ

to H). Since H is self-adjoint, Ut is unitary for all t ∈ R (U∗
t = U−1

t = U−t). These operators
describe the evolution of the system over a time interval t. For bounded H, this group is
norm-continuous.

• Evolution of States (Schrödinger Picture): If a state at time t = 0 is S ≡ S(0), its evolution
to time t is given by:

S(t) ≡ S(t) := UtS(0)U
∗
t

This preserves the properties of a density operator (self-adjointness, non-negativity, trace one).
If S(0) = |ψ0⟩ ⟨ψ0| is a pure state, then S(t) = |ψ(t)⟩ ⟨ψ(t)| where |ψ(t)⟩ = Ut |ψ0⟩. The latter
satisfies the Schrödinger equation: iℏ d

dt |ψ(t)⟩ = H |ψ(t)⟩. More generally, density operators

evolve according to the Liouville-von Neumann equation: iℏ d
dtS(t) = [H,S(t)] ≡ HS(t) −

S(t)H.

• Evolution of Observables (Heisenberg Picture): Alternatively, one can consider the states fixed
and the observables evolving. An observable A ≡ A(0) evolves to A(t) ≡ A(t) according to:

A(t) ≡ A(t) := U∗
t A(0)Ut

These evolved observables A(t) satisfy the Heisenberg equation of motion:

d

dt
A(t) =

i

ℏ
[H,A(t)]
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The compatibility condition (S(t))A = S(A(t)) is satisfied:

Tr
Ä
S(t)ΠA(E)

ä
= Tr(UtSU

∗
t ΠA(E)) = Tr(SU∗

t ΠA(E)Ut).

The term U∗
t ΠA(E)Ut is the PVM for the evolved observable A(t), evaluated on E. That is,

ΠA(t)(E) = U∗
t ΠA(E)Ut.

Thus
Tr(SΠA(t)(E)) = S(A(t))(E).

We have finished explaining how to axiomatize quantum mechanics using DOSO, and this is a good
place to stop.
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2 Riemannian and Symplectic Manifolds

Abstract

We develop the basics on Riemannian and symplectic structures. We begin with linear alge-
braic preliminaries, analyzing bilinear forms on finite-dimensional real vector spaces. Symmet-
ric positive-definite forms yield Euclidean structures with notions of length and angle, while
skew-symmetric non-degenerate forms define symplectic structures with oriented area. Their
properties are treated rigorously. The spaces of such forms, Met(Rn) and Symp(R2m), are
identified as homogeneous spaces GL(n,R)/O(n) and GL(2m,R)/Sp(2m,R), whose topological
distinctions reflect differences.

We then transition to affine geometry, defining affine spaces as vector spaces without a dis-
tinguished origin. Affine maps, groups, and coordinates are introduced, leading to Euclidean
affine spaces (with constant inner product structures) and affine symplectic spaces (with closed
symplectic 2-forms). We compare their induced geometries, and define vector fields, flows, and
gradients (Euclidean and Hamiltonian) in this flat setting.

Globalization to smooth manifolds follows, with Riemannian metrics and almost symplectic
forms constructed as smooth tensor fields. A key distinction emerges: Riemannian metrics exist
on all smooth manifolds, whereas symplectic structures face topological obstructions. Symplec-
tic geometry is defined by the integrability condition dω = 0, leading to Darboux’s theorem and
the focus on global invariants such as de Rham cohomology. Cotangent bundles T ∗M serve as
canonical symplectic examples. Hamiltonian vector fields, their flows, the Poisson bracket on
C∞(M), and the role of H1

dR(M) in obstructing Hamiltonianity are examined.

The section concludes with the theory of symmetries and moment maps. We define symplectic
and Hamiltonian vector fields, relate them to conserved quantities via Noether’s theorem, and
introduce moment maps µ : N → g∗ for Lie algebra actions. Their existence and equivariance are
tied to cohomological obstructions (H1(N ;R), H2(g;H0(N ;R))). The moment map equation
dµξ = −ια(ξ)ω and G-equivariance are explored through examples. A geometric interpretation
via prequantization bundles connects the moment map to geometric quantization, connecting it
to classical and quantum mechanics.
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2.1 Bilinear Forms in Linear Algebra

We begin by establishing the algebraic foundations upon which symplectic geometry rests: the
theory of bilinear forms on vector spaces, with a particular focus on the skew-symmetric variant
that defines linear symplectic structures. Understanding this framework, and contrasting it with
the more familiar Euclidean structure created from inner products, is essential for appreciating the
unique characteristics of symplectic manifolds.

2.1.1 Bilinear Forms: Generalities

Let V be a finite-dimensional real vector space.

Definition 2.1. A bilinear form on V is a map B : V × V → R which is linear in each argument
separately:

• B(au1 + bu2, v) = aB(u1, v) + bB(u2, v) for all u1, u2, v ∈ V and a, b ∈ R.

• B(u, av1 + bv2) = aB(u, v1) + bB(u, v2) for all u, v1, v2 ∈ V and a, b ∈ R.

The space of all bilinear forms on V can be naturally identified with the tensor product V ∗ ⊗ V ∗,
where V ∗ denotes the dual space of V .

A bilinear form B induces two linear maps from V to its dual V ∗, given by v 7→ B(v, ·) and
v 7→ B(·, v).

Definition 2.2. A bilinear form B is non-degenerate if any one of the following (equivalent)
conditions hold:

• the induced linear maps V → V ∗ are isomorphisms

• for every non-zero v ∈ V , there exists some w,w′ ∈ V such that B(v, w) ̸= 0 and B(w′, v) ̸= 0.

• if B(v, w) = 0 for all w ∈ V or if B(w, v) = 0 for all w ∈ V , then v must be the zero vector

If we choose a basis {e1, . . . , en} for V , a bilinear form B is determined by the matrix A with
entries Aij = B(ei, ej). The form B is non-degenerate if and only if this matrix A is invertible (i.e.,
det(A) ̸= 0).

Two important classes of bilinear forms are distinguished by their symmetry properties:

Definition 2.3.

• B is symmetric if B(u, v) = B(v, u) for all u, v ∈ V . In terms of the matrix representation,
this means A = AT .

• B is skew-symmetric (or alternating) if B(u, v) = −B(v, u) for all u, v ∈ V . This implies
B(v, v) = −B(v, v), so 2B(v, v) = 0, which gives B(v, v) = 0 for all v ∈ V . The matrix
representation satisfies A = −AT .

The condition B(v, v) = 0 for skew-symmetric forms highlights an immediate contrast with familiar
Euclidean structures.
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2.1.2 Symplectic Vector Spaces

We now define the central algebraic object through the lens of linear algebra.

Definition 2.4. A symplectic form on a real vector space V is a bilinear form ω : V × V → R
that is both

1. Skew-symmetric: ω(u, v) = −ω(v, u) for all u, v ∈ V .

2. Non-degenerate.

A vector space V equipped with a symplectic form ω is called a symplectic vector space (V, ω).

Skew-symmetry immediately implies ω(v, v) = −ω(v, v), so ω(v, v) = 0 for all v ∈ V . Non-
degeneracy means that the map ω♭ : V → V ∗ defined by ω♭(u) = ω(u, ·) (where ω(u, ·) is the
linear functional v 7→ ω(u, v)) is an isomorphism. This isomorphism is fundamental, providing a
canonical way to identify vectors with covectors in a symplectic setting, analogous to the musical
isomorphism provided by an inner product. Let’s briefly discuss this:

Definition 2.5 (Musical Isomorphism). Let (V, g) be a Euclidean vector space.

1. The flat map g♭ : V → V ∗ is defined by v 7→ v♭, where v♭ ∈ V ∗ is the linear functional
v♭(w) = g(v, w) for all w ∈ V .

2. The sharp map g♯ : V ∗ → V is the inverse of g♭, defined by α 7→ α♯, where α♯ ∈ V is the
unique vector such that g(α♯, w) = α(w) for all w ∈ V .

The terms “flat” (♭) and “sharp” (♯) evoke the musical analogy of lowering and raising indices. If
v =

∑
viei in an orthonormal basis {ei}, then v♭ =

∑
vie

i where the components vi = g(v, ei) =∑
j v

jg(ej , ei) =
∑
j v

jδji = vi. Thus, in an orthonormal basis, the components of a vector and its

corresponding covector under the musical isomorphism are identical. The map g♯ takes the covector
α =

∑
αje

j to the vector α♯ =
∑
αjej . The non-degeneracy of g ensures that g♭ and g♯ are indeed

isomorphisms.

Back to the symplectic form, this definition stands in contrast to that of an inner product.

Definition 2.6. An inner product on a real vector space V is a bilinear form g : V ×V → R that
is both

1. Symmetric: g(u, v) = g(v, u) for all u, v ∈ V .

2. Positive-definite: g(v, v) > 0 for all non-zero v ∈ V .

Note that positive-definiteness implies non-degeneracy for a symmetric bilinear form. A vector space
equipped with an inner product is a Euclidean vector space.

The fundamental difference between these two lie in symmetry and definiteness. An inner product g
is symmetric and satisfies g(v, v) > 0 for v ̸= 0, giving rise to notions of length (∥v∥ =

√
g(v, v)) and

angle (via g(u, v) = ∥u∥∥v∥ cos θ). A symplectic form ω, being skew-symmetric, necessarily satisfies
ω(v, v) = 0. It does not define lengths or angles but rather provides a notion of oriented area. For
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vectors u, v ∈ V , the quantity ω(u, v) can be interpreted as the signed area of the parallelogram
spanned by u and v, projected onto a “symplectic plane.”

Example 2.7.

• On V = Rn, the model inner product is given by

g(x, y) =

n∑
i=1

xiyi

for x = (x1, . . . , xn) and y = (y1, . . . , yn).

• The canonical example of a symplectic vector space is V = R2m with standard coordinates
(q1, . . . , qm, p1, . . . , pm), equipped with the bilinear form

ω0(z, z
′) =

m∑
i=1

(qip′i − q′ipi),

where z = (q, p) and z′ = (q′, p′).

An important consequence of these properties relates to the dimension of the vector space.

Proposition 2.8. Any finite-dimensional symplectic vector space (V, ω) must have even dimension.

Proof. Let dimV = n. The bilinear form ω can be represented by a matrix Ω with respect to
any basis {ei}, where Ωij = ω(ei, ej). Skew-symmetry implies ΩT = −Ω. Non-degeneracy implies
det(Ω) ̸= 0. From linear algebra, we know det

(
ΩT
)
= det(Ω) and det(−Ω) = (−1)n det(Ω). There-

fore, det(Ω) = (−1)n det(Ω). Since det(Ω) ̸= 0, we must have (−1)n = 1, which requires n to be
even.

We thus write dimV = 2m for some integer m.

Remark 2.9. Contact geometry is the odd-dimensional analogue of symplectic geometry: whereas
symplectic manifolds are even-dimensional with a closed, nondegenerate 2-form ω, contact manifolds
are odd-dimensional and equipped with a 1-form α satisfying maximal non-integrability via α ∧
(dα)n ̸= 0.

Non-degeneracy of Symplectic Forms

In this section, we explore the relationship between symplectic forms, their non-degeneracy, and the
top exterior power. Our goal is to expand Remark 2.5 from [13].

Recall that every alternating bilinear form

ω : V × V −→ k, ω(v, w) = −ω(w, v),

is naturally identified with a decomposable element of the second exterior power of the dual space,

ω ←→
∑
i<j

ω(ei, ej) e
∨
i ∧ e∨j ∈

∧2
V∗,

where {ei}2mi=1 is any ordered basis of V and {e∨i } the dual basis.
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Proposition 2.10. ω is non-degenerate ⇐⇒ the top exterior power

ω∧m

m!
∈
∧2m

V∗ = detV∗

is nonzero. Equivalently, ω∧m ̸= 0.

Proof. Choose an ordered basis B = {e1, . . . , e2m} such that the matrix of ω in B is A. Under the

canonical isomorphism
(
Λ2V∗)⊗m −→ Λ2mV∗, one has

ω∧m =
∑

σ∈S2m

sgn(σ)ω(eσ(1), eσ(2)) · · ·ω(eσ(2m−1), eσ(2m)) e
∨
1 ∧ · · · ∧ e∨2m.

Thus ω∧m = Pf(A) e∨1 ∧ · · · ∧ e∨2m, where Pf(A) is the Pfaffian of the skew-symmetric matrix A.
Because A is skew-symmetric, detA = Pf(A)2. Hence

ω∧m ̸= 0⇐⇒ Pf(A) ̸= 0

⇐⇒ detA ̸= 0

⇐⇒ A invertible

⇐⇒ ♭ω isomorphism.

Therefore ω is non-degenerate if and only if ω∧m spans the one-dimensional determinant line detV∗ ∼=
Λ2mV∗, completing the proof.

The Musical Isomorphism: Symplectic Case

Now, we present the musical isomorphism, but for the symplectic case. Similar to earlier, the
non-degenerate skew-symmetric form ω : V × V → R induces an isomorphism between V and V ∗.

Definition 2.11. Let (V, ω) be a symplectic vector space.

1. The map ω♭ : V → V ∗ is defined by v 7→ ω♭(v), where ω♭(v)(w) = ω(v, w) for all w ∈ V .

2. The map ω♯ : V ∗ → V is the inverse of ω♭.

The non-degeneracy of ω guarantees that ω♭ is an isomorphism. In canonical coordinates (q1, . . . , qm, p1, . . . , pm)
with basis vectors ei =

∂
∂qi and fj =

∂
∂pj

, and dual basis dqi, dpj , we have:

• ω♭(ei) = ω(ei, ·) =
∑
k ω(ei, ek)dq

k +
∑
k ω(ei, fk)dpk =

∑
k δikdpk = dpi.

• ω♭(fj) = ω(fj , ·) =
∑
k ω(fj , ek)dq

k +
∑
k ω(fj , fk)dpk =

∑
k(−δjk)dqk = −dqj .

Thus, ω♭ maps ∂
∂qi 7→ dpi and

∂
∂pj
7→ −dqj . Correspondingly, ω♯ maps dqi 7→ − ∂

∂pi
and dpj 7→ ∂

∂qj .

These isomorphisms are the essential tools for converting differentials of functions (df , which are
1-forms) into vector fields, leading to the concepts of gradient and Hamiltonian vector fields.

2.1.3 Model Forms

Earlier, we introduced the model inner product and the model symplectic form. One might wonder
why these forms are referred to as ’model’ forms. The following theorem clarifies the reasoning
behind this naming convention:
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Theorem 2.12 (Normal Forms). Let V be a finite-dimensional real vector space equipped with
either an inner product ⟨·, ·⟩ or a symplectic form ω. Let n = dimV . Then there exists a linear
isomorphism ϕ : Rn → V such that the bilinear form on Rn obtained by pulling back 7 the form on
V via ϕ coincides with the two model forms introduced earlier. Specifically:

• If V has an inner product ⟨·, ·⟩, ϕ∗⟨·, ·⟩ is the model inner product on Rn.

• If V has a symplectic form ω, ϕ∗ω is the model symplectic form ω0 on Rn.

Proof. The proof proceeds by induction on the dimension n = dimV . The base case n = 0 is trivial.
Assume the theorem holds for dimensions less than n.

• Inner Product Case: (V, ⟨·, ·⟩). Assume V ̸= {0}. Choose any non-zero vector v1 ∈ V and
normalize it to obtain a unit vector e1 = v1

∥v1∥ , where ∥v1∥
2 = ⟨v1, v1⟩ > 0. Consider the

orthogonal complement
V1 = (Re1)⊥ = {v ∈ V | ⟨v, e1⟩ = 0}.

Since the inner product is non-degenerate, we have the direct sum decomposition

V = Re1 + V1,

and thus dimV1 = n − 1. The restriction of the inner product to V1, denoted by ⟨·, ·⟩|V1 , is
clearly symmetric and positive-definite. Its non-degeneracy on V1 follows from the direct sum
decomposition and the non-degeneracy on V .

By the induction hypothesis, there exists an isomorphism ϕ1 : Rn−1 → V1 that pulls back
⟨·, ·⟩|V1

to the standard Euclidean inner product on Rn−1. Let {e2, . . . , en} be the orthonormal
basis of V1 corresponding via ϕ1 to the standard basis of Rn−1. Then {e1, e2, . . . , en} is an
orthonormal basis for V .

Finally, the isomorphism ϕ : Rn → V , which maps the standard basis of Rn to {e1, e2, . . . , en},
pulls back ⟨·, ·⟩ to the standard Euclidean inner product on Rn.

• Symplectic Case: (V, ω). We do this next, see Corollary 2.16.

In the symplectic case, a basis that brings a general symplectic form ω into this standard structure
is highly desirable.

Definition 2.13. A basis {e1, . . . , em, f1, . . . , fm} for a 2m-dimensional symplectic vector space
(V, ω) is called a symplectic basis (or Darboux basis) if

ω(ei, ej) = 0, ω(fi, fj) = 0, ω(ei, fj) = δij

for all i, j ∈ {1, . . . ,m}.

In such a basis, the matrix of ω is precisely J0. The existence of such a basis for any symplectic
vector space is a fundamental result.

Theorem 2.14. Every finite-dimensional symplectic vector space (V, ω) admits a symplectic basis.

7Recall that the pullback form (ϕ∗β)(x, y) = β(ϕ(x), ϕ(y)) for x, y ∈ Rn and β a bilinear form on V .
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Proof. The proof proceeds by induction on the dimension 2m. The base casem = 0 is trivial. Assume
the theorem holds for dimension 2(m − 1). Let V have dimension 2m. Since ω is non-degenerate,
it is non-zero. Pick any non-zero vector e1 ∈ V . By non-degeneracy, there exists some v ∈ V such
that ω(e1, v) ̸= 0. Rescale v to obtain f1 such that ω(e1, f1) = 1. Since ω(e1, e1) = 0, e1 and f1
are linearly independent. Let W = span{e1, f1}. The restriction ω|W is non-degenerate (its matrix

is

Å
0 1
−1 0

ã
). Consider the symplectic complement Wω = {v ∈ V | ω(v, w) = 0 for all w ∈ W}.

One shows that V = W +Wω and that ω|Wω is non-degenerate, making (Wω, ω|Wω ) a symplectic
vector space of dimension 2(m − 1). By the induction hypothesis, Wω has a symplectic basis
{e2, . . . , em, f2, . . . , fm}. Combining this with {e1, f1} gives a symplectic basis for V .

An immediate corollary follows, but before we state it, we need to introduce one more definition.

Definition 2.15. A symplectorphism is an isomorphism that preserves the symplectic form.

Now we state the corollary:

Corollary 2.16. Any 2m-dimensional symplectic vector space (V, ω) is symplectomorphic to the
standard symplectic space (R2m, ω0).

Theorem 2.12 establishes that any finite-dimensional inner product space or symplectic vector space
is isomorphic to a standard model space (Rn,model form). This fundamental classification result
has direct consequences for understanding the structure of the spaces of all such forms on a given
vector space, specifically Rn.

2.1.4 The Spaces Met(Rn) and Symp(Rn)

We consider the action of the general linear group GL(n,R) on these spaces. The standard (left)
action ofG ∈ GL(n,R) on a bilinear form β on Rn is given by pullback via the inverse transformation:

(G · β)(x, y) = β(G−1x,G−1y) = ((G−1)∗β)(x, y).

Theorem 2.12, when applied to V = Rn, guarantees that for any inner product g or symplectic form
ω on Rn, there exists ϕ ∈ GL(n,R) such that

ϕ∗g = gstd or ϕ∗ω = ω0.

This implies that the action is transitive: given any two forms β1, β2 of the same type (both inner
products or both symplectic), there exist ϕ1, ϕ2 ∈ GL(n,R) such that

ϕ∗1β1 = βmodel and ϕ∗2β2 = βmodel.

Thus, we have ϕ∗1β1 = ϕ∗2β2. Applying (ϕ−1
1 )∗ yields

β1 = (ϕ−1
1 )∗(ϕ∗2β2) = (ϕ2 ◦ ϕ−1

1 )∗β2.

Let A = ϕ2 ◦ ϕ−1
1 ∈ GL(n,R). Then A∗β2 = β1. If we define G = A−1 = ϕ1 ◦ ϕ−1

2 , then

(G−1)∗β2 = β1,

which implies that G · β2 = β1. Thus, there exists G ∈ GL(n,R) mapping β2 to β1, establishing
transitivity.
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Corollary 2.17. The group GL(2m,R) acts transitively on the space Met(R2m) of inner products
on R2m and on the space Symp(R2m) of symplectic forms on R2m.

This transitivity implies that the spaces Met(Rn) and Symp(Rn) can be identified with quotient
spaces (homogeneous spaces) of GL(n,R). Consider the maps

πMet : GL(n,R) −→ Met(Rn), A 7−→ A∗gstd (2.1)

πSymp : GL(n,R) −→ Symp(Rn), A 7−→ A∗ω0 (for n = 2m) (2.2)

where gstd is the model inner product and ω0 is the model symplectic form. Corollary 2.17 is
equivalent to the statement that these maps are surjective: If A∗βmodel = β, then taking G = A−1

gives G · βmodel = (G−1)∗βmodel = A∗βmodel = β, showing that the orbit of βmodel under the group
action is the entire space.

The structure of these spaces is revealed by identifying the stabilizer subgroups of the model forms
under the map A 7→ A∗βmodel.

• For the standard inner product gstd = In, the stabilizer consists of A ∈ GL(n,R) such that
A∗gstd = gstd. This means AT InA = In, or A

TA = In. These are precisely the orthogonal
matrices, forming the orthogonal group O(n).

• For the standard symplectic form ω0 (represented by matrix J2m), the stabilizer consists of
A ∈ GL(2m,R) such that A∗ω0 = ω0. This means ATJ2mA = J2m. These are the symplectic
matrices, forming the symplectic group Sp(2m,R).

The spaces Met(Rn) and Symp(R2m) are smooth manifolds (in fact, open subsets of the vector
spaces SymBil(Rn;R) of symmetric bilinear forms and Λ2(R2m)∗ of skew-symmetric bilinear forms,
respectively). The action of the Lie group GL(n,R) is smooth and transitive. By the Orbit-Stabilizer
Theorem for smooth, transitive Lie group actions, the orbit map π induces a diffeomorphism between
the quotient space GL(n,R)/Stab(βmodel) and the orbit π(GL(n,R)), which is the entire space
Met(Rn) or Symp(R2m). This yields the following identifications:

GL(n,R)/O(n)
∼=−→ Met(Rn), [A] 7−→ A∗gstd (2.3)

GL(2m,R)/Sp(2m,R)
∼=−→ Symp(R2m), [A] 7−→ A∗ω0 (2.4)

These are diffeomorphisms of homogeneous GL(n,R)-manifolds.

The distinct features of the stabilizer subgroups O(n) and Sp(2m,R) lead to big differences in the
geometry and topology of the corresponding spaces of forms. A big difference lies in compactness:

• The orthogonal group O(n) is compact. Geometrically, this relates to the fact that orthogonal
transformations preserve lengths and angles. Furthermore, the inclusion O(n) ↪→ GL(n,R)
is a homotopy equivalence; GL(n,R) deformation retracts onto O(n). This retraction can be
seen via the polar decomposition A = OS, where A ∈ GL(n,R), O ∈ O(n), and S is a unique
symmetric positive-definite matrix. The map A 7→ O provides the retraction.

• The symplectic group Sp(2m,R) is non-compact. For instance, matrices of the form

Å
λ 0
0 1/λ

ã
belong to Sp(2,R) for any λ ∈ R×, showing unboundedness. The inclusion Sp(2m,R) ↪→
GL(2m,R) is not a homotopy equivalence.
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These properties of the stabilizers have significant consequences for the topology of the quotient
spaces Met(Rn) and Symp(R2m). The identification Met(Rn) ∼= GL(n,R)/O(n) allows us to deduce
its topology. The polar decomposition A = OS relates elements of GL(n,R) to pairs (O,S) where
O ∈ O(n) and S is symmetric positive-definite. The map A 7→ S = (ATA)1/2 identifies the quotient
space GL(n,R)/O(n) with the space Pn of n × n symmetric positive-definite matrices. Pn is a
convex cone within the vector space of symmetric matrices (see Remark 2.18 below) and is therefore
contractible. The homotopy equivalence GL(n,R) ≃ O(n) is consistent with this, as the long exact
sequence of homotopy groups for the fibration O(n) → GL(n,R) → GL(n,R)/O(n) implies that
πk(GL(n,R)/O(n)) is trivial for k ≥ 1.

In contrast, since Sp(2m,R) is non-compact and not homotopy equivalent to GL(2m,R), the quo-
tient space Symp(R2m) ∼= GL(2m,R)/Sp(2m,R) inherits non-trivial topology. The lowest dimen-
sional case m = 1 (n = 2) illustrates this clearly. Here Sp(2,R) coincides with the special linear
group SL(2,R), the group of 2 × 2 matrices with determinant 1. The standard symplectic form
ω0 on R2 is precisely the determinant (area) form. SL(2,R) preserves this form. The determinant
homomorphism det : GL(2,R)→ R× has kernel SL(2,R). By the first isomorphism theorem for Lie
groups, this induces a diffeomorphism GL(2,R)/SL(2,R) ∼= R×. Therefore, Symp(R2) ∼= R×. Since
R× = R \ {0} is not contractible (it has two connected components and non-trivial π0), the space
Symp(R2) is topologically distinct from the contractible space Met(R2). The topology of Symp(R2m)
becomes more complex for m > 1.

The following table summarizes the key distinctions:

Table 2: Comparison: Inner Product vs. Symplectic Vector Spaces

Feature Inner Product Space (Rn, g) Symplectic Vector Space
(R2m, ω)

Bilinear Form Type Symmetric, Positive-Definite Skew-Symmetric,
Non-Degenerate

Dimension Any n ≥ 1 Must be even, n = 2m

Model Space Euclidean (Rn, δij) Standard Symplectic (R2m, ω0)

Space of Forms Met(Rn) Symp(R2m)

Homogeneous Space GL(n,R)/O(n) GL(2m,R)/Sp(2m,R)
Stabilizer Group O(n) (Orthogonal Group) Sp(2m,R) (Symplectic Group)

Stabilizer Property Compact Non-Compact

Space Topology Contractible Non-Contractible (e.g., ∼= R×

for m = 1)

Remark 2.18.

1. The space Met(Rn) of inner products on Rn can be identified with the set Pn of symmetric
positive-definite n × n matrices. This set is a subset of the vector space SymBil(Rn;R) of
all symmetric bilinear forms (identified with symmetric matrices). Pn is a convex subset: if
g1, g2 ∈ Pn and t ∈, then for any v ̸= 0, (tg1 + (1− t)g2)(v, v) = tg1(v, v) + (1− t)g2(v, v) > 0
(since g1(v, v) > 0, g2(v, v) > 0, and t, 1 − t are non-negative with at least one positive if
t ∈ (0, 1)). Furthermore, if g ∈ Pn and c > 0, then cg ∈ Pn, so Pn is an open convex
cone. Any convex subset of a Euclidean space is contractible (e.g., via the linear homotopy
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H(g, t) = (1 − t)g + tg0 to a fixed point g0 ∈ Pn). This provides an alternative confirmation
that Met(Rn) is contractible.

2. As established above, the contrast for m = 1 is sharp: Symp(R2) ∼= GL(2,R)/SL(2,R) ∼= R×,
which is not contractible. The diffeomorphism GL(2,R)/SL(2,R) ∼= R× is realized by the deter-
minant map. For higher dimensions (m > 1), the space Symp(R2m) ∼= GL(2m,R)/Sp(2m,R)
continues to have non-trivial topology, which is considerably more complex than R×.

3. The topological assertions made for the model spaces Met(Rn) and Symp(R2m) extend to the
corresponding spaces Met(V ) and Symp(V ) for any n-dimensional (or 2m-dimensional) real
vector space V . Theorem 2.12 provides an isomorphism ϕ : Rn → V . This isomorphism
induces diffeomorphisms ϕ∗ : Met(V ) → Met(Rn) and ϕ∗ : Symp(V ) → Symp(Rn) via pull-
back. Since diffeomorphisms preserve topological properties like contractibility and homotopy
type, the properties established for the model spaces hold for the spaces associated with any
finite-dimensional vector space V . The details of this transport are deferred to later.

2.2 Euclidean Spaces and Affine Symplectic Spaces

While vector spaces provide the algebraic foundation for linear geometry, many geometric settings,
particularly those arising in physics or as local models for manifolds, lack a naturally distinguished
origin. Consider Euclidean space as taught in high school; although often identified with Rn, its
geometric properties related to points, lines, and parallelism are independent of where we place the
origin. Similarly, the set of solutions to an inhomogeneous linear system Ax = b (for b ̸= 0) forms
a geometric object (like a line or plane) that does not pass through the origin and hence is not a
vector subspace, yet it shares the “flatness” property of vector subspaces. Affine spaces formalize
this notion of a “vector space that has forgotten its origin.”

2.2.1 Linear Algebra, But For Affine Spaces

Definition 2.19. An affine space is a triple (A, V,+), where A is a non-empty set whose elements
are called points, V is a finite-dimensional real vector space called the associated vector space
or the space of translations, and + : A×V → A is a map, called the action of V on A, satisfying
the following axioms:

(A1) Identity: For every a ∈ A, a+ 0 = a, where 0 is the zero vector in V .

(A2) Associativity: For every a ∈ A and all u, v ∈ V , (a+ u) + v = a+ (u+ v).

(A3) Unique Translation: The action is free and transitive: for any pair of points a, b ∈ A, there
exists a unique vector v ∈ V such that a+ v = b.

The unique vector v in (A3) is denoted by a⃗b or b − a. The dimension of the affine space A is
defined as dimA = dimV .

Axiom (A3) encapsulates the idea that the vector space V acts as the group of translations on the
set of points A. The action being transitive means any point can be reached from any other point by
a unique translation vector. The action being free means that only the zero vector fixes any point.
This definition formalizes the idea of A being a principal homogeneous space for the additive group
of V .
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It is important to distinguish between points a ∈ A and vectors v ∈ V . While choosing an origin
o ∈ A allows us to identify any point a with the vector o⃗a = a−o, this identification depends entirely
on the choice of o and is therefore not canonical. Geometric properties of affine spaces should be
independent of such choices.

An alternative but equivalent definition uses the subtraction map.

Definition 2.20. An affine space is a pair (A, V ), where A is a non-empty set of points and V is a
finite-dimensional real vector space, together with a map − : A × A → V , denoted (b, a) 7→ b − a,
satisfying:

(B1) For every point a ∈ A and every vector v ∈ V , there exists a unique point b ∈ A such that
b− a = v.

(B2) Chasles’ Relation: For all points a, b, c ∈ A, (c− b) + (b− a) = c− a.

The equivalence between these two definitions is straightforward. Given A, V,+, define b− a as the
unique vector v such that a+ v = b. Axiom (A3) ensures existence and uniqueness, satisfying (B1).
Axiom (A2) implies (B2). Conversely, given A, V,−, define a + v as the unique point b such that
b − a = v. Axiom (B1) ensures existence and uniqueness. Axioms (A1) and (A2) follow from (B1)
and (B2).

An affine space of dimension 0 is a single point. An affine space of dimension 1 is called an affine
line, and one of dimension 2 is called an affine plane. An affine subspace of dimension dimA− 1
is an affine hyperplane.

In linear algebra, linear combinations are very fundamental and natural. However, attempting to
form analogous combinations of points

∑
λiai in an affine space leads to frame dependence, unless

the sum of the coefficients
∑
λi is equal to 1. This restriction leads to affine combinations.

The reason for the constraint
∑
λi = 1 becomes clear when we examine independence from the

origin. Let o ∈ A be an arbitrary origin. We wish to define a point p =
∑
λiai. Interpreting

this relative to o, we might define the vector o⃗p =
∑
λio⃗ai. If we choose a different origin o′, the

corresponding vectors are ⃗o′ai = o⃗ai − o⃗o′. The combination relative to o′ would yield the vector

⃗o′p′ =
∑

λi ⃗o′ai =
∑

λi(o⃗ai − o⃗o′) =
Ä∑

λio⃗ai
ä
−
Ä∑

λi
ä
o⃗o′.

For the resulting point p to be independent of the origin (i.e., p = p′), we require

⃗o′p′ = o⃗p− o⃗o′.

Substituting the expressions givesÄ∑
λio⃗ai

ä
−
Ä∑

λi
ä
o⃗o′ =

Ä∑
λio⃗ai

ä
− o⃗o′.

This equality holds if and only if Ä∑
λi
ä
o⃗o′ = o⃗o′,

which, for an arbitrary choice of o, o′, necessitates
∑
λi = 1. This condition ensures that the

definition of the combined point is belongs to the affine structure only, independent of any arbitrary
origin choice.
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Definition 2.21. Let (A, V ) be an affine space. Let ai for i ∈ I be a finite family of points in
A and λi for i ∈ I be a corresponding family of scalars in R such that

∑
i∈I λi = 1. The affine

combination of the points ai with weights λi is the point p ∈ A defined by

p = o+
∑
i∈I

λi(ai − o)

for any arbitrary choice of origin o ∈ A. The definition ensures p is independent of the choice of o.
We often write p =

∑
i∈I λiai.

Geometrically, the affine combination λ1a1 + λ2a2 with λ1 + λ2 = 1 represents a point on the line
passing through a1 and a2. If, in addition, λ1, λ2 ≥ 0, the point lies on the line segment between a1
and a2; such combinations are called convex combinations.

Definition 2.22. An affine frame for an n-dimensional affine space A consists of a point o ∈ A
(the origin) and a basis {v1, . . . , vn} for the associated vector space V . Any point a ∈ A can be
uniquely written as

a = o+

n∑
i=1

xivi.

The scalars x1, . . . , xn are the affine coordinates of a relative to the frame (o; {vi}).

Affine subspaces generalize the concepts of lines and planes within an affine space. They are subsets
that are “flat” and closed under the formation of lines passing through any two of their points.

Definition 2.23. A subset S ⊆ A of an affine space A is an affine subspace if either S is empty, or
S is non-empty and for any family of points ai for i ∈ I in S and scalars λi for i ∈ I with

∑
λi = 1,

the affine combination
∑
λiai is also in S.

This definition means affine subspaces are precisely the subsets closed under affine combinations.
The empty set and singleton sets {a} are affine subspaces. Any line through two distinct points is
an affine subspace.

A fundamental characterization relates affine subspaces to translates of vector subspaces.

Proposition 2.24. A non-empty subset S ⊆ A is an affine subspace if and only if there exists a
point a ∈ S and a unique vector subspace U ⊆ V such that S = a + U = {a + u | u ∈ U}. The

subspace U is called the direction of S, denoted S⃗.

Proof. Let S ⊆ A be non-empty.

(⇒) Assume S is an affine subspace. Since S is non-empty, fix an arbitrary a0 ∈ S. Define
U := {a⃗0p | p ∈ S} = {p− a0 | p ∈ S}.

First, we show U is a vector subspace of V :

• 0V = a0 − a0 ∈ U since a0 ∈ S. So U is non-empty.

• Let u1, u2 ∈ U . Then u1 = p1 − a0 and u2 = p2 − a0 for some p1, p2 ∈ S. Consider the point
q = a0 + (p1 − a0) + (p2 − a0) = p1 + (p2 − a0). This can be written as an affine combination
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q = (1)p1 + (1)p2 + (−1)a0. Since p1, p2, a0 ∈ S and the coefficients sum to 1, q ∈ S. Then
u1 + u2 = (p1 − a0) + (p2 − a0) = q − a0 ∈ U . Thus, U is closed under addition.

• Let u ∈ U and c ∈ R. Then u = p− a0 for some p ∈ S. Consider the point q = (1− c)a0 + cp.
Since a0, p ∈ S and (1 − c) + c = 1, q ∈ S. Then cu = c(p − a0) = (cp − ca0) = (cp + (1 −
c)a0 − a0) = q − a0 ∈ U . Thus, U is closed under scalar multiplication.

So, U is a vector subspace of V .

Next, we show S = a0 + U :

• If p ∈ S, then p = a0 + (p − a0). Since p − a0 ∈ U by definition of U , p ∈ a0 + U . Thus
S ⊆ a0 + U .

• If x ∈ a0+U , then x = a0+u for some u ∈ U . By definition of U , u = p′−a0 for some p′ ∈ S.
So x = a0 + (p′ − a0) = p′. Since p′ ∈ S, it follows that x ∈ S. Thus a0 + U ⊆ S.

Hence S = a0 + U .

Finally, we show U is unique for S. Suppose S = a0 + U0 and also S = a1 + U1 for some a0, a1 ∈ S
and vector subspaces U0, U1. From S = a0 +U0, we have U0 = {s− a0 | s ∈ S}. From S = a1 +U1,
we have U1 = {s− a1 | s ∈ S}. Since a1 ∈ S, a1 = a0 + u0 for some u0 ∈ U0. So u0 = a1 − a0. Let
v ∈ U0. Then v = s − a0 for some s ∈ S. We can write v = (s − a1) + (a1 − a0) = (s − a1) + u0.
Since s ∈ S and a1 ∈ S, s − a1 ∈ U1. To show U0 ⊆ U1: any v ∈ U0 is s − a0 for s ∈ S. Then
v = (s− a1)− (a0 − a1). Since s− a1 ∈ U1 and a0 − a1 ∈ U1 (as U1 = {p− a1 | p ∈ S} and a0 ∈ S),
their difference v ∈ U1. So U0 ⊆ U1. Similarly, U1 ⊆ U0. Thus U0 = U1. This unique subspace is
denoted S⃗.

(⇐) Assume there exists a0 ∈ S and a vector subspace U ⊆ V such that S = a0 + U . We show S
is an affine subspace (i.e., closed under affine combinations). Let p1, . . . , pk ∈ S and λ1, . . . , λk ∈ R
such that

∑k
i=1 λi = 1. Since pi ∈ S, each pi = a0 + ui for some ui ∈ U . The affine combination

p =
∑k
i=1 λipi can be expressed relative to a0 as:

p = a0 +

k∑
i=1

λi(pi − a0)

Substituting pi − a0 = ui:

p = a0 +

k∑
i=1

λiui

Since each ui ∈ U and U is a vector subspace, the linear combination unew =
∑k
i=1 λiui is also in

U . Therefore, p = a0 + unew where unew ∈ U . This implies p ∈ a0 + U = S. Thus, S is an affine
subspace.

2.2.2 Affine Maps and the Affine Group

Affine maps are the structure-preserving morphisms between affine spaces. They preserve the essen-
tial affine properties like collinearity and parallelism.

Definition 2.25 (Affine Map). Let (A, V,+) and (A′, V ′,+) be two affine spaces. A map f : A→ A′

is an affine map if there exists a linear map f⃗ : V → V ′ such that for any a ∈ A and v ∈ V ,

f(a+ v) = f(a) + f⃗(v)
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The linear map f⃗ is unique and is called the associated linear map (or linear part) of f . Equiva-

lently, f is affine if for any points a, b ∈ A, f⃗(a⃗b) = f⃗(a)− f⃗(b), i.e., f⃗(b− a) = f(b)− f(a). A third
equivalent condition is that f preserves affine combinations:

f
Ä∑

λiai
ä
=
∑

λif(ai)

whenever
∑
λi = 1.

Affine maps send lines to lines (or points), planes to planes (or lines, or points), and preserve
parallelism and ratios of lengths along parallel lines. The composition of affine maps is affine. Any
affine map f can be expressed, relative to a choice of origin o ∈ A, as the composition of its linear

part f⃗ (acting on V identified with A via o) followed by a translation by the vector ⃗of(o):

f(x) = f(o) + f⃗(x− o)

Definition 2.26. An affine transformation is an invertible affine map from an affine space A to
itself. The set of all affine transformations of A forms a group under composition, called the affine
group of A, denoted Aff(A). Notably, the inverse of an affine transformation is also affine, which
is a nontrivial property: in general, the inverse of a structure-preserving map is not guaranteed to
preserve the same structure (e.g., a continuous bijection need not be a homeomorphism in topology).
The fact that affine maps are closed under inversion is essential for Aff(A) to form a group.

How closely is the structure of the affine group related to the structure of the affine space? The
answer is a lot.

Theorem 2.27. Let A be an n-dimensional affine space with associated vector space V . The affine
group Aff(A) is isomorphic to the semidirect product V ⋊GL(V ), where GL(V ) is the general linear
group of V acting on V by its natural action (i.e., linear transformations). The group operation on
V ⋊GL(V ) is given by

(v, f)(w, g) = (v + f(w), fg),

where v, w ∈ V and f, g ∈ GL(V ). Thus,

Aff(A) ∼= V ⋊GL(V ).

Proof. An affine transformation f ∈ Aff(A) is determined by its associated linear map f⃗ ∈ GL(V )

and the image f(o) of a chosen origin o ∈ A. Let v = ⃗of(o) = f(o)− o. We can represent f by the

pair (v, f⃗) ∈ V × GL(V ). Consider the composition f1 ◦ f2, represented by (v1,M1) and (v2,M2)

respectively, where M1 = f⃗1 and M2 = f⃗2. Let a ∈ A.

(f1 ◦ f2)(a) = f1(f2(a)) = f1(o+ o⃗a+ v2 +M2(o⃗a)) = f1(f2(o+ o⃗a)) = f1(f2(o) +M2(o⃗a))

After some algebraic manipulation, the result corresponds to the pair (v1 +M1v2,M1M2), which
defines the group operation on V ⋊GL(V ). This confirms the semidirect product structure.
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The semidirect product structure reflects the geometric fact that translations are transformed by
the linear part of an affine map. If we conjugate a translation Tu(x) = x + u (represented by
(u, I)) by an affine map f(x) = Mx + v (represented by (v,M)), the result is another translation
TMu(x) = x+Mu (represented by (Mu, I)).

Affine transformations can be represented using (n+ 1)× (n+ 1) matrices acting on homogeneous

coordinates. If a ∈ A corresponds to

Å
x
1

ã
and f(a) corresponds to

Å
x′

1

ã
, then f represented by

(v,M) corresponds to the matrix multiplication:Å
x′

1

ã
=

Å
M v
0 1

ãÅ
x
1

ã
Composition of affine transformations corresponds to multiplication of these augmented matrices.

Affine geometry provides a framework for parallelism and collinearity but lacks notions of distance,
length, and angle. Introducing these metric concepts requires equipping the underlying vector space
with an inner product. But before we get there, let’s (rapidly) review some basic notions of Euclidean
vector spaces from linear algebra.

Definition 2.28 (Inner Product). An inner product (or scalar product) on a real vector space V
is a map g : V × V → R that is:

1. Symmetric: g(u, v) = g(v, u) for all u, v ∈ V .

2. Bilinear: g(au + bv, w) = ag(u,w) + bg(v, w) and g(u, av + bw) = ag(u, v) + bg(u,w) for all
u, v, w ∈ V and a, b ∈ R.

3. Positive-definite: g(v, v) ≥ 0 for all v ∈ V , and g(v, v) = 0 if and only if v = 0.

A finite-dimensional real vector space equipped with an inner product (V, g) is called a Euclidean
vector space.

The inner product induces a norm on V , defined by ∥v∥ =
√
g(v, v). This norm satisfies the

standard properties: ∥v∥ ≥ 0 with equality if and only if v = 0, ∥λv∥ = |λ|∥v∥, and the triangle
inequality ∥u+ v∥ ≤ ∥u∥+ ∥v∥.

Proposition 2.29. [Cauchy-Schwarz Inequality] For any u, v in a Euclidean vector space (V, g),

|g(u, v)| ≤ ∥u∥∥v∥.

Equality holds if and only if u and v are linearly dependent.

The inner product allows us to define orthogonality.

Definition 2.30 (Orthogonality). Two vectors u, v ∈ V are orthogonal, denoted u ⊥ v, if g(u, v) =
0. A set of vectors {vi} is orthogonal if g(vi, vj) = 0 for all i ̸= j, and orthonormal if g(vi, vj) = δij
(the Kronecker delta).

Euclidean geometry is the geometry of Euclidean spaces, which are vector spaces equipped with
an inner product, allowing the measurement of distance, angles, and orthogonality.

42



2.2.3 Euclidean Affine Spaces

We now combine the affine structure with the Euclidean vector space structure.

Definition 2.31. A Euclidean affine space (or simply Euclidean space) E is an affine space
whose associated vector space V is a Euclidean vector space (V, g).

The inner product g on V allows us to define metric concepts on the affine space E.

Metric Tensor. The inner product g on V can be viewed as a constant metric tensor field on
E. For any point a ∈ E, the tangent space TaE is canonically isomorphic to V (via v 7→ (a, v)
in the trivialization TE ∼= E × V , or thinking of tangent vectors as equivalence classes of curves
originating at a). We define the metric tensor ga at a to be the inner product g on TaE ∼= V . The
“constancy” means that under parallel transport (which is trivial in an affine space), the metric is
invariant; equivalently, its components are constant in Cartesian coordinates.

Distance. The distance between two points a, b ∈ E is defined as the norm of the unique translation
vector connecting them:

d(a, b) = ∥a⃗b∥ = ∥b− a∥ =
»
g(b− a, b− a)

This distance function satisfies the axioms of a metric space: d(a, b) ≥ 0 with equality if and only
if a = b; d(a, b) = d(b, a); and d(a, c) ≤ d(a, b) + d(b, c) (triangle inequality, follows from the norm
property ∥u+ v∥ ≤ ∥u∥+ ∥v∥).

Angles. The angle θ between two non-zero vectors u, v ∈ V is defined via the inner product:

cos θ =
g(u, v)

∥u∥∥v∥
, θ ∈ [0, π]

The Cauchy-Schwarz inequality ensures that −1 ≤ cos θ ≤ 1. This definition extends to angles be-
tween intersecting affine subspaces (lines, planes) by considering the angles between vectors spanning
their direction spaces.

Orthogonality. Orthogonality extends naturally from vectors to affine objects. Two vectors a⃗b
and c⃗d are orthogonal if g(a⃗b, c⃗d) = 0. Two affine subspaces S1, S2 are orthogonal if their direction

spaces S⃗1, S⃗2 are orthogonal, meaning g(u, v) = 0 for all u ∈ S⃗1, v ∈ S⃗2. This allows defining the
orthogonal projection of a point onto an affine subspace: the projection p′ of p onto S = a+ U
is the unique point p′ ∈ S such that the vector p⃗′p = p− p′ is orthogonal to the direction space U .
The distance from p to S is d(p, p′).

The existence of an inner product allows for the selection of particularly convenient bases and frames.

Definition 2.32. An orthonormal affine frame (or Euclidean frame) for E is a pair (o; {e1, . . . , en})
where o ∈ E is an origin and {e1, . . . , en} is an orthonormal basis for V .

Theorem 2.33. Every finite-dimensional Euclidean vector space (V, g) admits an orthonormal basis.

Proof. Gram-Schmidt orthogonalization process. Starting with an arbitrary basis {v1, . . . , vn},
one constructs an orthogonal basis {u1, . . . , un} via u1 = v1, uk = vk −

∑k−1
j=1 projuj (vk), where

proju(v) =
g(v,u)
g(u,u)u. Then, an orthonormal basis is obtained by normalizing: ek = uk

∥uk∥ .
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An orthonormal affine frame (o; {ei}) defines a Euclidean coordinate system (or Cartesian co-
ordinate system) x1, . . . , xn on E. Any point a ∈ E has unique coordinates x1(a), . . . , xn(a) such
that:

a = o+

n∑
i=1

xi(a)ei

In such coordinates, the vector connecting two points a and b is:

a⃗b = b− a =

n∑
i=1

(xi(b)− xi(a))ei

The inner product of two vectors u =
∑
uiei and v =

∑
vjej takes the standard Euclidean form:

g(u, v) = g

Ñ∑
i

uiei,
∑
j

vjej

é
=
∑
i,j

uivjg(ei, ej) =
∑
i,j

uivjδij =

n∑
i=1

uivi

This leads to a important property regarding the metric tensor field g on E. The coordinate vector
fields associated with a Euclidean coordinate system are ∂

∂xi , which correspond to the constant
vector fields ei under the identification TaE ∼= V . The components of the metric tensor in these
coordinates are:

gij = g

Å
∂

∂xi
,
∂

∂xj

ã
= g(ei, ej) = δij

These components are constant functions on E.

Proposition 2.34. In any Euclidean coordinate system x1, . . . , xn associated with an orthonormal
affine frame, the metric tensor g takes the standard constant form:

g =

n∑
i=1

dxi ⊗ dxi

where {dxi} is the basis dual to
{

∂
∂xi

}
. The matrix representation of g in this basis is the identity

matrix In.

Recall that isometries are the symmetry transformations of Euclidean space – the maps that preserve
its metric structure.

Definition 2.35 (Isometry). Let E be a Euclidean affine space. A map f : E → E is an isometry
if it preserves distances:

d(f(a), f(b)) = d(a, b) for all a, b ∈ E

Theorem 2.36. The Euclidean group Euc(n) is isomorphic to the semidirect product Rn ⋊ O(n),
where Rn represents the group of translations T (n).

Euc(n) ∼= T (n)⋊O(n) ∼= Rn ⋊O(n)

Similarly, the special Euclidean group SE(n) is isomorphic to Rn ⋊ SO(n).
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Proof. An isometry f is represented by (b, A), where b = f(0) − 0 is the translation vector and

A = f⃗ ∈ O(n) is the orthogonal linear part. The composition rule is

(b1, A1) · (b2, A2) = (b1 +A1b2, A1A2).

This is the semidirect product structure Rn ⋊ O(n) with the natural action of O(n) on Rn. The
subgroup of translations

T (n) = {(b, I) | b ∈ Rn}

is normal in Euc(n). The subgroup SE(n) corresponds to pairs (b, A) with A ∈ SO(n).

The Euclidean group Euc(n) is a Lie group of dimension

n+ dim(O(n)) = n+
n(n− 1)

2
=
n(n+ 1)

2
.

This finite dimensionality reflects the rigidity of Euclidean geometry; there are only a limited number
of ways (translations, rotations, reflections) to move objects around without changing distances or
angles.

2.2.4 Affine Symplectic Spaces

Previously, we explored symplectic vector spaces and affine vector spaces separately. It is now
natural to consider how these structures can be combined. In what follows, we introduce the affine
analogue of symplectic vector spaces.

Definition 2.37. An affine symplectic space is a pair (A,ω) where A is an affine space with
associated vector space V , and (V, ω) is a symplectic vector space.

The symplectic form ω on V induces a constant symplectic 2-form field on A, also denoted by
ω. At each point a ∈ A, the form ωa on TaA ∼= V is identified with ω. “Constant” means that the
components ωij are constant in any canonical coordinate system. As a constant form on an affine
space (which is diffeomorphic to R2m), ω is automatically closed, i.e., dω = 0. This contrasts with
general symplectic manifolds where dω = 0 is a non-trivial condition.

Earlier, we discussed Darboux’s theorem, which roughly states that locally, all symplectic manifolds
look the same. For the specific case of an affine symplectic space (A,ω), where ω is constant, the
local nature of Darboux’s theorem can be strengthened to a global statement, thanks to the existence
of a global symplectic basis for the underlying vector space V .

Theorem 2.38. Let (A,ω) be a 2m-dimensional affine symplectic space with associated vector space
(V, ω). There exists a global affine coordinate system (q1, . . . , qm, p1, . . . , pm) on A such that the
constant symplectic form ω is expressed as

ω =

m∑
i=1

dqi ∧ dpi

everywhere on A. Such coordinates are called canonical coordinates or Darboux coordinates.
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Proof. By Theorem 2.14, the symplectic vector space (V, ω) admits a symplectic basis {e1, . . . , em, f1, . . . , fm}
such that ω(ei, ej) = ω(fi, fj) = 0 and ω(ei, fj) = δij . Choose an arbitrary origin o ∈ A. Define the
affine coordinate functions (q1, . . . , qm, p1, . . . , pm) such that for any point a ∈ A, the unique vector
o⃗a = a− o is given by

a− o =
m∑
i=1

qi(a)ei +

m∑
j=1

pj(a)fj .

This defines a global affine coordinate system on A. The coordinate vector fields are ∂
∂qi (corre-

sponding to ei) and ∂
∂pj

(corresponding to fj). The coordinate 1-forms dqi and dpj form the dual

basis to these vector fields in each tangent space TaA ∼= V . Specifically,

dqi(ek) = δik, dqi(fk) = 0, dpj(ek) = 0, dpj(fk) = δjk.

We evaluate the constant 2-form ω in these coordinates. For any pair of coordinate vector fields
X,Y , ω(X,Y ) is a constant function on A.

• ω
Ä
∂
∂qi ,

∂
∂qk

ä
= ω(ei, ek) = 0

• ω
Ä
∂
∂pj

, ∂
∂pl

ä
= ω(fj , fl) = 0

• ω
Ä
∂
∂qi ,

∂
∂pj

ä
= ω(ei, fj) = δij

The 2-form
∑m
k=1 dq

k ∧ dpk acts on pairs of basis vectors as:

•
(∑

k dq
k ∧ dpk

) Ä
∂
∂qi ,

∂
∂ql

ä
= 0

•
(∑

k dq
k ∧ dpk

) Ä
∂
∂pj

, ∂
∂pl

ä
= 0

•
(∑

k dq
k ∧ dpk

) Ä
∂
∂qi ,

∂
∂pj

ä
= δij

Since ω and
∑
dqk ∧ dpk agree on all pairs of basis vectors, they are equal everywhere. Thus, the

constant form ω takes the standard canonical form globally in these affine coordinates.

This global result highlights a key difference between affine symplectic spaces and general symplectic
manifolds, where Darboux coordinates are only guaranteed locally. It implies that all affine symplec-
tic spaces of dimension 2m are globally symplectomorphic (up to the choice of origin). While this
suggests significant flexibility compared to the rigidity of Euclidean space (where global isometries
exist but don’t trivialize the structure), the existence of a global standard form simplifies the struc-
ture compared to general symplectic manifolds, which may have complex global topology preventing
such a coordinate system.

Now, we discuss affine symplectomorphisms. The structure-preserving transformations of affine
symplectic spaces are those affine maps whose linear part preserves the symplectic form.

Definition 2.39. An affine symplectomorphism of an affine symplectic space (A,ω) is an affine

transformation f : A→ A such that its associated linear map f⃗ : V → V is a linear symplectomor-
phism, i.e., f⃗∗ω = ω. Equivalently, ω(f⃗(u), f⃗(v)) = ω(u, v) for all u, v ∈ V .

Definition 2.40. The set of all affine symplectomorphisms of (A,ω) forms a group under com-
position, called the affine symplectic group, denoted Affω(A). This group is a subgroup of the
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general affine group Aff(A), consisting of those affine transformations that preserve the symplectic
structure.

In summary, here’s a comparison of the key points we’ve discussed regarding Euclidean affine spaces
and affine symplectic spaces.

Table 3: Succinct Comparison: Euclidean Affine vs. Affine Symplectic Spaces

Feature Euclidean Affine (E) Affine Symplectic ((A,ω))

Added Structure on V Inner Product g (Symmetric,
Bilinear, Positive-Definite)

Symplectic Form ω
(Skew-Symmetric, Bilinear,
Non-Degenerate)

Induced Field on A Constant Metric Tensor g Constant Symplectic Form ω
(dω = 0)

Key Concepts Distance, Angles, Orthogonality Canonical Structure
Special Basis/Frame Orthonormal (g(ei, ej) = δij) Symplectic (ω(ei, fj) = δij ,

others 0)
Form in Special Coords g =

∑
dxi ⊗ dxi (Cartesian) ω =

∑
dqi ∧ dpi (Darboux,

Global)
Structure-Preserving Maps Isometries (preserve distance d) Affine Symplectomorphisms

(preserve ω)

Linear Part f⃗ Orthogonal (f⃗ ∈ O(V, g)) Symplectic (f⃗ ∈ Sp(V, ω))

Symmetry Group Euc(n) ∼= V ⋊O(V ) Affω(A) (f⃗ ∈ Sp(V, ω))

2.2.5 Vector Fields, Flows, and Gradients on Affine Spaces

Let (A, V ) be a real affine space of dimension 2n, where V is the vector space of translations. We
assume A is endowed with a symplectic form ω, transforming (A, V, ω) into an affine symplectic
space. Recall that ω is a non-degenerate, skew-symmetric bilinear form on V . Let U ⊆ A be an
open subset.

The flatness of the affine space A permits a canonical identification between the tangent space TpA
at any point p ∈ A and the vector space V . Specifically, for any p ∈ A, the map v 7→ p+v provides an
identification of V with A. The differential of this map identifies T0V ∼= V with TpA. Consequently,
the tangent bundle TA is trivial, TA ∼= A×V . This allows for a simplified definition of vector fields
compared to the general manifold setting.

Definition 2.41 (Vector Field). A vector field on U is a smooth map ξ : U → V . We denote
the space of smooth vector fields on U by X(U). At each point p ∈ U , ξ(p) ∈ V is interpreted as a
tangent vector attached to p, residing in the canonically identified space TpA ∼= V .

Similarly, we define differential forms by leveraging the canonical identification of cotangent spaces
T ∗
pA with the dual space V ∗.

Definition 2.42 (Differential Form). A differential k-form on U is a smooth map α : U → ΛkV ∗,
where ΛkV ∗ denotes the k-th exterior power of the dual space V ∗. We denote the space of smooth
k-forms on U by Ωk(U).
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• For k = 0, Ω0(U) = C∞(U,R) is the space of smooth real-valued functions on U .

• For k = 1, Ω1(U) is the space of smooth 1-forms. A 1-form α assigns to each p ∈ U a covector
α(p) ∈ V ∗.

Remark 2.43 (Exterior Derivative). The exterior derivative d : Ωk(U) → Ωk+1(U) is defined as
usual. For a function f ∈ Ω0(U), its differential df ∈ Ω1(U) is given at p ∈ U by the linear map
(df)p : V → R defined by (df)p(v) = Df(p)(v), the directional derivative of f at p in the direction

v. In coordinates (x1, . . . , x2n) corresponding to a basis (e1, . . . , e2n) of V , df =
∑2n
i=1

∂f
∂xi dx

i.
Importantly, d2 = d ◦ d = 0.

The symplectic form ω on V , being non-degenerate, establishes an isomorphism between V and its
dual V ∗. This contrasts with the isomorphism provided by a Euclidean inner product g.

The musical isomorphism (in the affine symplectic space case) allows us to associate a unique vector
field to the differential (a 1-form) of any smooth function.

Earlier, we introduced the Lie algebra. Within the Lie algebra Xω(N) lies a particularly significant
subalgebra consisting of vector fields generated by functions.

Definition 2.44 (Symplectic Gradient). Let f ∈ C∞(U). The symplectic gradient (or Hamil-
tonian vector field) of f is the unique vector field ξf ∈ X(U) defined by the relation:

ιξfω = −df

Equivalently, ω(ξf (p), v) = −(df)p(v) for all p ∈ U and v ∈ V . In terms of the musical isomorphisms,
ξf = −♯ω(df).

Such a function f is called a Hamiltonian function or momentum function (or simply momen-
tum) generating ξ. The vector field ξ is then uniquely determined by df (and hence by f up to an
additive constant) via the non-degeneracy of ω, and is denoted ξf . The space of Hamiltonian vector
fields is denoted XHam(N).

Remark 2.45 (Uniqueness of Momentum). If ξ = ξf , then ξ = ξf+c for any constant c (since
d(f + c) = df). If N is connected, these are the only functions generating ξf ; the momentum
function is determined up to an overall additive constant. This ambiguity corresponds physically to
the fact that only potential energy differences are measurable.

Remark 2.46 (Sign Convention). The negative sign is conventional in Hamiltonian mechanics. It
ensures that Hamilton’s equations take their standard form. If H is the Hamiltonian function, the
dynamics are governed by ẋ = ξH(x). In canonical coordinates (qi, pi) where ω =

∑
i dq

i ∧ dpi, the
definition ιξHω = −dH yields the familiar equations q̇i = ∂H

∂pi
and ṗi = −∂H∂qi .

Example 2.47 (Euclidean Gradient - for contrast). If A were equipped with a Euclidean metric
g, the standard gradient ∇f would be defined by g(∇f, v) = df(v) for all v ∈ V , or ∇f = ♯g(df).
Note the absence of the negative sign and the use of g instead of ω.

Vector fields prescribe infinitesimal motion. Integrating this motion yields trajectories and transfor-
mations known as flows.
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Definition 2.48 (Integral Curve). An integral curve of a vector field ξ ∈ X(U) starting at p ∈ U
is a smooth curve γ : I → U , defined on some open interval I containing 0, such that γ(0) = p and
γ̇(t) = ξ(γ(t)) for all t ∈ I. Here, γ̇(t) denotes the tangent vector to the curve at γ(t), identified
with an element of V .

Theorem 2.49 (Existence and Uniqueness of Local Flows). Let ξ ∈ X(U). For each p ∈ U , there
exists a unique maximal integral curve γp : Ip → U starting at p. Furthermore, there exists an open
neighborhood W ⊆ R × U of {0} × U and a smooth map φ : W → U , called the local flow of ξ,
such that for each fixed p ∈ U , the map t 7→ φ(t, p) is the integral curve of ξ starting at p. We often
write φt(p) for φ(t, p). For fixed t (where defined), φt : Ut → U ′

t is a diffeomorphism between open
subsets of U .

Proof. This is a standard result from the theory of ordinary differential equations, applied to the
system ẋ = ξ(x).

Remark 2.50 (Affine Structure Distortion). Unless the vector field ξ is constant (corresponding to
parallel translation) or linear (corresponding to an affine transformation centered at some origin), its
flow maps φt are generally not affine automorphisms of A. They typically distort distances, angles,
and the affine structure itself.

A central question is how flows interact with the underlying geometric structure, in our case, the
symplectic form ω.

Definition 2.51 (Lie Derivative). Let ξ ∈ X(U). The Lie derivative with respect to ξ acts on
differential forms. For α ∈ Ωk(U), Lξα ∈ Ωk(U) measures the rate of change of α along the flow of
ξ. It can be defined via the flow:

Lξα =
d

dt

∣∣∣∣
t=0

φ∗
tα

where φ∗
t denotes the pullback operation by the diffeomorphism φt. Alternatively, Cartan’s magic

formula8 provides the expression:
Lξα = d(ιξα) + ιξ(dα)

Continuous symmetries, such as those generated by Lie group actions, are often best understood
through their infinitesimal generators – vector fields whose flows consist of symmetries.

Definition 2.52 (Symplectic Vector Field). An infinitesimal symmetry of (N,ω) is a smooth
vector field ξ ∈ X(N) such that its local flow {φt} consists of (local) symplectomorphisms. This
condition is equivalent to requiring that the Lie derivative of ω with respect to ξ vanishes:

Lξω = 0

A vector field satisfying this condition is called symplectic. The space of all symplectic vector fields
on N is denoted Xω(N).

The condition Lξω = 0 provides a powerful link to differential forms. Using Cartan’s magic formula

8See Theorem 14.35 on page 372 of [20].
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Lξ = dιξ + ιξd and the fact that ω is closed (dω = 0), we have:

Lξω = d(ιξω) + ιξ(dω) = d(ιξω)

Therefore, a vector field ξ is symplectic if and only if the 1-form obtained by contracting ω with ξ
is closed:

ξ ∈ Xω(N) ⇐⇒ d(ιξω) = 0

This shows that the map ξ 7→ ιξω provides an isomorphism between the space Xω(N) of symplectic
vector fields and the space Z1(N) of closed 1-forms on N (assuming appropriate function spaces or
interpreting the isomorphism via the non-degeneracy of ω).

Proposition 2.53. The space Xω(N) is a Lie subalgebra of (X(N), [·, ·]).

Proof. Let ξ, η ∈ Xω(N). We must show [ξ, η] ∈ Xω(N). We use the fundamental identity relating
Lie derivatives and commutators: L[ξ,η] = [Lξ,Lη] = LξLη − LηLξ. Applying this identity to the
form ω:

L[ξ,η]ω = Lξ(Lηω)− Lη(Lξω)
Since ξ and η are symplectic, Lξω = 0 and Lηω = 0. Substituting these into the equation yields:

L[ξ,η]ω = Lξ(0)− Lη(0) = 0− 0 = 0

Thus, the commutator [ξ, η] is also a symplectic vector field.

The structure of this potentially infinite-dimensional Lie algebra Xω(N) is complicated and reflects
the geometry of (N,ω).

The remarkable property of symplectic gradients is that they generate structure-preserving flows.

Theorem 2.54. Every Hamiltonian vector field is symplectic. That is, if f ∈ C∞(U) and ξf is its
symplectic gradient, then Lξfω = 0.

Proof. We apply Cartan’s formula. Since ω is a form of constant coefficients on A (inherited from
V ), its exterior derivative dω = 0 (it is closed). By definition of the symplectic gradient, ιξfω = −df .
Therefore,

Lξfω = d(ιξfω) + ιξf (dω) = d(−df) + ιξf (0) = −d2f = 0.

The result follows.

Corollary 2.55. The flow {φt} generated by a Hamiltonian vector field ξf consists of symplecto-
morphisms, i.e., diffeomorphisms preserving ω.

Remark 2.56 (Contrast with Euclidean Gradient). The flow generated by the Euclidean gradient
∇f does not generally preserve the metric g. The condition for a vector field ξ to preserve g is
Lξg = 0, leading to Killing vector fields, which have a very different character from symplectic vector
fields. Gradient flows typically move points towards regions of lower function value, orthogonal to
level sets, while Hamiltonian flows move points along level sets of the Hamiltonian function (in many
standard examples) in a manner that preserves symplectic area.

Proposition 2.57 (Conservation of Energy). The Hamiltonian function f is constant along the
integral curves of its associated Hamiltonian vector field ξf . That is, Lξf f = 0.
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Proof. Using the definition of the Lie derivative for functions (Lξf = df(ξ)) and the definition of ξf :

Lξf f = df(ξf ) = (−ιξfω)(ξf ) = −ω(ξf , ξf ).

Since ω is skew-symmetric, ω(v, v) = 0 for any vector v. Thus, Lξf f = 0.

This proposition is the geometric statement of energy conservation in Hamiltonian mechanics.

Earlier, we saw that every Hamiltonian vector field is symplectic. The converse holds if the domain
U has trivial first de Rham cohomology, H1

dR(U) = 0 (e.g., if U is star-shaped). On topologically
non-trivial domains, there can exist symplectic vector fields that are not Hamiltonian.

Example 2.58 (Symplectic but not Hamiltonian Vector Field on T 2). The distinction between
symplectic and Hamiltonian vector fields is not merely formal; it manifests concretely on manifolds
with non-trivial first cohomology. Consider the 2-torus M = T 2 = R2/(2πZ)2, with angular coor-
dinates (θ1, θ2). Let the symplectic form be the standard area form ω = dθ1 ∧ dθ2. This form is
clearly closed (dω = 0) and non-degenerate.

Consider the vector field ξ = ∂
∂θ1

. This vector field generates the flow φt(θ1, θ2) = (θ1 + t
(mod 2π), θ2), representing rigid rotation along the first circle factor.

Is ξ symplectic? We compute the 1-form αξ = ιξω:

αξ = ι∂/∂θ1(dθ1 ∧ dθ2) = (ι∂/∂θ1dθ1) ∧ dθ2 − dθ1 ∧ (ι∂/∂θ1dθ2)

= (dθ1(
∂
∂θ1

))dθ2 − dθ1(dθ2( ∂
∂θ1

))

= (1)dθ2 − dθ1(0) = dθ2.

Since dαξ = d(dθ2) = 0, the 1-form αξ is closed. Therefore, by definition, the vector field ξ = ∂
∂θ1

is
symplectic (Lξω = d(ιξω) = 0).

Is ξ Hamiltonian? For ξ to be Hamiltonian, the 1-form αξ = dθ2 would need to be exact. That is,
there would have to exist a globally defined smooth function f ∈ C∞(T 2) such that αξ = dθ2 = −df .
However, dθ2 is not exact on the torus T 2. We can see this by integrating dθ2 over the closed loop
γ : [0, 2π]→ T 2 defined by γ(t) = (0, t):∫

γ

dθ2 =

∫ 2π

0

(dθ2)γ(t)(γ̇(t))dt

Since γ̇(t) = (0, 1) in velocity coordinates, corresponding to the vector ∂
∂θ2

at γ(t), the integrand is

(dθ2)(
∂
∂θ2

) = 1. Thus, ∫
γ

dθ2 =

∫ 2π

0

1dt = 2π ̸= 0.

Since the integral of dθ2 over a closed loop is non-zero, dθ2 cannot be exact (by Stokes’ Theorem, or
the definition of exactness via path integrals). Therefore, ξ = ∂

∂θ1
is a symplectic vector field that is

not Hamiltonian.

This aligns perfectly with the fundamental exact sequence. The first de Rham cohomology of the
torus is H1

dR(T
2) ∼= R2, with basis classes [dθ1] and [dθ2]. The map Φ : Xω(T

2) → H1
dR(T

2) sends
our vector field ξ = ∂

∂θ1
to the cohomology class Φ(ξ) = [ιξω] = [dθ2]. Since [dθ2] is a non-zero

element of H1
dR(T

2), ξ lies in Xω(T
2) but not in the kernel of Φ, which is XHam(T

2). Similarly, the
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vector field ∂
∂θ2

is symplectic but not Hamiltonian, mapping via Φ to the class [ι∂/∂θ2ω] = [−dθ1],
which is also non-zero. This example illustrates how the topology of the manifold (H1 ̸= 0) creates
a distinction between the broader class of structure-preserving vector fields (symplectic) and the
subclass generated by scalar functions (Hamiltonian).

Now we discuss the uniqueness of the Hamiltonian.

Remark 2.59 (Uniqueness of Hamiltonian). If ξ = ξf for some function f , then ξf = ξf+c for any
constant c, since d(f + c) = df . If U is connected, then any two Hamiltonian functions for the same
Hamiltonian vector field differ by a constant.

To summarize: the structure of an affine symplectic space provides the local model for symplectic
manifolds. The concepts introduced here (Hamiltonian vector fields generated by functions via the
symplectic form, and their flows which preserve this form) are fundamental. They form the bedrock
of Hamiltonian mechanics, geometric quantization, and significant parts of modern symplectic topol-
ogy. The key thing to remember is the relationship between functions (observables), vector fields
(generators of dynamics), and the preservation of the symplectic structure (ω) under the resulting
flows. This contrasts with Riemannian geometry, where gradients are tied to the metric and their
flows typically do not preserve it. The conservation laws, particularly the preservation of ω and the
constancy of the Hamiltonian function along its flow, are results of the symplectic setup.

2.3 Riemannian and Symplectic Manifolds

Our investigations so far within the framework of affine spaces have laid bare the essential algebraic
structures underpinning Riemannian and symplectic geometry. While this affine setting provides
the infinitesimal model, it falls short of capturing the complexities of global phenomena. Physical
systems often evolve on spaces possessing non-trivial topology (e.g., configuration spaces involving
angles) or inherent curvature, necessitating a transition to the broader landscape of smooth man-
ifolds. Here, we undertake this transition, exploring how the local geometric structures inherited
from V are woven into global tensor fields on a manifold M .

Let M be a smooth manifold of dimension n (which we require to be Hausdorff and second-
countable). Recall that its smooth structure is defined by a maximal atlas A = {(Uα, ϕα)}α∈I ,
where {Uα} is an open cover of M and each chart map ϕα : Uα → ϕα(Uα) ⊆ Rn is a homeo-
morphism onto an open subset of Euclidean space. Importantly, the transition maps ϕβ ◦ ϕ−1

α :
ϕα(Uα∩Uβ)→ ϕβ(Uα∩Uβ) are required to be smooth (class C∞) for all overlapping charts Uα, Uβ .
This compatibility condition ensures that notions of smoothness are well-defined globally on M .

The tangent bundle π : TM →M provides the natural arena for infinitesimal calculus on M . It can
be constructed as the disjoint union

∐
m∈M TmM quotiented by an equivalence relation identifying

tangent vectors via the differentials of chart maps, or intrinsically via equivalence classes of curves
or the space of derivations on the algebra of germs of smooth functions at each point. TM possesses
the structure of a smooth vector bundle of rank n over M ; this means TM is itself a smooth
manifold, π is a smooth map, and TM admits local trivializations Φα : π−1(Uα)→ Uα × Rn which
are diffeomorphisms respecting the projection maps and restricting to linear isomorphisms on the
fibers Φα|m : TmM → {m} × Rn ∼= Rn.

Our objective is to endow M with global geometric structures that smoothly assign to each tangent
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space TmM either an inner product (leading to Riemannian geometry) or a symplectic form (leading
to symplectic geometry), mirroring the structures previously studied on the model vector space V .

2.3.1 Pointwise Structures, Fiber Bundles, and Global Tensor Fields

The path to global structures proceeds by first considering the desired algebraic structure on each
fiber TmM , then assembling these into a fiber bundle, and finally defining the global geometric
structure as a smooth section of this bundle.

We have already defined an inner product and a symplectic form. Let’s place these structures on
the tangent space in the obvious way.

Definition 2.60. Let M be a smooth manifold.

1. A Riemannian metric onM is a smooth assignment of an inner product gm on each tangent
space TmM , such that the map g : TM ×M TM → R is a smooth (0, 2)-tensor field. That is,
for each m ∈M , the bilinear form gm : TmM × TmM → R is symmetric and positive-definite.

2. If dimM = 2k is even, an almost-symplectic form on M is a smooth 2-form ω ∈ Ω2(M)
such that ωm is non-degenerate at each point m ∈ M . That is, for each m ∈ M , the bilinear
form ωm : TmM × TmM → R is skew-symmetric and non-degenerate.

We can consider the spaces of such structures on a fixed vector space V ∼= Rn. As before, let Met(V )
denote the space of inner products on V , and Symp(V ) denote the space of symplectic forms on V
(if n = 2k). These pointwise spaces can be bundled together over M .

Definition 2.61 (Associated Fiber Bundles). Associated to the tangent bundle TM → M , we
define:

1. The bundle of metrics Met(M)→M , whose fiber over m ∈M is Met(TmM).

2. The bundle of symplectic forms Symp(M)→M (if dimM = 2k), whose fiber over m ∈M
is Symp(TmM).

These are smooth fiber bundles whose structure group is related to GL(n,R) acting on the fibers
Met(Rn) and Symp(Rn) respectively.

A global geometric structure is then precisely a choice of an element in the fiber over each point m,
varying smoothly across M .

Definition 2.62 (Global Structures as Sections). A Riemannian metric onM is a smooth section
g : M → Met(M) of the bundle ρ1 : Met(M) → M . Equivalently, it is a smooth tensor field
g ∈ Γ(T ∗M ⊗ T ∗M) which is symmetric and positive-definite at each point m ∈ M . In local
coordinates (x1, . . . , xn), g =

∑n
i,j=1 gij(x)dx

i ⊗ dxj , where (gij(x)) is a smooth matrix-valued
function such that each matrix g(x) is symmetric and positive-definite.

An almost symplectic structure on M (which must be even-dimensional, dimM = 2k) is a
smooth section ω :M → Symp(M) of the bundle ρ2 : Symp(M)→M . Equivalently, it is a smooth
differential 2-form ω ∈ Ω2(M) which is non-degenerate at each point m ∈ M . In local coordinates
(x1, . . . , x2k), ω =

∑
1≤i<j≤2k ωij(x)dx

i ∧ dxj , where the matrix (ωij(x)) (with ωii = 0, ωji = −ωij)
is smooth and has non-zero determinant at each point x.
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Remark 2.63 (Geometric Interpretation). Infinitesimally, a Riemannian metric gm allows us
to measure lengths of tangent vectors (||v||m =

√
gm(v, v)) and angles between them (cos θ =

gm(v, w)/(||v||m||w||m)). An almost symplectic form ωm allows us to measure the signed area of
the parallelogram spanned by two tangent vectors v, w as ωm(v, w). The non-degeneracy ensures that
for any non-zero v, there exists some w such that this area is non-zero.

2.3.2 Existence of Structures

The question of existence of these global structures reveals a big difference between Riemannian and
symplectic geometry. The former demonstrates remarkable flexibility, while the latter encounters
significant topological obstructions.

Theorem 2.64 (Universal Existence of Riemannian Metrics). Every smooth manifold M admits a
Riemannian metric.

Detailed Sketch. The proof is based on the ability to patch together locally defined structures using
partitions of unity, guaranteed by the paracompactness of M .

Local Existence: Let {(Uα, ϕα)}α∈I be an atlas forM . On each chart domain Uα, we can define a lo-
cal Riemannian metric gα. A standard choice is to pull back the Euclidean metric gstd =

∑n
i=1(dy

i)2

from the target space ϕα(Uα) ⊆ Rn: define gα = ϕ∗αgstd. This yields a smooth, symmetric, positive-
definite tensor field on Uα.

Partition of Unity: Since M is paracompact and Hausdorff, there exists a partition of unity subor-
dinate to the open cover {Uα}. This is a collection of smooth functions {ψα : M → [0, 1]}α∈I such
that:

• The support supp(ψα) = {m ∈M | ψα(m) ̸= 0} is compact and contained in Uα for each α.

• The collection of supports is locally finite (every point m ∈M has a neighborhood intersecting
only finitely many supports).

• For every m ∈M ,
∑
α∈I ψα(m) = 1. (Note: the sum is finite due to local finiteness).

Gluing: Define a global symmetric tensor field g of type (0, 2) by the formula:

gm =
∑
α∈I

ψα(m)(gα)m

for each m ∈ M . Note that (gα)m is only defined if m ∈ Uα; however, if m /∈ supp(ψα), then
ψα(m) = 0, so the term vanishes. Thus, the sum is well-defined and involves only finitely many
non-zero terms in a neighborhood of any m. Smoothness follows from the smoothness of ψα and gα.
Symmetry is clear as each gα is symmetric.

Positive-Definiteness: For anym ∈M and any non-zero v ∈ TmM , we need to show gm(v, v) > 0. We
have gm(v, v) =

∑
α∈I ψα(m)(gα)m(v, v). Since

∑
ψα(m) = 1 and ψα(m) ≥ 0, there must be at least

one index β such that ψβ(m) > 0. For this β, m ∈ supp(ψβ) ⊂ Uβ , so (gβ)m is defined. Since (gβ)m
is positive-definite and v ̸= 0, we have (gβ)m(v, v) > 0. Also, for all α where ψα(m) ̸= 0, we have
m ∈ Uα, so (gα)m(v, v) ≥ 0. Therefore, gm(v, v) =

∑
ψα(m)(gα)m(v, v) ≥ ψβ(m)(gβ)m(v, v) > 0.
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The situation for almost symplectic structures contrasts sharply with that of Riemannian metrics.
While every smooth manifold admits a Riemannian metric (thanks to the convexity of the space
of positive-definite inner products and the existence of partitions of unity), the existence of an
almost symplectic form is not guaranteed—even on even-dimensional manifolds. This is because
non-degeneracy is not a convex condition: convex combinations of non-degenerate 2-forms need not
be non-degenerate. In contrast, positive-definiteness (a condition on Riemannian metrics) is convex,
allowing smooth patching via partitions of unity.

Proposition 2.65 (Obstructions to Almost Symplectic Structures). Let M be a smooth manifold
of dimension 2k. Necessary conditions for the existence of an almost symplectic structure ω include:

1. Even Dimension: Trivial by definition.

2. Orientability: An almost symplectic form ω determines a volume form Ω = (−1)k(k−1)/2

k! ωk =
(−1)k(k−1)/2

k! ω ∧ · · · ∧ ω. Since ω is non-degenerate, Ω is nowhere vanishing. The existence of
a nowhere-vanishing top-degree form is equivalent to the orientability of M . Thus, any almost
symplectic manifold must be orientable.

3. Higher-Order Topological Obstructions: Even if M is orientable, further obstructions
can exist, often related to characteristic classes of the tangent bundle TM . For example, the
existence of an almost symplectic structure implies certain relations among Stiefel-Whitney
classes and Pontryagin classes.

Example 2.66 (Obstructions Illustrated).

• RP2 (Real Projective Plane): As a non-orientable 2-manifold, it cannot admit an almost
symplectic structure due to obstruction (2). Topologically, T (RP 2) is non-trivial in a way that
prevents a global non-degenerate skew form (related to w1(TRP 2) ̸= 0).

• Orientable Surfaces (M2): Every orientable surface admits an almost symplectic structure. As
noted earlier, any area form suffices. For example, the sphere S2 with its standard volume
form is almost symplectic (and in fact, symplectic). The torus T 2 = S1 × S1 with dθ1 ∧ dθ2 is
another example.

• The 4-sphere S4: This is orientable (H4(S
4,Z) ∼= Z). However, S4 famously does not admit

an almost symplectic structure. This is a deeper result. It is related to the fact that TS4 does
not admit an almost complex structure (an endomorphism J : TS4 → TS4 with J2 = −id).
While almost symplectic structures do not necessarily require almost complex structures, their
obstructions are linked via characteristic classes. For spheres, only S2 and S6 admit almost
complex structures (related to the existence of complex and octonion multiplications). The
non-existence for S4 can be shown using arguments involving Pontryagin classes or K-theory,
demonstrating that topology beyond simple orientability plays a critical role. The argument
using H2(S4) = 0, presented later, applies specifically to ruling out closed forms (symplectic),
not just non-degenerate ones (almost symplectic).

• Complex Projective Space CPn: This space, of real dimension 2n, does admit an almost
symplectic structure. In fact, it admits a Kähler structure, which includes a symplectic form
(the Fubini-Study form ωFS) compatible with a complex structure J and a Riemannian metric
g. The existence here highlights that suitable complex geometry often provides a route to
constructing (almost) symplectic structures.
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2.3.3 The Symplectic Condition: Integrability

The definition of an almost symplectic structure involves only the algebraic condition of non-
degeneracy at each point, varying smoothly. Symplectic geometry properly imposes an additional,
important differential condition: the closure of the 2-form ω.

Definition 2.67 (Symplectic Manifold). A symplectic manifold is a pair (M,ω) where M is
a smooth manifold (necessarily even-dimensional and orientable) and ω ∈ Ω2(M) is a differential
2-form that is both:

1. Non-degenerate (pointwise): ωm : TmM × TmM → R is non-degenerate for all m ∈M .

2. Closed: dω = 0.

The 2-form ω satisfying these conditions is called the symplectic form of M .

The condition dω = 0 fundamentally distinguishes symplectic geometry from Riemannian geometry.
It acts as an integrability condition, ensuring a high degree of local uniformity, as captured by
Darboux’s Theorem. The closedness condition dω = 0 establishes a direct link to the topology of
the manifold via de Rham cohomology.

Remark 2.68 (Cohomological Obstructions and Properties). The condition dω = 0 means ω rep-
resents a cohomology class [ω] ∈ H2

dR(M). This class, and its powers, carry significant information.

• Fundamental Class: [ω] is a fundamental topological invariant of the symplectic structure.
Symplectic diffeomorphisms must preserve this class.

• Volume and Top Class: If M is compact with dimM = 2k, the non-degeneracy ensures the
volume form ωk/k! is nowhere zero. Since dω = 0, the volume form is also closed: d(ωk) =
kωk−1 ∧dω = 0. Its integral Vol(M) =

∫
M
ωk/k! is non-zero. This implies the top cohomology

class [ωk] = [ω]k ∈ H2k
dR(M) must be non-zero (as it pairs non-trivially with the fundamental

homology class [M ]).

• Obstruction via H2: If H2
dR(M) = 0, then any closed 2-form ω must be exact (ω = dα). As

explored below for S4, this can prevent the existence of a symplectic structure on a compact
manifold, as [ω]k would necessarily be zero in cohomology if [ω] = 0.

• Hard Lefschetz Property: On a compact Kähler manifold (a special class of symplectic
manifolds admitting a compatible complex structure and Riemannian metric), the map L :
Hp(M)→ Hp+2(M) given by cup product with [ω], L(β) = [ω]∧β, satisfies the Hard Lefschetz
theorem: Lk−p : Hp(M) → H2k−p(M) is an isomorphism for p ≤ k. This property, while
specific to Kähler geometry, highlights the deep structural role played by the symplectic class
[ω]. Symplectic manifolds satisfying Hard Lefschetz are often called Lefschetz manifolds.

Example 2.69 (S4 revisited: Symplectic Obstruction via H2). As established, S4 does not even
admit an almost symplectic structure. However, we can provide an independent argument showing
it does not admit a symplectic structure using cohomology, which relies only on dω = 0 and non-
degeneracy.

Suppose ω ∈ Ω2(S4) were a symplectic form. It must be closed (dω = 0). The second de Rham
cohomology of S4 is trivial:

H2
dR(S

4) = {0}.
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By definition of cohomology, any closed form on a space with trivial cohomology must be exact.
Thus,

ω = dα for some α ∈ Ω1(S4).

Now consider the 4-form ω2 = ω ∧ ω. Since ω = dα,

ω2 = dα ∧ dα.

Using the property
d(A ∧B) = dA ∧B + (−1)degAA ∧ dB,

we find
d(α ∧ dα) = dα ∧ dα− α ∧ d2α = dα ∧ dα = ω2.

Thus, ω2 = d(α ∧ ω) is an exact 4-form.

By Stokes’ Theorem, the integral of an exact form over a compact manifold without boundary is
zero: ∫

S4

ω2 =

∫
∂S4

(α ∧ ω) = 0.

However, for ω to be symplectic on the compact 4-manifold S4, ω2 must be a volume form, and its
integral ∫

S4

ω2

must be non-zero (twice the symplectic volume). This contradiction demonstrates that S4 cannot
admit a symplectic structure.

Compare this to the 4-torus T 4, where

H2
dR(T

4) ∼= R6 ̸= {0},

allowing for non-exact closed 2-forms like

dθ1 ∧ dθ2 + dθ3 ∧ dθ4,

which is a symplectic form.

So far, we’ve encountered several examples of manifolds that are not symplectic. Naturally, it’s time
to explore some sources of symplectic manifolds as well.

Example 2.70 (Sources of Symplectic Manifolds).

• Orientable Surfaces (M2): Any area form ω is non-degenerate and automatically closed
(dω ∈ Ω3(M2) = 0). Examples include (S2, ωstd) and (T 2, dθ1 ∧ dθ2).

• Cotangent Bundles (T ∗M): As detailed below, these carry the canonical symplectic form
ωcan = −dθ, providing phase spaces for mechanics.

• Kähler Manifolds: These are complex manifolds (M,J) equipped with a Riemannian metric
g such that the associated Kähler form ω(X,Y ) = g(JX, Y ) is closed (dω = 0) and non-
degenerate (which follows from g and J). Complex projective spaces CPn with the Fubini-
Study metric are prime examples. Kähler geometry lies at the intersection of Riemannian,
complex, and symplectic geometry.
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• Coadjoint Orbits: For a Lie group G with Lie algebra g, the coadjoint orbits in the dual
space g∗ carry canonical symplectic structures (the Kirillov-Kostant-Souriau form). These are
important in representation theory and geometric quantization.

2.3.4 Canonical Example: The Cotangent Bundle T ∗M

Among the sources of symplectic manifolds, the cotangent bundle holds a privileged position due to
its universality and its role as the natural phase space in Hamiltonian mechanics.

Let M be any smooth manifold of dimension n. The cotangent bundle π : T ∗M →M is the vector
bundle whose fiber over m ∈ M is the dual space T ∗

mM = (TmM)∗, the space of linear functionals
(covectors) on the tangent space TmM . A point p ∈ T ∗M can be thought of as a pair (m,α) where
m = π(p) ∈M and α ∈ T ∗

mM .

Definition 2.71 (Tautological One-Form). The tautological one-form (or Liouville form) θ ∈
Ω1(T ∗M) is defined as follows: For any point p ∈ T ∗M and any tangent vector η ∈ Tp(T ∗M) to the
cotangent bundle at p,

θp(η) := ⟨α, π∗η⟩ = α(π∗η)

where α ∈ T ∗
π(p)M is the covector component represented by the point p, and π∗ : Tp(T

∗M) →
Tπ(p)M is the pushforward (differential) of the projection map π. The name “tautological” reflects
the definition: θ at p = (m,α) evaluates the covector α on the projection (to the base manifold M)
of tangent vectors η starting at p. It naturally extracts the “covector information” inherent in the
point p ∈ T ∗M and applies it to the “base component” of tangent vectors at p.

To understand θ in coordinates, let (q1, . . . , qn) be local coordinates on an open set U ⊆ M .
These induce canonical coordinates (q1, . . . , qn, p1, . . . , pn) on the corresponding domain T ∗U =
π−1(U) ⊆ T ∗M . A point z ∈ T ∗U has coordinates (q(z), p(z)), representing the covector α =∑n
i=1 pi(z)(dq

i)q(z) ∈ T ∗
q(z)M . Let η ∈ Tz(T

∗M). We can write η =
∑
aj( ∂

∂qj )z +
∑
bj(

∂
∂pj

)z.

The projection map is π(q, p) = q. Its differential is π∗(
∂
∂qj ) = ∂

∂qj (viewed as a vector at q) and

π∗(
∂
∂pj

) = 0. Thus, π∗η =
∑
aj( ∂

∂qj )q(z). Applying the definition of θ:

θz(η) = α(π∗η) =

(∑
i

pi(z)dq
i

)Ñ∑
j

aj
∂

∂qj

é
=
∑
i

pi(z)a
i.

Now consider the coordinate expression for θ =
∑
Aidq

i +
∑
Bjdpj . Evaluating this on η: θz(η) =∑

Aia
i +
∑
Bjbj . Comparing, we must have Ai = pi(z) and B

j = 0. Therefore, in these canonical
coordinates:

θ =

n∑
i=1

pidq
i

Definition 2.72 (Canonical Symplectic Form on T ∗M). The canonical symplectic form on the
cotangent bundle T ∗M is the 2-form ωcan ∈ Ω2(T ∗M) defined by

ωcan := −dθ

The choice of sign is conventional in physics and ensures that Hamilton’s equations take their
standard form when using ωcan and coordinates (q, p). With this sign, ωcan = −d(

∑
pidq

i) =
−
∑
dpi ∧ dqi =

∑
dqi ∧ dpi.
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Theorem 2.73. For any smooth manifoldM , the cotangent bundle T ∗M equipped with the canonical
form ωcan = −dθ is a symplectic manifold.

Proof. Closedness: ωcan = −dθ. Therefore, dωcan = −d(dθ) = −d2θ = 0, since the exterior deriva-
tive squares to zero. Closedness is automatic from the definition as an exact form (up to sign).

Non-degeneracy: We check this in the canonical local coordinates (q1, . . . , qn, p1, . . . , pn) derived
above. In these coordinates, ωcan =

∑n
i=1 dq

i ∧ dpi. The matrix representation of this bilinear form
with respect to the basis { ∂

∂q1 , . . . ,
∂
∂qn ,

∂
∂p1

, . . . , ∂
∂pn
} for the tangent space Tz(T

∗M) is the 2n× 2n
block matrix:

J =

Å
0n In
−In 0n

ã
where 0n is the n × n zero matrix and In is the n × n identity matrix. The determinant of J
is det(In) = 1, which is non-zero. Since the determinant is non-zero, the bilinear form is non-
degenerate. As this holds in local coordinates covering T ∗M , ωcan is non-degenerate everywhere.
Thus, (T ∗M,ωcan) is a symplectic manifold.

The existence of this canonical structure makes T ∗M the prototypical example of a symplectic
manifold and the natural setting for Hamiltonian mechanics, where qi are generalized positions and
pi are conjugate momenta.

2.3.5 Dynamics on Symplectic Manifolds: Hamiltonian Formalism

The framework of vector fields, flows, and gradients developed in the affine setting finds its natural
generalization and richest expression on symplectic manifolds.

Definition 2.74 (Symplectic and Hamiltonian Vector Fields on Manifolds). Let (M,ω) be a sym-
plectic manifold.

1. A vector field ξ ∈ X(M) is symplectic if it preserves the symplectic form under its flow,
i.e., Lξω = 0. As dω = 0, Cartan’s formula Lξω = d(ιξω) + ιξ(dω) reduces this condition
to d(ιξω) = 0. Thus, ξ is symplectic if and only if the 1-form αξ := ιξω is closed. The set
of all symplectic vector fields forms a Lie subalgebra Xω(M) ⊂ X(M) under the standard
commutator bracket.

2. A vector field ξ ∈ X(M) is Hamiltonian if the closed 1-form αξ = ιξω is furthermore exact.
That is, if there exists a smooth function f ∈ C∞(M) (the Hamiltonian function or simply
Hamiltonian) such that αξ = ιξω = −df . Such a vector field is uniquely determined by f (up
to addition of a locally constant function to f) and is denoted ξf . The space of Hamiltonian
vector fields XHam(M) is also a Lie subalgebra of X(M).

Clearly, every Hamiltonian vector field is symplectic (ιξfω = −df =⇒ d(ιξfω) = −d2f = 0). The
converse depends on the topology of M , specifically its first de Rham cohomology group H1

dR(M).

Remark 2.75 (The Fundamental Exact Sequence). The relationship between functions, Hamilto-
nian fields, symplectic fields, and topology is captured by the following sequence of vector spaces and
linear maps:

0 −→ R −→ C∞
loc.const(M)

i−→ C∞(M)
δ−→ XHam(M)

j−→ Xω(M)
Φ−→ H1

dR(M)
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Here:

• C∞
loc.const(M) are the locally constant functions (isomorphic to R if M is connected). The map

i is inclusion. The 0→ · · · → C∞(M) part shows constants map to zero under δ.

• δ : C∞(M) → XHam(M) is the map f 7→ ξf , where ξf is defined by ιξfω = −df . The kernel
of δ consists precisely of the locally constant functions (since df = 0 if and only if f is locally
constant).

• j : XHam(M)→ Xω(M) is the inclusion map, as every Hamiltonian field is symplectic.

• Φ : Xω(M) → H1
dR(M) maps a symplectic vector field ξ to the de Rham cohomology class of

the closed 1-form αξ = ιξω, i.e., Φ(ξ) = [ιξω].

The sequence is exact at C∞(M) (ker δ = im i) and at XHam(M) (ker j = 0, image of δ is XHam(M)).
Exactness at Xω(M) means kerΦ = im j = XHam(M). This precisely states that a symplectic vector
field ξ is Hamiltonian if and only if the cohomology class [ιξω] is zero, i.e., if ιξω is exact. The map
Φ is sometimes related to the flux homomorphism. The sequence clarifies that H1

dR(M) measures
the obstruction for a symplectic vector field to be Hamiltonian. If H1

dR(M) = 0 (e.g., if M is simply
connected), then every symplectic vector field is Hamiltonian. Furthermore, XHam(M) is known to
be an ideal in Xω(M) under suitable conditions (e.g., M compact).

Example 2.76 (Symplectic but not Hamiltonian Vector Field on T 2). The distinction between
symplectic and Hamiltonian vector fields is not merely formal; it manifests concretely on manifolds
with non-trivial first cohomology. Consider the 2-torus M = T 2 = R2/(2πZ)2, with angular coor-
dinates (θ1, θ2). Let the symplectic form be the standard area form ω = dθ1 ∧ dθ2. This form is
clearly closed (dω = 0) and non-degenerate.

Consider the vector field ξ = ∂
∂θ1

. This vector field generates the flow φt(θ1, θ2) = (θ1 + t
(mod 2π), θ2), representing rigid rotation along the first circle factor.

Is ξ symplectic? We compute the 1-form αξ = ιξω:

αξ = ι∂/∂θ1(dθ1 ∧ dθ2) = (ι∂/∂θ1dθ1) ∧ dθ2 − dθ1 ∧ (ι∂/∂θ1dθ2)

= (dθ1(
∂
∂θ1

))dθ2 − dθ1(dθ2( ∂
∂θ1

))

= (1)dθ2 − dθ1(0) = dθ2.

Since dαξ = d(dθ2) = 0, the 1-form αξ is closed. Therefore, by definition, the vector field ξ = ∂
∂θ1

is
symplectic (Lξω = d(ιξω) = 0).

Is ξ Hamiltonian? For ξ to be Hamiltonian, the 1-form αξ = dθ2 would need to be exact. That is,
there would have to exist a globally defined smooth function f ∈ C∞(T 2) such that αξ = dθ2 = −df .
However, dθ2 is not exact on the torus T 2. We can see this by integrating dθ2 over the closed loop
γ : [0, 2π]→ T 2 defined by γ(t) = (0, t):∫

γ

dθ2 =

∫ 2π

0

(dθ2)γ(t)(γ̇(t))dt

Since γ̇(t) = (0, 1) in velocity coordinates, corresponding to the vector ∂
∂θ2

at γ(t), the integrand is

(dθ2)(
∂
∂θ2

) = 1. Thus, ∫
γ

dθ2 =

∫ 2π

0

1dt = 2π ̸= 0.
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Since the integral of dθ2 over a closed loop is non-zero, dθ2 cannot be exact (by Stokes’ Theorem, or
the definition of exactness via path integrals). Therefore, ξ = ∂

∂θ1
is a symplectic vector field that is

not Hamiltonian.

This aligns perfectly with the fundamental exact sequence. The first de Rham cohomology of the
torus is H1

dR(T
2) ∼= R2, with basis classes [dθ1] and [dθ2]. The map Φ : Xω(T

2) → H1
dR(T

2) sends
our vector field ξ = ∂

∂θ1
to the cohomology class Φ(ξ) = [ιξω] = [dθ2]. Since [dθ2] is a non-zero

element of H1
dR(T

2), ξ lies in Xω(T
2) but not in the kernel of Φ, which is XHam(T

2). Similarly, the
vector field ∂

∂θ2
is symplectic but not Hamiltonian, mapping via Φ to the class [ι∂/∂θ2ω] = [−dθ1],

which is also non-zero. This example illustrates how the topology of the manifold (H1 ̸= 0) creates
a distinction between the broader class of structure-preserving vector fields (symplectic) and the
subclass generated by scalar functions (Hamiltonian).

Just as functions generate Hamiltonian vector fields, they inherit an algebraic structure reflecting
the symplectic geometry.

Definition 2.77 (Poisson Bracket). Let (M,ω) be a symplectic manifold. The Poisson bracket
is a bilinear operation {·, ·} : C∞(M)× C∞(M)→ C∞(M) defined for any f, g ∈ C∞(M) by:

{f, g} := ω(ξf , ξg)

Using the definition ιξfω = −df and properties of contraction and the Lie derivative, we derive
equivalent expressions:

{f, g} = ιξg (ιξfω) = ιξg (−df) = −df(ξg) = −Lξgf

{f, g} = −ιξf (ιξgω) = −ιξf (−dg) = dg(ξf ) = Lξf g

The Poisson bracket {f, g} quantifies the infinitesimal rate of change of the function g along the flow
generated by the Hamiltonian f .

Proposition 2.78 (Properties of the Poisson Bracket). The Poisson bracket endows the vector space
C∞(M) with the structure of an infinite-dimensional Lie algebra over R. Specifically, it satisfies:

1. Bilinearity: {af1 + bf2, g} = a{f1, g}+ b{f2, g} and {f, ag1 + bg2} = a{f, g1}+ b{f, g2} for
a, b ∈ R.

2. Skew-symmetry: {f, g} = −{g, f}. (Follows directly from ω(ξf , ξg) = −ω(ξg, ξf )).

3. Jacobi Identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

4. Leibniz Rule (Derivation Property): {f, gh} = g{f, h} + {f, g}h. This means that for
fixed f , the map g 7→ {f, g} = Lξf g is a derivation of the associative algebra (C∞(M), ·).

Furthermore, the map δ : f 7→ ξf is a Lie algebra homomorphism from (C∞(M), {·, ·}) to (XHam(M), [·, ·]),
where [·, ·] is the commutator of vector fields:

[ξf , ξg] = ξ{f,g}

Sketch of Jacobi Identity. The Jacobi identity for the Poisson bracket is a direct consequence of the
closedness of ω and the relationship between brackets. One way to see this is to use the homomor-
phism property ξ{f,g} = [ξf , ξg]. Applying ξ again: ξ{f,{g,h}} = [ξf , ξ{g,h}] = [ξf , [ξg, ξh]]. Summing
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cyclically and using the Jacobi identity for the vector field commutator [ξf , [ξg, ξh]] + [ξg, [ξh, ξf ]] +
[ξh, [ξf , ξg]] = 0, we get ξ{f,{g,h}}+{g,{h,f}}+{h,{f,g}} = 0. Since the map δ : f 7→ ξf has only locally
constant functions as its kernel, this implies {f, {g, h}} + {g, {h, f}} + {h, {f, g}} must be locally
constant. A more direct calculation using dω = 0 shows it is indeed zero.

The Poisson bracket provides the algebraic foundation for Hamiltonian mechanics. Observables are
represented by functions f ∈ C∞(M), and the time evolution under a Hamiltonian H is given by
Hamilton’s equation: df

dt = {f,H}. This structure is also the starting point for deformation quan-
tization, where the commutative algebra (C∞(M), ·) is deformed into a non-commutative algebra
whose commutator approximates the Poisson bracket as ℏ→ 0.

2.4 Symmetries and Moment Maps

The concept of symmetry provides a powerful lens through which to analyze mathematical structures
and physical systems. Symmetries often reveal hidden simplicities, lead to fundamental conservation
laws, and constrain the possible dynamics. Within the framework of symplectic geometry, which
forms the foundations of Hamiltonian mechanics, the study of symmetries takes on a particular
elegance and importance. It leads to the theory of moment maps, a construction that precisely
quantifies the relationship between continuous symmetries and conserved quantities, thereby pro-
viding a geometric version of Noether’s celebrated theorem. We provide an in-depth exploration
of symmetries in the symplectic context, from the basic definitions to the construction, properties,
obstructions, and interpretation of moment maps.

Throughout this section, let (N,ω) denote a connected symplectic manifold of dimension 2k.

2.4.1 Finite Symmetries: Symplectomorphism Groups

The most direct notion of symmetry for a geometric object is a transformation that leaves the object
invariant. For a symplectic manifold (N,ω), this corresponds to diffeomorphisms of N that preserve
the symplectic form ω.

Earlier, we introduced the notion of a symplectomorphism. Let’s define it slightly more rigorously.

Definition 2.79 (Symplectomorphism). A diffeomorphism φ : N → N is termed a symplectic
diffeomorphism, or symplectomorphism, if it preserves the symplectic form ω. Mathematically,
this means the pullback of ω by φ coincides with ω itself:

φ∗ω = ω

Recall that the pullback acts on forms via (φ∗ω)n(v, w) = ωφ(n)(dφn(v), dφn(w)) for n ∈ N and
v, w ∈ TnN .

Remark 2.80 (Consequences and Properties).

• Volume Preservation: Since ω is non-degenerate, its k-th exterior power ωk = ω ∧ · · · ∧ ω
(up to a normalization factor 1/k!) defines a volume form on N . As pullback commutes
with the wedge product, φ∗(ωk) = (φ∗ω)k. If φ is a symplectomorphism, then φ∗(ωk) =
ωk. This demonstrates that symplectomorphisms are necessarily volume-preserving diffeomor-
phisms. This is the geometric statement of Liouville’s theorem asserting the conservation of
phase space volume under Hamiltonian evolution (which, as we shall see, consists of symplec-
tomorphisms).
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• The Symplectomorphism Group: The set of all symplectomorphisms of (N,ω) forms a
group under composition, denoted Symp(N,ω). This group captures the global symmetries of
the symplectic structure. Unlike the isometry group of a compact Riemannian manifold, which
is always a finite-dimensional Lie group (Myers-Steenrod theorem), the group Symp(N,ω) is
typically infinite-dimensional. For instance, on (R2n, ωstd), the group Symp(R2n) contains
not only linear symplectic transformations but also Hamiltonian flows of arbitrary non-linear
functions. Understanding the structure (e.g., topology, homotopy type) of Symp(N,ω) and
its subgroups (like the group of Hamiltonian diffeomorphisms) is a major focus of modern
symplectic topology.

Example 2.81 (Basic Symplectomorphisms).

• Let N = R2n with ω =
∑
dqi∧dpi. Any translation φa(q, p) = (q+a, p+b) is a symplectomor-

phism if and only if b = 0. Position translations φa(q, p) = (q+ a, p) are symplectomorphisms.
Additionally, a linear map φA(x) = Ax is a symplectomorphism if and only if A ∈ Sp(2n,R),
meaning ATJA = J where J is the matrix of ω.

• Let N = S2 with its standard rotationally invariant area form ω = sinϕdϕ∧dθ (in spherical co-
ordinates). Any rotation R ∈ SO(3) acts on S2 and preserves ω, hence SO(3) ⊂ Symp(S2, ω).

2.4.2 More on Symplectic Vector Fields

Earlier, we discussed symplectic and Hamiltonian vector fields. Naturally, this leads to Noether’s
theorem. But before that, we need one more motivating proposition.

Proposition 2.82. The space XHam(N) is a Lie subalgebra of Xω(N). In fact, under suitable
conditions (e.g., N compact), XHam(N) is an ideal in Xω(N).

Sketch for subalgebra. We need to show that if ξf , ξg ∈ XHam(N), then [ξf , ξg] ∈ XHam(N). It
can be shown (often using dω = 0) that the commutator of two Hamiltonian vector fields is itself
Hamiltonian, generated by (minus) the Poisson bracket of the functions: [ξf , ξg] = ξ{f,g}, where
{f, g} = ω(ξf , ξg). Since {f, g} ∈ C∞(N), the commutator is indeed Hamiltonian.

The connection between symmetries and conserved quantities, intuited by Noether, finds a precise
formulation in the Hamiltonian setting.

Theorem 2.83 (Noether’s Theorem - Hamiltonian Version). Let (N,ω) be a symplectic manifold
and let H ∈ C∞(N) define a Hamiltonian system whose flow φt is generated by the vector field −ξH .
Suppose ξ ∈ Xω(N) is an infinitesimal symmetry of the system such that:

1. The symmetry preserves the Hamiltonian function: LξH = 0.

2. The symmetry is generated by a momentum function: ξ = ξf for some f ∈ C∞(N).

Then the momentum function f is a conserved quantity along the flow φt generated by −ξH ; that is,
f(φt(n)) = f(n) for all n and t. Equivalently, the Poisson bracket of f and H vanishes: {f,H} = 0.

Proof. We compute the time derivative of f along the flow φt generated by −ξH . This rate of change
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is given by the Lie derivative L−ξHf .

d

dt
(f ◦ φt) = (L−ξHf) ◦ φt

We need to show L−ξHf = 0. Using the definition of the Poisson bracket {f,H} = LξfH = −LξHf ,
we can write:

L−ξHf = −LξHf = {f,H}

Now, we use the assumptions. Assumption (1) is that the symmetry ξ preserves H, i.e., LξH = 0.
Assumption (2) is that ξ = ξf . Substituting this into the symmetry condition gives LξfH = 0.
Recalling the alternative definition of the Poisson bracket, {f,H} = LξfH. Combining these, we
get:

L−ξHf = {f,H} = LξfH = 0

Since the time derivative of f along the flow is zero, f is constant along the integral curves of −ξH ,
meaning it is a conserved quantity of the Hamiltonian evolution. This theorem elegantly establishes
that Hamiltonian symmetries correspond precisely to conserved quantities.

Example 2.84 (Linear and Angular Momentum Conservation).

• Linear Momentum: Consider a particle in Rn with Hamiltonian H(q, p) = |p|2
2m + V (q)

on T ∗Rn. Suppose the potential V is invariant under translation in the qj direction, i.e.,
∂V
∂qj = 0. The generator of infinitesimal translation in qj is ξ = ∂

∂qj . We know ξ = ξ−pj
(using ω =

∑
dqi ∧ dpi). The momentum function is f = −pj . We check if ξ preserves H:

L∂/∂qjH = ∂H
∂qj = ∂V

∂qj = 0. By Noether’s theorem, the momentum f = −pj (or simply pj) is
conserved.

• Angular Momentum: Consider a particle in R3 with a central potential V (q) = V (|q|). The
Hamiltonian H = |p|2

2m + V (|q|) is invariant under rotations R ∈ SO(3). Let ξ ∈ so(3) generate
an infinitesimal rotation, with corresponding fundamental vector field α(ξ) on T ∗R3. We know
Lα(ξ)H = 0. The momentum function corresponding to α(ξ) is µξ = ⟨L, ξ⟩, where L = q × p
is the angular momentum vector. Noether’s theorem implies that each component of angular
momentum µξ is conserved.

2.4.3 Lie Algebra Actions and the Moment Map Problem

Often, a system possesses a whole family of continuous symmetries described by a Lie group G.

Definition 2.85 (Symplectic G-Action and Infinitesimal Action). A (left) action ρ : G × N → N
of a Lie group G on (N,ω) is symplectic if φg : n 7→ g · n is a symplectomorphism for all g ∈ G.
This action induces an infinitesimal action α : g→ Xω(N) of the Lie algebra g = TeG, defined by

α(ξ)n =
d

dt

∣∣∣∣
t=0

(exp(−tξ) · n)

where ξ ∈ g. The map α is a Lie algebra antihomomorphism: α([ξ, η]) = −[α(ξ), α(η)]. The minus
sign convention ensures that left group actions correspond to antihomomorphisms into vector fields.
Importantly, α(ξ) is always a symplectic vector field if the G-action is symplectic.
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Given such an action α : g→ Xω(N), we seek a way to systematically associate conserved quantities
(momentum functions) to the generators ξ ∈ g.

The Moment Map Problem: Can we find a map µ : N → g∗ such that for each ξ ∈ g, the
function µξ := ⟨µ, ξ⟩ is a momentum function for the infinitesimal symmetry α(ξ)? That is, does
α(ξ) = ξµξ hold (requiring ια(ξ)ω = −dµξ)? Furthermore, can this map µ be chosen to respect the
algebraic structures involved, i.e., to be G-equivariant?

The existence and properties of such a map µ, called the moment map, are governed by the topology
of N and the structure of g.

Definition 2.86 (Moment Map via Lift). Consider the infinitesimal action α : g→ Xω(N) and the
fundamental exact sequence linking functions to Hamiltonian and symplectic vector fields:

0→ H0(N ;R)→ C∞(N)
δ−→ XHam(N) ↪→ Xω(N)

Φ−→ H1
dR(N)→ 0

where δ(f) = ξf (defined by ιξfω = −df) and Φ(η) = [ιηω]. The action α admits a lift to C∞(N)
if the image of α lies entirely within XHam(N) (i.e., Φ(α(ξ)) = 0 for all ξ) and if there exists a linear
map α̃ : g → C∞(N) such that δ ◦ α̃ = α. Such a map α̃ assigns a momentum function µξ = α̃(ξ)
to each ξ ∈ g. The moment map is then the map µ : N → g∗ defined by duality:

⟨µ(n), ξ⟩ := µξ(n)

Usually, one also requires α̃ to be compatible with the Lie algebra structures (equivariance), possibly
up to terms related to H0.

Remark 2.87 (Obstructions to Existence of Moment Maps). As mentioned before, there are two
main obstructions:

1. Obstruction in H1: The primary obstruction is the vanishing of the map Φ◦α : g→ H1
dR(N).

For a moment map to exist, every fundamental vector field α(ξ) must be Hamiltonian, which
means the closed 1-form ια(ξ)ω must be exact, i.e., [ια(ξ)ω] = 0 in H1

dR(N). If H1
dR(N) = 0,

this obstruction always vanishes.
Example 2.88 (Revisiting Torus T 2 Obstruction). Let N = T 2 = (R/2πZ)2 with ω = dθ1 ∧
dθ2. Consider the action of g = R by translation along the first factor: ρt(θ1, θ2) = (θ1+ t, θ2).
The generator is ξ = 1 ∈ R, and the infinitesimal action is α(1) = ∂

∂θ1
. We calculated

ια(1)ω = dθ2. The map Φ : Xω(T
2) → H1

dR(T
2) sends α(1) to Φ(α(1)) = [dθ2]. Since

H1
dR(T

2) ∼= R2 with basis [dθ1], [dθ2], the class [dθ2] is non-zero. Thus, the H1 obstruction
does not vanish. The symplectic vector field α(1) = ∂/∂θ1 is not Hamiltonian, and therefore
this action does not admit a moment map in the sense defined above (no function f exists
such that ξf = ∂/∂θ1).

2. Obstruction in H2 (Central Extension): Even if Φ ◦ α = 0, ensuring that each α(ξ) is
Hamiltonian (α(ξ) = ξµξ for some µξ), we still need to know if the map α̃ : ξ 7→ µξ can be
chosen to be a Lie algebra antihomomorphism (up to constants). The failure of this is measured
by the Lie algebra cocycle c(ξ, η) = {µξ, µη} − µ[ξ,η]inf . If this cocycle is non-zero (but maps
to constants), it defines a class in H2(g;H0(N ;R)) and corresponds to a non-trivial central
extension:

0 −→ H0(N ;R) −→ g −→ g −→ 0

A lift α̃ : g→ C∞(N)/H0 respecting the Lie algebra structure exists if and only if this central
extension splits (is trivial). For semisimple Lie algebras g, H2(g;R) = 0, so this obstruction
often vanishes if H0(N ;R) = R.
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2.4.4 Properties and Characterization of Moment Maps

While the definition via lifting is conceptually important, the following characterization is often
more practical.

Definition 2.89 (Moment Map (via equation)). Let α : g → Xω(N) be an infinitesimal action. A
smooth map µ : N → g∗ is called amoment map for this action if for every ξ ∈ g, the corresponding
component function µξ := ⟨µ, ξ⟩ ∈ C∞(N) satisfies the differential equation:

dµξ = −ια(ξ)ω

This equation elegantly encodes both the requirement that each α(ξ) is Hamiltonian and that µξ is
its corresponding momentum function (up to a globally consistent choice of constants inherent in
µ).

A important property sought in moment maps is compatibility with the group action.

Definition 2.90 (Equivariance of Moment Maps). Let a Lie group G with Lie algebra g act symplec-
tically on (N,ω) via ρ, inducing α : g→ Xω(N). A moment map µ : N → g∗ for α is G-equivariant
if for all g ∈ G and n ∈ N :

µ(ρ(g, n)) = Ad∗g(µ(n))

where Ad∗g : g∗ → g∗ is the coadjoint action of G on g∗. Infinitesimally, this corresponds to the
condition:

Lα(ξ)µη = µ[ξ,η]inf

where µζ = ⟨µ, ζ⟩ and [·, ·]inf is the bracket associated with α (caution with signs depending on
conventions). Using the Poisson bracket and the relation α(ξ) = ξµξ , the infinitesimal condition, up
to constants related to the H2 obstruction, becomes:

{µξ, µη} ≈ µ[ξ,η]

More precisely, a moment map satisfying dµξ = −ια(ξ)ω is equivariant if and only if the map
α̃ : ξ 7→ µξ satisfies α̃([ξ, η])− {α̃(ξ), α̃(η)} is a constant function (related to the cocycle c(ξ, η)). If
an equivariant moment map exists, this cocycle must vanish.

Example 2.91 (Moment Maps Calculations - Revisited).

• Translations on T ∗Rn: α(ej) = ∂/∂qj . ω =
∑
dqi ∧ dpi. Defining equation dµj =

−ι∂/∂qjω = dpj . Choose µj = pj . Moment map µ(q, p) = (p1, . . . , pn). Coadjoint ac-
tion of G = Rn on g∗ = Rn is trivial (Ad∗a(p) = p). Equivariance requires µ(q + a, p) =
Ad∗a(µ(q, p)), i.e., p = p. It is equivariant. Infinitesimally, g is abelian, [ξ, η] = 0. We need
{µξ, µη} = 0. If ξ =

∑
ajej , η =

∑
bkek, then µξ =

∑
ajpj , µη =

∑
bkpk. {

∑
ajpj ,

∑
bkpk} =∑

j,k a
jbk{pj , pk} = 0 since {pj , pk} = 0. Equivariance holds.

• Rotations on T ∗R3: α(ξ) is generator of rotation. µ(q, p) = q × p. We need d⟨q × p, ξ⟩ =
−ια(ξ)ω. This requires calculation using exterior derivatives and properties of the cross prod-
uct, confirming it holds. Equivariance µ(Rq,Rp) = Ad∗R(µ(q, p)) = R(q × p) holds because
R(q × p) = (Rq) × (Rp) for R ∈ SO(3). Infinitesimally, this corresponds to {µξ, µη} = µ[ξ,η]

(where bracket is cross product in R3 ∼= so(3)), which holds for angular momentum compo-
nents.
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2.4.5 Geometric Interpretation: Prequantization Bundles

A geometric understanding of the moment map emerges from the framework of geometric quan-
tization, which seeks to construct quantum theories from classical Hamiltonian systems. A key
preliminary step is “prequantization.”

Assume the symplectic form ω satisfies the Weil integrality condition: the cohomology class
[ω/(2πiℏ)] (often simplified to [ω/2π] by setting ℏ = 1 and ignoring i) is an integral class, i.e., lies
in the image of H2(N ;Z)→ H2

dR(N). This topological condition is necessary and sufficient for the
existence of a prequantization line bundle, typically a principal S1-bundle (or R-bundle if we
ignore periodicity) π : T → N , equipped with a connection 1-form Θ ∈ Ω1(T ) whose curvature
FΘ = dΘ satisfies

FΘ = dΘ = π∗ω

. The connection Θ provides the link between the geometry of the bundle T and the symplectic
structure on the base N .

Now, consider a symplectic action of a Lie group G on (N,ω). This action is said to lift to the
prequantization bundle T if there is a G-action ρ̃ : G× T → T on the total space such that:

1. It covers the action on N : π(ρ̃(g, z)) = ρ(g, π(z)).

2. It preserves the connection form Θ: ρ̃∗gΘ = Θ for all g ∈ G.

The existence of such a lift is related to group cohomology H2(G; . . . ).

If a lift exists, let ξ̃ ∈ X(T ) be the fundamental vector field on T corresponding to ξ ∈ g via the
lifted action ρ̃. Since the action preserves the connection, the Lie derivative vanishes: Lξ̃Θ = 0.
Consider the function defined by contracting the connection with the lifted vector field: ιξ̃Θ. This
function on T turns out to be constant along the fibers of π (it is “basic”) and therefore defines a
unique function µξ ∈ C∞(N) such that

π∗µξ = ιξ̃Θ

We can now verify that the map µ : N → g∗ defined by ⟨µ, ξ⟩ = µξ is indeed a moment map. We
compute the exterior derivative:

π∗(dµξ) = d(π∗µξ) (pullback commutes with d)

= d(ιξ̃Θ) (by definition of µξ)

= Lξ̃Θ− ιξ̃(dΘ) (Cartan’s formula)

= 0− ιξ̃(π
∗ω) (using Lξ̃Θ = 0 and dΘ = π∗ω)

= −π∗(ια(ξ)ω) (relating contractions under π∗)

Since π∗ is injective on functions (forms pulled back from base), we deduce

dµξ = −ια(ξ)ω

This recovers the defining equation for the moment map. This construction demonstrates that the
momentum function µξ can be interpreted as the vertical component (measured by Θ) of the lifted

symmetry generator ξ̃ on the prequantization bundle. This perspective is important for geometric
quantization, where wave functions are sections of T (or associated bundles) and operators corre-
sponding to observables f involve both multiplication by f and differentiation along ξf , tied together
by the connection Θ.
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3 Hamiltonian and Lagrangian Mechanics

Abstract

We explore foundational structures of Hamiltonian and Lagrangian mechanics, emphasizing
their geometric underpinnings. We begin by defining Hamiltonian systems through a symplec-
tic manifold (N,ω) representing the phase space, and a one-parameter group of symplectic
automorphisms φt dictating time evolution. Observables are functions on N , with their alge-
braic structure governed by the Poisson bracket {f, g} = ω(ξf , ξg), where ξf is the Hamiltonian
vector field of f satisfying iξfω = −df . The framework is illustrated by deriving Hamilton’s
equations for particle motion in Euclidean space, ẋ = y, ẏ = −V ′(x)/m, from the Hamilto-

nian H = my2

2
+ V (x) and symplectic form ω = mdy ∧ dx. Generalizations to particle motion

on Riemannian manifolds, where the phase space is the tangent bundle TM , are also considered.

We then transition to variational principles, initially examining geodesics in Euclidean space via
the energy functional E(x) =

∫
1
2
|ẋ|2 dt, whose stationarity yields the geodesic equation ẍ = 0.

This principle is reformulated with greater generality and local insight using the calculus of
differential forms on the space of paths F × R. The Lagrangian 1-form L = L0(x, ẋ) dt ∈ Ω0,1

and the variational 1-form γ ∈ Ω1,0 (e.g., γ = m⟨δx, ẋ⟩ for a free particle) are introduced. The
Euler-Lagrange equations are then rewritten locally as δL + dγ = 0 on the manifold of solu-
tions, where δ and d are exterior derivatives on F and R respectively. This framework naturally
describes general Lagrangian systems defined by a Lagrangian function L0(x, ẋ).

The deep connection between Lagrangian and Hamiltonian formalisms then discussed. The
canonical 2-form ω = δγ ∈ Ω2,0, derived from the Lagrangian data, is shown to be δ-closed,
d-closed (time-independent), and non-degenerate, thus defining the symplectic structure on the
space of solutions. The Hamiltonian function H = ιξ(L + γ) is constructed as the Noether
conserved quantity corresponding to time-translation invariance (where ξ generates time evolu-
tion), satisfying δH = −ιξω. Finally, a geometric interpretation of γ(t) as a connection 1-form
on the space of solutions is presented. The relation δ

∫ t1
t0

L = −(γ(t1)− γ(t0)) reveals that the
integrated Lagrangian acts as an isomorphism between these connections.
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3.1 Hamiltonian Systems

We now introduce the central objects of study in Hamiltonian mechanics: Hamiltonian systems.
These provide a powerful geometric framework for describing the evolution of many physical systems,
from classical particle mechanics to more abstract dynamical systems. The main object of this
framework is a symplectic manifold, whose structure dictates the rules of motion.

3.1.1 Basic Definitions

Definition 3.1 (Hamiltonian System).

1. A Hamiltonian system consists of a symplectic manifold (N,ω) and a 1-parameter group
φt of symplectic automorphisms of N .9 Here, N is the phase space and ω is the symplectic
form.

2. A Hamiltonian system is free if (N,ω) is an affine symplectic space and φt is a 1-parameter
group of affine symplectic automorphisms.

The symplectic manifold N represents the space of possible states of the system, and the symplectic
form ω gives the Poisson bracket structure of the system. The 1-parameter group of symplectic
automorphisms φt describes the time evolution of the system, mapping an initial state at time t = 0
to its state at time t.

A Hamiltonian system naturally gives rise to a mechanical system:

1. The space of pure states is the symplectic manifold N itself. The space of all states can be
considered as the space of probability distributions on N , denoted by Prob(N).

2. The algebra of observables is given by the space of complex-valued Borel functions on N ,
denoted by O = Borel(N ;C). The real structure is given by complex conjugation. The
subspace of smooth functions O∞ = C∞(N ;C) is dense in O and carries a Lie algebra structure
defined by the Poisson bracket:

{f, g} = ω(ξf , ξg)

where ξf and ξg are the symplectic gradient vector fields of the functions f and g, respectively,
defined by df = ω(ξf , ·) and dg = ω(ξg, ·). The real observables are given by the real-valued
Borel functions OR = Borel(N ;R), with a dense subspace of smooth real-valued functions
O∞

R = C∞(N ;R) = Ω0
N .

3. The measurement pairing associates an observable A : N → R and a state σ ∈ Prob(N) to the
pushforward probability measure A∗σ ∈ Prob(R), which describes the probability distribution
of the measured values of the observable A in the state σ.

4. A smooth observable f ∈ Ω0
N has a symplectic gradient vector field ξf ∈ XN defined by

df = ω(ξf , ·). If ξf is complete (i.e., its integral curves exist for all time), it generates a
1-parameter flow ψt of symplectic diffeomorphisms. This flow induces a flow on states (by
pushing forward the measure) and on complex observables (by pulling back the function), and
these induced flows are compatible.

5. The chosen 1-parameter group φt of symplectic automorphisms in the definition of a Hamil-
tonian system is precisely the flow that generates the time evolution of the system on both
states and observables.

9A symplectic automorphism is a diffeomorphism φ : N → N such that φ∗ω = ω.

69



Remark 3.2. It is important to note that while every smooth observable has a symplectic gradient
vector field, this vector field may not always generate a global flow. The existence of a global flow
requires completeness of the vector field, which is not guaranteed in general. Therefore, the axiom
regarding the existence of a global flow for all smooth observables is often something we hope for,
rather than an axiom.

3.1.2 Particle Motion in Euclidean Space

We consider the motion of a particle on the Euclidean line E1. The dynamics of such a system are
described within the Hamiltonian formalism.

Let N be the space of classical trajectories, meaning the space of functions x : R→ E1 that satisfy
Newton’s second law for a given potential. For any specific trajectory, given an initial time t0 ∈ R
and initial conditions (position and velocity), a local solution for the trajectory exists. It is assumed
that the potential V is sufficiently well-behaved, ensuring that solutions x(t) exist for all time.

Under these conditions, for any chosen time t0 ∈ R, the evaluation map

N −→ E1 × R

which maps a trajectory x(t) to its position x(t0) and velocity ẋ(t0) at time t0, is a diffeomorphism.
This diffeomorphism allows an identification of the space of trajectories N with the phase space
E1 × R.

We use coordinates (x, y) for this phase space, where ‘x’ is the coordinate on E1 representing position,
and ‘y’ is the coordinate on R representing velocity (i.e., y = ẋ). The symplectic form ω on this
phase space is given by:

ω = mdy ∧ dx

where m is the mass of the particle. This symplectic form corresponds to the canonical form dp∧dq
under the identification q = x (position) and p = my (canonical momentum).

The time evolution flow φt : N → N is generated by the Hamiltonian function H. For this system,
H is the total mechanical energy, expressed as the sum of kinetic and potential energy:

H(x, y) =
my2

2
+ V (x)

where V (x) is the potential energy function. The exterior derivative (or differential) of H is:

dH =
∂H

∂x
dx+

∂H

∂y
dy = V ′(x)dx+my dy

where V ′(x) = dV
dx .

The dynamics are governed by the Hamiltonian vector field ξH associated with H. The symplectic
gradient is defined by the relation:

iξHω = −dH

where iξHω is the interior product of ω with ξH . Let the components of ξH in our coordinate system
be A(x, y) and B(x, y), such that:

ξH = A(x, y)
∂

∂x
+B(x, y)

∂

∂y

70



We compute the interior product iξHω:

iξHω = iA ∂
∂x+B

∂
∂y
(m dy ∧ dx)

= A · i ∂
∂x
(mdy ∧ dx) +B · i ∂

∂y
(m dy ∧ dx)

To evaluate the interior products with the basis vector fields:

i ∂
∂x
(m dy ∧ dx) = m

Å
(dy(

∂

∂x
))dx− (dx(

∂

∂x
))dy

ã
= m (0 · dx− 1 · dy) = −m dy

and

i ∂
∂y
(m dy ∧ dx) = m

Å
(dy(

∂

∂y
))dx− (dx(

∂

∂y
))dy

ã
= m (1 · dx− 0 · dy) = mdx

Substituting these results back into the expression for iξHω:

iξHω = A(−m dy) +B(m dx) = mB dx−mA dy

Now, we apply the defining equation iξHω = −dH:

mB dx−mA dy = −(V ′(x)dx+my dy)

mB dx−mA dy = −V ′(x)dx−my dy

For this equality of 1-forms to hold, the coefficients of the basis 1-forms (dx and dy) on both sides
must be equal:

• Equating coefficients of dx: mB = −V ′(x) =⇒ B = − 1
mV

′(x)

• Equating coefficients of dy: −mA = −my =⇒ A = y

Thus, the Hamiltonian vector field is explicitly:

ξH = y
∂

∂x
− 1

m
V ′(x)

∂

∂y

Consequently, Hamilton’s equations for the flow φt, which describe the time evolution of x and y,
are obtained from the components of ξH (i.e., ẋ = A and ẏ = B):ẋ = y

ẏ = − 1

m
V ′(x)

These first-order differential equations are equivalent to Newton’s second law, mẍ = −V ′(x). This
can be verified by noting that ẋ = y, so differentiating with respect to time yields ẍ = ẏ. Substituting
this into the second Hamilton’s equation gives ẍ = − 1

mV
′(x), or mẍ = −V ′(x).
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3.1.3 Remarks on Hamiltonian Systems

Remark 3.3.

1. The transition from Newton’s second-order differential equation to the Hamiltonian system of
two first-order differential equations is a standard technique achieved by introducing the velocity
(or momentum) as an independent variable.

2. The phase space N = E1 × R is an affine space. For a free particle (V = 0), the Hamiltonian
is H = 1

2my
2, and the equations of motion are ẋ = y, ẏ = 0, which represent a flow by

affine symplectic diffeomorphisms. For a harmonic oscillator (V (x) = 1
2kx

2 with k > 0),

the Hamiltonian is H = 1
2my

2 + 1
2kx

2, and the equations of motion are ẋ = y, ẏ = − k
mx,

which also generate a flow by affine symplectic diffeomorphisms. Thus, both systems are free
Hamiltonian systems.

3. Our example be generalized to the motion of a particle on a Riemannian manifold (M, g) under
the influence of a potential V : M → R. In this case, the acceleration ẍ is replaced by the
acceleration computed using the Levi-Civita covariant derivative associated with the metric g.
The phase space N becomes the tangent bundle TM of the configuration space M . Assuming
that the equations of motion have solutions defined for all time, the map that takes a trajectory
to its position and velocity at a given time is a diffeomorphism onto TM . The Riemannian
metric g induces an isomorphism between the tangent bundle TM and the cotangent bundle
T ∗M . The symplectic form on TM is related to the pullback of the tautological symplectic
form on T ∗M . Specifically, using the metric to identify TM with T ∗M , the symplectic form
is m times the pullback of the tautological 2-form. The Hamiltonian function is given by:

H(ξ) =
m

2
|ξ|2 + V (π(ξ))

where ξ ∈ TM , |ξ|2 = g(ξ, ξ) is the squared norm of the tangent vector with respect to the
metric g, and π : TM → M is the projection map. The Riemannian manifold M is often
referred to as the configuration space, while N = TM is the phase space.

4. Later in this lecture, we will demonstrate how to derive the symplectic form ω = mdy ∧ dx
and the Hamiltonian function H = 1

2my
2 + V (x) (and their generalizations to Riemannian

manifolds) from a more fundamental starting point: the Lagrangian formalism.

Example 3.4. The phase space N of a Hamiltonian system does not necessarily have to be the
tangent bundle of a manifold, and the 1-parameter group φt of symplectic automorphisms need not
always be generated by a global Hamiltonian function. Consider the 2-torus N = R/2πZ× R/2πZ
with coordinates (θ1, θ2). The standard symplectic form on R2 is ω0 = dx ∧ dy. On the torus, we
can consider the symplectic form ω = dθ1 ∧ dθ2. The 1-parameter group of diffeomorphisms given
by:

φt(θ
1, θ2) = (θ1 + t, θ2)

is a symplectic automorphism because:

φ∗
t (dθ

1 ∧ dθ2) = d(θ1 + t) ∧ dθ2 = dθ1 ∧ dθ2

This system can be seen as the quotient of a free system on R2 (with HamiltonianH(x, y) = y) by the
action of the discrete group (2πZ× 2πZ) of automorphisms, where the quotient map is (x, y) 7→ (x
mod 2π, y mod 2π).
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3.2 Variational Principles for Geodesics

3.2.1 Introduction

Variational principles play a fundamental role in many areas of mathematics and physics, providing
an alternative way to formulate equations of motion and geometric structures. They are particularly
important in global analysis on manifolds, where they are used to study the existence and properties
of critical points of functionals defined on infinite-dimensional spaces of maps.

Let V be a finite-dimensional real inner product space, and let A be an affine space over V (a
Euclidean space). Fix real numbers a < b, and consider smooth paths x : [a, b]→ A. The length of
the path is given by:

L(x) =

∫ b

a

|ẋ(t)| dt =
∫ b

a

»
⟨ẋ(t), ẋ(t)⟩ dt

where ẋ(t) is the velocity vector of the path at time t, and | · | denotes the norm induced by the
inner product ⟨·, ·⟩. The length of the path is independent of the parametrization.

Instead of directly working with the length functional, it is often more convenient to consider the
energy functional:

E(x) =

∫ b

a

1

2
|ẋ(t)|2 dt =

∫ b

a

1

2
⟨ẋ(t), ẋ(t)⟩ dt

A path that minimizes the energy functional (among paths with fixed endpoints) also minimizes the
length functional, and vice versa, provided the length is non-zero.

To find the paths that make the energy functional stationary, we consider a variation of a given path
x(t). Let x(t, s) be a smooth family of paths parametrized by s ∈ (−ϵ, ϵ), such that x(t, 0) = x(t)
and the endpoints are fixed, i.e., x(a, s) = x(a, 0) and x(b, s) = x(b, 0) for all s. Let δx(t) = ∂x

∂s (t, 0)
be the variation vector field along the path x(t).

The variation of the energy functional is given by:

δE =
d

ds

∣∣∣
s=0

E(x(·, s)) = d

ds

∣∣∣
s=0

∫ b

a

1

2
⟨∂x
∂t

(t, s),
∂x

∂t
(t, s)⟩ dt

We can interchange the derivative with respect to s and the integral:

δE =

∫ b

a

1

2

∂

∂s
⟨∂x
∂t

(t, s),
∂x

∂t
(t, s)⟩

∣∣∣
s=0

dt

=

∫ b

a

⟨ ∂
2x

∂s∂t
(t, 0),

∂x

∂t
(t, 0)⟩ dt

Since the partial derivatives commute, ∂2x
∂s∂t =

∂2x
∂t∂s = ∂

∂t (
∂x
∂s ) =

∂
∂t (δx) = δẋ. Thus,

δE =

∫ b

a

⟨δẋ(t), ẋ(t)⟩ dt

Using integration by parts, we have:∫ b

a

⟨δẋ(t), ẋ(t)⟩ dt =
[
⟨δx(t), ẋ(t)⟩

]b
a
−
∫ b

a

⟨δx(t), ẍ(t)⟩ dt
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Since the endpoints are fixed, δx(a) = 0 and δx(b) = 0, so the boundary term vanishes. Therefore,

δE = −
∫ b

a

⟨δx(t), ẍ(t)⟩ dt

For the energy functional to be stationary (δE = 0) for all variations δx with fixed endpoints, we
must have ẍ(t) = 0 for all t ∈ [a, b]. This equation describes a motion with constant velocity, which
is a geodesic in the Euclidean space A.

3.2.2 Via Differential Forms

The variational principle, which yields the equations of motion such as the geodesic equation for a
free particle, possesses an important local structure. This fundamental locality is most effectively
revealed by re-studying the variational calculus in the language of differential forms on spaces of
paths.

Remark 3.5 (On Boundary Conditions and Locality). In the computation of the first variation of
the energy functional E(x), one encounters a boundary term arising from integration by parts:∫

[a,b]

dt⟨δx(t), ẋ(t)⟩ dt = ⟨δx, ẋ⟩|t=b − ⟨δx, ẋ⟩|t=a. (3.1)

Let us denote γ0(t) = ⟨δx(t), ẋ(t)⟩. This γ0(t) represents, for each time t, a function on the space
of variations S (or, more generally, on the infinite-dimensional manifold of paths F). The full
variational 1-form γ discussed later will be γ = γ0 ∈ Ω1,0. It is customary in variational problems to
impose boundary conditions on the paths x(t) such that these boundary terms vanish. For instance,
one might fix the initial and final positions, x(a) and x(b), implying δx(a) = δx(b) = 0.

Importantly, however, the Euler-Lagrange equation itself (in this case, the geodesic equation ẍ(t) = 0)
is a local condition in time. Its derivation relies on the vanishing of the integrand of the variation for
arbitrary variations δx(t) supported away from the boundary. Thus, the specific choice of boundary
conditions, while important for selecting a particular solution, does not affect the form of the local
equations of motion.

To study this local structure more clearly, we transition our focus from the global energy functional
to the local Lagrangian function L0(x, ẋ) =

1
2 ⟨ẋ, ẋ⟩ and its associated Lagrangian 1-form (a 1-form

with respect to the time variable)

L = L0(x, ẋ) dt =
1

2
⟨ẋ, ẋ⟩ dt. (3.2)

Let S be a smooth manifold parameterizing a family of paths x : S × [a, b] → A. Then L can be
viewed as an element of Ω0,1(S × [a, b]), i.e., a 0-form on S and a 1-form on [a, b]. The total energy
is the pushforward E = (prS)∗(L) ∈ Ω0(S), where prS : S × [a, b]→ S is the projection.

The natural arena for analyzing the local structure of variational problems is the product space
S× [a, b] (or, more generally, F× [a, b], where F denotes the infinite-dimensional manifold of smooth
paths x : [a, b] → A). The calculus of variations can be elegantly formulated using the de Rham
complex on this product space. We distinguish between variations of paths and evolution in time
by introducing two differential operators:
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• δ: the exterior derivative acting on forms with respect to the variables parameterizing the
space of paths S (or F).

• d: the exterior derivative acting on forms with respect to the time variable t ∈ [a, b], so
d = dt ddt .

The total exterior derivative on Ω•(S×[a, b]) isD = δ+d. These operators naturally endow the space
of differential forms with a bicomplex structure, denoted Ω•,•(S× [a, b]). A form ω ∈ Ωp,q(S× [a, b])
has degree p in the S-variables (often called the “variational degree”) and degree q in the time
variable.

Within this bicomplex framework:

• The Lagrangian 1-form L = L0(x, ẋ) dt is manifestly an element of Ω0,1(S × [a, b]).

• The variational 1-form γ = ⟨δx, ẋ⟩ (where δx is the 1-form on S obtained by applying δ to x)
is an element of Ω1,0(S × [a, b]). It is a 1-form with respect to variations on S and a 0-form in
time.

Applying the exterior derivative δ to L yields δL = (δL0) dt = ⟨ẋ, δẋ⟩ dt ∈ Ω1,1(S× [a, b]). Similarly,
applying d to γ gives dγ =

(
d
dt ⟨δx, ẋ⟩

)
dt ∈ Ω1,1(S× [a, b]). The important identity derived from the

standard integration by parts procedure is:

⟨ẋ, δẋ⟩ = −⟨δx, ẍ⟩ − d

dt
⟨δx, ẋ⟩. (3.3)

Multiplying by dt, this identity translates into the language of forms as: δL = −⟨δx, ẍ⟩dt − dγ.
This equation can be rewritten as δL + dγ = −⟨δx, ẍ⟩dt. The term EL[δx] := −⟨δx, ẍ⟩dt is the
Euler-Lagrange form associated with the variation δx. The requirement that EL[δx] vanishes for
arbitrary variations δx (supported away from boundaries) yields the Euler-Lagrange equation ẍ = 0.

Let N be the manifold of solutions to the equations of motion (i.e., paths x(t) satisfying ẍ(t) = 0).
These solutions are typically considered to be defined for all t ∈ R. On the restricted space N × R,
where ẍ = 0 by definition, the Euler-Lagrange form EL[δx] vanishes. Consequently, the relationship
δL+ dγ = EL[δx] simplifies to:

δL+ dγ = 0 on N × R. (3.4)

Here, L ∈ Ω0,1(N ×R) and γ ∈ Ω1,0(N ×R). Equation (3.4) expresses the vanishing of a (1, 1)-form
on the space of solutions extended over time. It is a very important piece of the covariant/geometric
formulation of Lagrangian mechanics and field theory.

Furthermore, for the free particle Lagrangian, L0 = 1
2 |ẋ|

2, dL = dt(
1
2 |ẋ|

2dt) =
(
d
dt (

1
2 |ẋ|

2)
)
dt∧dt = 0,

since dt ∧ dt = 0. If one also assumes that γ is δ-closed on N (i.e., δγ = 0), which is often the case
for forms constructed from fields and their first variations without involving higher derivatives of
variations, then the combined object L+ γ is D-closed on N ×R: D(L+ γ) = δL+ dL+ δγ + dγ =
(δL+dγ)+dL+δγ = 0+0+0 = 0. The condition δL+dγ = 0 is thus the important local statement
encapsulating the equations of motion within this formalism.

Remark 3.6 (Further Aspects of the Variational Formalism).

1. Origin of the variational 1-form γ: The 1-form γ = ⟨δx, ẋ⟩ arises naturally from the inte-
gration by parts procedure. A more sophisticated geometric perspective, often developed in the
context of the multisymplectic formalism or the calculus of variations on jet bundles, provides a
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construction of such forms (and their generalizations) without explicit reliance on integration.
This involves defining appropriate currents and forms on spaces of field histories.

2. A priori justification for the locality of Euler-Lagrange equations: The fact that the critical

point condition for an action functional E(x) =
∫ b
a
L0(x(t), ẋ(t))dt yields a differential equation

(local in time) can be understood intuitively. If a path x0 minimizes (or extremizes) E(x), it
must necessarily do so for any sub-interval. Consider an infinitesimal interval [t0, t0 + ε] for

small ε > 0. The condition that x0 extremizes
∫ t0+ε
t0

L0dt for all such infinitesimal intervals,

upon taking the limit ε → 0 (after appropriate scaling), leads directly to the Euler-Lagrange
equations evaluated at t0. This underscores the local nature of these equations.

3. Significance of variational principles: The formulation of physical laws or geometric problems
as variational principles is exceptionally powerful. If a system of ordinary or partial differential
equations can be identified as the Euler-Lagrange equations for some functional (the action or
energy), this functional provides important insights.

• It often serves as a guiding principle for constructing numerical methods to find solutions,
e.g., via direct minimization or gradient flow techniques.

• The functional itself can yield important a priori estimates (bounds, coercivity properties,
etc.) essential for the analytical study of the existence, uniqueness, and regularity of
solutions to the differential equations.

• Symmetries of the action functional, via Noether’s theorem, lead to conservation laws,
which are fundamental in physical theories.

3.3 Lagrangian Systems

The Lagrangian approach to mechanics, rooted in the principle of stationary action (often attributed
to Maupertuis, with significant contributions from Euler, Leibniz, and others), provides a powerful
alternative to the Newtonian framework. While its historical development is rich, our focus here is
on the formal mathematical structure, which underpins many areas of modern physics and geometry.

Remark 3.7.

1. Scope: It is noteworthy that not every Hamiltonian system admits a Lagrangian formulation.
The existence of a Lagrangian description often implies additional structure or regularity.

2. Analytical Power: A Lagrangian formulation can lead to powerful estimates and greater analyt-
ical control over the system’s dynamics, particularly when studying the existence and properties
of solutions to the equations of motion.

3. Geometric Structure: As we will explore, the Lagrangian viewpoint often reveals deeper geo-
metric structures associated with a mechanical system, including connections to symplectic and
contact geometry.

4. Quantum Transition: The Lagrangian, specifically the action functional, is the fundamental
starting point for Feynman’s path integral formulation of quantum mechanics, providing a direct
bridge from classical to quantum descriptions.
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3.3.1 The Principle of Stationary Action and Equations of Motion

Consider a particle of mass m moving on a Riemannian manifold (M, g), subject to a potential
energy function V :M → R. A path of the particle is a smooth map x : [a, b]→M . The Lagrangian
L0 : TM → R for this system is defined as the difference between kinetic and potential energy:

L0(x(t), ẋ(t)) =
m

2
g(ẋ(t), ẋ(t))− V (x(t)), (3.5)

where ẋ(t) ∈ Tx(t)M is the velocity vector. The action functional S assigns to each path x the
integral of the Lagrangian over the time interval:

S(x) =

∫ b

a

L0(x(t), ẋ(t)) dt =

∫ b

a

[m
2
|ẋ(t)|2g − V (x(t))

]
dt. (3.6)

The principle of stationary action states that the actual paths taken by the system are those for
which the action S(x) is stationary with respect to variations of x that fix the endpoints x(a) and
x(b).

Both the Lagrangian L0 and the action S have physical dimensions of (mass)(length)2(time)−1.
These are referred to as units of action.

Remark 3.8 (On the Nature of the Lagrangian). The Lagrangian is a somewhat magical quantity.
Unlike energy, force, or momentum, which often have direct and intuitive physical interpretations,
the Lagrangian’s role is more abstract, serving as the integrand whose stationary integral yields the
equations of motion. Its remarkable ability in describing a vast range of physical phenomena makes
it fundamentally important, even if its direct interpretation remains subtle.

We employ the variational bicomplex formalism introduced previously. Let F be the infinite-
dimensional manifold of smooth paths x : R → M . The relevant space for local analysis is F × R.
The Lagrangian 1-form L ∈ Ω0,1(F ×R) is L = L0(x, ẋ)dt. The variational 1-form γ ∈ Ω1,0(F ×R)
associated with variations δx is given by the fiber derivative of L0 with respect to velocity, paired
with δx:

γ = mg(ẋ, δx). (3.7)

The Euler-Lagrange equations, expressing the stationarity of the action, take the local form on the
space N ⊂ F of solution paths:

δL+ dγ = 0 on N × R. (3.8)

For the particle on (M, g) with potential V , this abstract equation translates into Newton’s second
law, expressed in terms of the Levi-Civita covariant derivative ∇ associated with g:

m∇ẋẋ+∇V (x) = 0, (3.9)

where ∇V is the gradient vector field of V , defined by g(∇V, Y ) = dV (Y ) for any vector field Y on
M .

3.3.2 Transition to Hamiltonian Mechanics

The Lagrangian formalism provides a natural pathway to Hamiltonian mechanics, revealing the
underlying symplectic structure of the phase space.

On the space of solutions N × R, we define the canonical 2-form ω as the variation of γ:
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Definition 3.9. The canonical 2-form ω is an element of Ω2,0(N × R) given by

ω = δγ. (3.10)

In the bicomplex notation, γ is a (1, 0)-form (a 1-form in variations, 0-form in time), and ω is a (2, 0)-
form (a 2-form in variations, 0-form in time). This means that for each fixed time t, ωt = ω|N×{t}
is a 2-form on the space of solutions N .

Lemma 3.10 (Properties of ω). The 2-form ω = δγ satisfies the following properties on N × R:

1. Dω = 0, which implies δω = 0 (i.e., ω is δ-closed) and dω = 0 (i.e., ω is d-closed).

2. The restriction ωt = ω|N×{t} is independent of time t.

3. ωt is nondegenerate on N (viewed as a manifold of initial conditions).

Proof.

1. Since ω = δγ, we have δω = δ2γ = 0 because δ2 = 0. For dω, we use the identity dδ + δd = 0
(which follows from D2 = (δ + d)2 = δ2 + d2 + δd+ dδ = 0) and the Euler-Lagrange equation
δL + dγ = 0. dω = dδγ = −δdγ. From δL + dγ = 0, we have dγ = −δL. Thus, dω =
−δ(−δL) = δ2L = 0. Since Dω = δω + dω, we have Dω = 0 + 0 = 0.

2. The condition dω = 0 means that ω has no dt component in its exterior derivative with respect
to time. If we write ω =

∑
i<j ωij(x, δx, t)δx

i ∧ δxj locally (suppressing path indices for N),

then dω =
∑
i<j

∂ωij
∂t dt∧ δx

i ∧ δxj + . . . . The vanishing of dω implies
∂ωij
∂t = 0. Therefore, ωt

is independent of t.

3. For the particle system, γ = mg(ẋ, δx). Then

ω = δγ = mδ(g(ẋ, δx)) = m (g(δẋ, δx)− g(ẋ, δ2x)) = mg(δẋ, δx) (3.11)

assuming a symmetric connection for g such that δ and covariant differentiation commute
appropriately, or more directly, ω = m(⟨δẋ ∧ δx⟩g) if interpreted on phase space.

More fundamentally, identifying the momentum pi = mgij ẋ
j , γ corresponds to piδx

i. Then
ω = δpi ∧ δxi, which is the canonical symplectic form on the cotangent bundle T ∗M (or a
reduction thereof to N). This form is nondegenerate by definition of phase space.

Corollary 3.11. For each t ∈ R, the restriction ωt = ω|N×{t} is a symplectic form on N . Moreover,
this symplectic structure is conserved in time.

The Hamiltonian function H can be derived from the Lagrangian formalism, often interpreted as
the conserved quantity associated with time-translation symmetry (Noether’s theorem).

Let ξ be the vector field on F ×R that generates the negative of time translation. It is characterized
by its action on dt and variations δx: ιξdt = −1, and ιξδx = ẋ when ξ acts on γ.

The second condition means that the component of ξ along F (the space of paths) corresponds to the
velocity along the path when contracted with the variation 1-form δx. More precisely, if ξ = ξF −∂t,
then ιξF δx = ẋ.
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The Hamiltonian H is defined as a (0, 0)-form (a function) on F × R:

Definition 3.12. The Hamiltonian function H is given by

H = ιξ(L+ γ). (3.12)

Remark 3.13 (Noether’s Theorem and the Hamiltonian). The definition of H in (3.12) is directly
motivated by Noether’s theorem. If a Lagrangian system is invariant under a continuous symmetry,
there is a corresponding conserved quantity. The Hamiltonian is precisely this conserved quantity
associated with invariance under time translations. The term L+ γ can be seen as a component of
a more general current.

Lemma 3.14 (Properties of the Hamiltonian). On the space of solutions N × R:

1. The Hamiltonian H is conserved in time, i.e., dH = 0 (where d is the time derivative compo-
nent of D).

2. The variation of H is related to ω by δH = −ιξω.

Proof. We use Cartan’s magic formula Lξ = Dιξ + ιξD. Thus, DH = Dιξ(L + γ) = Lξ(L + γ) −
ιξD(L+ γ).

1. For a time-invariant Lagrangian system, L+γ is invariant under the flow of ξ (time translation),
so Lξ(L+ γ) = 0. The Lagrangian 1-form L = L0dt has dL = d(L0dt) = (dL0

dt )dt∧ dt = 0. On
N×R, we have δL+dγ = 0. Therefore, D(L+γ) = δL+dL+δγ+dγ = (δL+dγ)+dL+δγ =
0+0+ω = ω. So, DH = 0−ιξω = −ιξω. SinceH is a function (a (0, 0)-form), DH = δH+dH.
The form ω = δγ is a (2, 0)-form. Thus ιξω is a (1, 0)-form (it only has a δ-component, no dt
component, as ξ = ξF − ∂t and ω has no dt). Specifically, ιξω = ιξFω− ι∂tω = ιξFω since ω is
type (2, 0). Comparing degrees in DH = −ιξω: The (0, 1)-component gives dH = 0, so H is
constant in time.

2. The (1, 0)-component gives δH = −ιξω. This is Hamilton’s equation in form notation, relating
the Hamiltonian to the symplectic form and the generator of time evolution.

Example 3.15 (Particle on E1). Consider a particle of mass m moving on the Euclidean line E1 (so
g(ẋ, ẋ) = ẋ2) with potential V (x). The Lagrangian 1-form is L =

(
m
2 ẋ

2 − V (x)
)
dt. The variational

1-form is γ = mẋδx. So, L+γ =
(
m
2 ẋ

2 − V (x)
)
dt+mẋδx. Using ιξdt = −1 and ιξδx = ẋ (meaning

ιξF δx = ẋ):

H = ιξ(L+ γ)

= ιξ

((m
2
ẋ2 − V (x)

)
dt
)
+ ιξ(mẋδx)

= −
(m
2
ẋ2 − V (x)

)
+mẋ(ιξδx)

= −m
2
ẋ2 + V (x) +mẋ2

=
m

2
ẋ2 + V (x).

This is the familiar expression for the total energy (Hamiltonian) of the particle. Note the sign
change of the potential V (x) from the Lagrangian to the Hamiltonian.
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3.4 Geometric Interpretation of γ

The variational approach to mechanics has deep connections to differential geometry and provides
a powerful framework for understanding the underlying structures of physical theories.

On the space N of classical trajectories, the equation δL = −dγ holds, which implies δ
∫ t1
t0
L =

−(γ(t1) − γ(t0)). This equation has a deep geometric interpretation in terms of connections on
principal bundles.

Consider R as a Lie group under addition. A connection on a trivial principal R-bundle over N is
a real-valued 1-form on N . For each t ∈ R, the 1-form γ(t) can be interpreted as an R-connection
on N × {t}. The equation δ

∫ t1
t0
L = −(γ(t1) − γ(t0)) implies that addition by

∫ t1
t0
L provides an

isomorphism of trivial principal R-bundles with connection, mapping the connection γ(t0) to γ(t1).
These isomorphisms are compatible for different time intervals.

By taking invariant sections in the R-direction, we obtain a principal R-bundle T → N equipped
with a connection whose curvature is the symplectic form ω = δγ. This provides a new way to
construct the symplectic form on N as the curvature of a connection.

Remark 3.16. The first step in the path integral formulation of quantum theory involves exponen-
tiating this principal R-bundle with its connection. Quantization can be intuitively understood as an
exponentiation process. The units of γ are the units of action (ML2/T ). To perform the exponen-
tiation, we need a constant with units of action, which is provided by Planck’s constant ℏ. Applying
the function exp

(
i
ℏ ·
)
: R → C×, we can form a principal C×-bundle with connection associated to

the R-bundle. The associated complex line bundle with covariant derivative is often called the pre-
quantum line bundle. This construction is canonical from a Lagrangian formulation and highlights
the additional geometric structure inherent in the Lagrangian formalism.

Example 3.17 (Particle on a Ring). Consider a particle moving on a ring, which can be modeled
as the Euclidean circle E1/2πLZ of length 2πL. Let m > 0 be the mass of the particle. We define a
1-parameter family of Lagrangian theories parametrized by θ ∈ R:

L =

Å
m

2
ẋ2 +

θ

2π
ẋ

ã
dt

The first term is the usual kinetic energy, and the second term is locally exact but not globally exact
on the circle since there is no global coordinate x that covers the entire circle smoothly.

The space N of classical solutions consists of motions with constant velocity. The Euler-Lagrange
equation is mẍ = 0, so x(t) = vt+ x0 mod 2πL. The phase space can be identified with the initial
position and velocity, which are (θ1, θ2) ∈ R/2πLZ × R. The symplectic form can be derived from
the Lagrangian.

The Hamiltonian derived from this Lagrangian is independent of θ. The Euler-Lagrange equation
is d

dt (mẋ + θ
2π ) − 0 = 0, so mẍ = 0. The solutions are x(t) = vt + x0 mod 2πL. The velocity v is

constant. The momentum is p = mv+ θ
2π . The Hamiltonian is H = pẋ−L = (mv+ θ

2π )v− (m2 v
2 +

θ
2πv) =

m
2 v

2 = 1
2m (p− θ

2π )
2.

The principal bundle with connection constructed from this Lagrangian depends on θ. The connec-
tion 1-form is related to γ = (mẋ+ θ

2π )δx. The curvature of this connection, which is the symplectic
form, should be independent of θ.
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The dependence on θ manifests in the corresponding quantum systems, as will be seen in later
discussions of quantization.

Remark 3.18. This example illustrates that different Lagrangian systems can give rise to the same

Hamiltonian system. The Hamiltonian H = p2

2m on the phase space T ∗(R/2πLZ) ∼= (R/2πLZ)× R
(where p is the momentum conjugate to the angular coordinate) corresponds to free motion on the
ring, independent of θ. However, the Lagrangian includes a term that affects the canonical momen-
tum and the prequantum line bundle, leading to different quantum theories for different values of θ.
This highlights that Lagrangian systems can contain more information than Hamiltonian systems.
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4 Spectral Theorems

Abstract

We present an introduction to spectral theory, beginning with linear operators on finite-dimen-
sional complex vector spaces and progressing to the analysis of operators on infinite-dimensional
Hilbert spaces. Emphasis is placed throughout on the algebraic and geometric structures un-
derlying spectral decompositions.

The discussion starts with diagonalizable operators and their eigenspace decompositions, fol-
lowed by the Jordan Normal Form for non-diagonalizable operators. These classical results are
interpreted via module theory, where a linear operator defines a C[x]-module structure, and the
primary decomposition corresponds to the Jordan structure. A sheaf-theoretic perspective is
also briefly introduced, connecting operator spectra to sheaves over C with support at eigenval-
ues.

We then introduce projection-valued measures (PVMs) as a framework for describing spectral
decompositions of normal operators. For diagonalizable operators, we construct the associated
PVM and use it to define a functional calculus f 7→ f(A), satisfying A =

∫
λ dπA(λ). Key

properties of PVMs are established, including orthogonality, additivity, and their role in repre-
senting operators via spectral integrals.

The theory is extended to commuting families of normal operators on finite-dimensional inner
product spaces, leading to the simultaneous diagonalization theorem. The spectral theorems for
self-adjoint and unitary operators are formulated using PVMs supported on R and T, respec-
tively, and the connection between them via the exponential map is made precise through the
functional calculus. We briefly discuss extensions to unitary representations of abelian groups
and Pontryagin duality.

In the final part, we turn to spectral theory in infinite-dimensional Hilbert spaces. We address
unbounded self-adjoint operators, define their spectral measures, and state the spectral theorem
in both the PVM and multiplication operator formulations. Stone’s theorem on strongly con-
tinuous one-parameter unitary groups is included, connecting self-adjoint operators to unitary
dynamics. We conclude with a brief overview of the C∗-algebraic approach for bounded normal
operators and the Gelfand-Naimark theorem.
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References: We progress from finite-dimensional operator theory [17][9] to advanced spectral anal-
ysis. Key developments include projection-valued measures (PVMs), functional calculus for normal,
self-adjoint, and unitary operators [5][16][28], and extensions to unitary representations of locally
compact abelian groups via Pontryagin duality, detailed in harmonic analysis texts [12][29]. The
core of the advanced material covers spectral theory for unbounded self-adjoint operators on Hilbert
spaces, encompassing spectral measures, Stone’s theorem on one-parameter unitary groups, and the
spectral theorem’s PVM and multiplication operator forms [28][30][18]. The chapter concludes with
the C*-algebraic approach to spectral theory for bounded normal operators and the Gelfand-Naimark
theorem, explored in [25][6].

4.1 Linear Operators in Finite Dimensions

4.1.1 Diagonalizable Operators: Eigenspace Decomposition

Let W be a finite-dimensional complex vector space of positive dimension. Suppose A : W → W is
a linear operator.

Definition 4.1. An eigenspace of A corresponding to a scalar λ ∈ C is the subspace

Wλ := {ψ ∈W : Aψ = λψ} = ker(A− λidW ).

If Wλ ̸= {0}, then λ is an eigenvalue of A, and any non-zero vector in Wλ is an eigenvector.

The algebraic closedness of C guarantees that every operator A on a finite-dimensional complex
vector space has at least one eigenvalue. There is a natural inclusion map from the direct sum of all
eigenspaces into W : ⊕

λ∈C
Wλ −→W. (4.1)

Note that the sum is finite, taken only over the eigenvalues λ ∈ Spec(A).

Definition 4.2. The operator A is diagonalizable if the map (4.1) is an isomorphism. Equivalently,
A is diagonalizable if W possesses a basis consisting entirely of eigenvectors of A.

When A is diagonalizable, its action is particularly simple: with respect to an eigenbasis, A is
represented by a diagonal matrix whose entries are the eigenvalues, each repeated according to the
dimension of its eigenspace (the geometric multiplicity). The operator A is determined by this
eigenspace decomposition and the corresponding eigenvalues: A acts as multiplication by λ on Wλ.
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However, not all operators are diagonalizable. This limitation necessitates a more general structure
theory.

Example 4.3. Let W = C3 with the standard basis e1, e2, e3. Fix λ ∈ C, and define A : W → W
to be the operator represented by the matrixÑ

λ 1 0
0 λ 1
0 0 λ

é
.

The characteristic polynomial is (t−λ)3, so λ is the only eigenvalue. The eigenspace Wλ = ker(A−
λidW ) is found by solving Ñ

0 1 0
0 0 1
0 0 0

éÑ
x
y
z

é
=

Ñ
0
0
0

é
,

which yields y = 0 and z = 0. Thus,Wλ = C·e1 is one-dimensional. Since dimWλ = 1 < 3 = dimW ,
the operator A is not diagonalizable.

4.1.2 The Jordan Normal Form: Canonical Structure for General Linear Operators

When an operator A is not diagonalizable, the Jordan Normal Form (JNF) provides a canonical
representation that is “as close to diagonal as possible.”

Definition 4.4. A subspaceW ′ ⊂W is A-invariant if A(W ′) ⊂W ′. The operator A is decomposable
if there exists a direct sum decomposition W = W ′ ⊕W ′′ into proper A-invariant subspaces. An
operator is indecomposable if it is not decomposable.

Definition 4.5. A Jordan block is an indecomposable linear operator on a finite-dimensional com-
plex vector space.

It is a important result that any Jordan block, in some basis, is represented by a matrix of the
form (4.3) (allowing for different sizes k × k). The scalar λ appearing on the diagonal is called the
generalized eigenvalue of the Jordan block. If dimW = 1, a Jordan block is simply multiplication
by λ on the one-dimensional eigenspace. For the operator in Example 4.3, the domain of the map
(4.1) is 1-dimensional, while the codomain W is 3-dimensional.

The structure of a Jordan block is tied to nilpotency. Let A : W → W be a Jordan block of size
k = dimW with generalized eigenvalue λ. The operator N := A − λidW is nilpotent, meaning
Nm = 0 for some integer m. Specifically for a k × k Jordan block, Nk−1 ̸= 0 but Nk = 0. The
kernels of successive powers of N form a full flag inW , which is a filtration by subspaces of increasing
dimension:

{0} =W (0) ⊂W (1) ⊂W (2) ⊂ · · · ⊂W (k) =W, (4.2)

where W (i) := ker(N i) and dimW (i) = i for 0 ≤ i ≤ k. The line W (1) = ker(N) is the unique
1-dimensional eigenspace of A with eigenvalue λ. Vectors in W (i) \ W (i−1) for i > 1 are called
generalized eigenvectors.
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Theorem 4.6. Let W be a finite-dimensional complex vector space, and suppose A : W → W is a
linear operator. Then there exists an A-invariant decomposition

W =

m⊕
i=1

Wi

where each Wi is a subspace on which the restriction A|Wi
is a Jordan block. This decomposition is

unique up to reordering the summands Wi. The generalized eigenvalues λ1, . . . , λm associated with
the blocks A|Wi

are the eigenvalues of A (possibly repeated). The operator A is diagonalizable if and
only if dimWi = 1 for all i.

Proof. See standard linear algebra texts.

4.1.3 Geometric Perspectives: Module Theory and Sheaves

The structure encapsulated by the Jordan Normal Form can be studied through the lens of algebraic
geometry.

The Operator as a C[x]-Module: A linear operator A : W → W endows the vector space W
with the structure of a module over the polynomial ring R = C[x]. The action of a polynomial
p(x) =

∑
cjx

j ∈ R on a vector w ∈ W is defined via p(x) · w := p(A)w =
∑
cjA

jw. Since W is
finite-dimensional over C, it becomes a finitely generated module over R = C[x].

Importantly, C[x] is a Principal Ideal Domain (PID). The structure theorem for finitely generated
modules over a PID states that any such module M is isomorphic to a direct sum of cyclic modules
of the form R/Ij , where each ideal Ij is generated by a power of an irreducible element, Ij = (p

αj
j ).

In R = C[x], the irreducible polynomials are the linear factors (x−λ) for λ ∈ C. Thus, the R-module
W associated with A decomposes uniquely (up to order) as:

W ∼=
m⊕
i=1

C[x]
((x− λi)αi)

Each cyclic summand Wi
∼= C[x]/((x−λi)αi) corresponds precisely to an A-invariant subspace asso-

ciated with a Jordan block Jαi(λi) in the Jordan Normal Form of A . The action of x (representing
A) on a standard basis for this cyclic module yields the Jordan matrix Jαi(λi). This demonstrates
how the JNF arises naturally from the study of modules.

Sheaf Interpretation: In algebraic geometry, we can associate to to a commutative ring R its
prime spectrum10, Spec R. For R = C[x], Spec R is identified with the complex affine line C, where
each point λ ∈ C corresponds to the maximal ideal (x− λ). An R-module M determines a sheaf11

FM over Spec R . For the linear operator A, the corresponding C[x]-module W gives rise to a sheaf
FA → C.

The support of this sheaf, the set of points λ ∈ C where the stalk FA,λ is non-zero, is precisely the
set of eigenvalues of A, Spec(A). For any open set E ⊂ C, the sections of FA over E form the vector
space

ΓE(FA) =
⊕

λi∈E∩Spec(A)

Wi, (4.3)

10The prime spectrum of R is the set Spec(R) := {p ⊊ R | p is a prime ideal}.
11We discuss sheaves in a later lecture; they are only used in passing here.
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where Wi is the subspace corresponding to the i-th Jordan block (associated with eigenvalue λi) in
the decomposition (4.6). This is depicted in Figure 1.

λ1

λ2

W1

W2

C

Figure 1: The sheaf FA → C of the linear operator A : W → W . The support is the finite set
Spec(A) = {λ1, . . . , λm}. The stalk over λi corresponds to the generalized eigenspace Wi.

Remark 4.7. If A is diagonalizable, FA is a skyscraper sheaf, supported only at the eigenvalues,
with the stalk at λi being the eigenspace Wλi . However, the decomposition (4.6) depicted in Figure
1 does not determine the operator A in general.

If there is a Jordan block of dimension αi > 1, the structure of the sheaf FA in a formal (infinitesimal)
neighborhood of the corresponding eigenvalue λi encodes the nilpotent action N = A− λiidW on the
generalized eigenspace Wi. This nilpotent structure, reflected in the flag (4.2), is captured by the
non-trivial structure of the stalk FA,λi ∼=Wi as a module over the local ring OC,λi or its completion.
The nilpotency is geometrically represented by this infinitesimal sheaf-theoretic behavior.

4.2 Projection-Valued Measures and Functional Calculus for Diagonaliz-
able Operators

Henceforth in this section, we restrict our attention exclusively to linear operators A :W →W that
are diagonalizable on a finite-dimensional complex vector space W . Recall that an operator A is
diagonalizable if and only if W admits a basis consisting of eigenvectors of A, or equivalently, if its
minimal polynomial has distinct roots. As we saw earlier, this is also equivalent to the geometric
condition that the vector space W decomposes as the direct sum of the eigenspaces of A. Let
Spec(A) = {λ1, . . . , λm} ⊂ C denote the spectrum of A (the set of distinct eigenvalues), and let
Wλj = Ker(A− λj idW ) be the eigenspace corresponding to the eigenvalue λj . By the definition of
diagonalizability, the eigenspace decomposition provides an isomorphism:

W ∼=
⊕

λ∈Spec(A)

Wλ.

The action of the operator A is completely determined by this decomposition and the associated
eigenvalues: for any vector w ∈ W , if we decompose it uniquely as w =

∑
λj∈Spec(A) wj with

wj ∈ Wλj , then A(w) =
∑
λj∈Spec(A)A(wj) =

∑
λj∈Spec(A) λjwj . Thus, A simply acts as scalar

multiplication by λj on the subspace Wλj . This picture is captured by the interpretation of A as
the collection of its actions on the “stalks” Wλ over the discrete space Spec(A).

While intuitive, this description relies on the direct sum structure. We now develop an equivalent
and powerful formalism that encodes such “multiplication operators” purely in terms of projection
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operators associated with the eigenspaces. This projection-valued measure approach offers significant
advantages, particularly for generalization.

4.2.1 Projections, Orthogonal Projections, and Direct Sums

We begin by recalling and elaborating on the important properties of projection operators, which
are the building blocks of spectral measures.

Definition 4.8 (Projection Operator). A linear operator P :W →W on a vector space W is called
a projection (or idempotent operator) if it satisfies the condition P 2 = P . The set of all projection
operators on W is denoted by Proj(W ).

Projections are linked to direct sum decompositions of the vector space.

Proposition 4.9 (Projections and Direct Sums Correspondence).

1. If P ∈ Proj(W ), then W decomposes as the direct sum of the image (range) and kernel (null
space) of P :

W = Im(P )⊕Ker(P ). (4.4)

Furthermore, P acts as the identity on Im(P ) and as the zero operator on Ker(P ). The
operator Q = idW −P is also a projection, called the complementary projection, satisfying
Im(Q) = Ker(P ), Ker(Q) = Im(P ), and PQ = QP = 0.

2. Conversely, given any direct sum decomposition W = W ′′ ⊕W ′ into subspaces W ′′ and W ′,
there exists a unique projection operator P : W → W such that Im(P ) = W ′′ and Ker(P ) =
W ′. This operator is called the projection onto W ′′ along W ′, and we denote it by P ′′.
That is,

P ′′ :W −→W, with Im(P ′′) =W ′′, and Ker(P ′′) =W ′. (4.5)

Proof.

1. For any w ∈W , we can write
w = Pw + (w − Pw).

Clearly, Pw ∈ Im(P ). Let w′ = w − Pw. Then

Pw′ = P (w − Pw) = Pw − P 2w = Pw − Pw = 0,

so w′ ∈ Ker(P ). This shows that

W = Im(P ) + Ker(P ).

To show the sum is direct, let v ∈ Im(P )∩Ker(P ). Since v ∈ Im(P ), there exists some u ∈W
such that v = Pu. Since v ∈ Ker(P ), we also have Pv = 0. Therefore,

P 2u = 0,

which implies Pu = 0, since P 2 = P . Hence, v = 0, proving the sum is direct.

If v ∈ Im(P ), then v = Pu, so Pv = P 2u = Pu = v. If v ∈ Ker(P ), then Pv = 0.
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For Q = idW −P , we compute

Q2 = (idW −P )(idW −P ) = idW −2P + P 2 = idW −2P + P = idW −P = Q.

Thus, Q2 = Q.

Next, we find the kernel and image of Q:

Ker(Q) = {w | (idW −P )w = 0} = {w | w = Pw} = Im(P ),

and
Im(Q) = {(idW −P )w | w ∈W} = Ker(P ),

as shown in the decomposition. Moreover, we have

PQ = P (idW −P ) = P − P 2 = 0,

and
QP = (idW −P )P = P − P 2 = 0.

2. Given W =W ′′ ⊕W ′, any w ∈W has a unique decomposition

w = w′′ + w′,

where w′′ ∈ W ′′ and w′ ∈ W ′. Define P (w) = w′′. This map is clearly linear. Its image is
W ′′, and its kernel is

{w′′ + w′ | w′′ = 0} =W ′.

We now check idempotency:

P 2(w) = P (w′′) = w′′ = P (w),

since the decomposition of w′′ ∈W ′′ is w′′ = w′′ + 0.

Uniqueness follows because any projection P ′ with Im(P ′) = W ′′ and Ker(P ′) = W ′ must
map w = w′′ + w′ to P ′(w′′) + P ′(w′). Since w′′ ∈ Im(P ′), we have P ′(w′′) = w′′. Since
w′ ∈ Ker(P ′), we have P ′(w′) = 0. Thus,

P ′(w) = w′′ = P (w).

WhenW possesses an inner product structure ⟨·, ·⟩, a special class of projections arises, characterized
by compatibility with the inner product.

Definition 4.10 (Orthogonal Projection). Let (W, ⟨·, ·⟩) be a finite-dimensional complex inner prod-
uct space (i.e., a Hilbert space). A projection P ∈ Proj(W ) is called an orthogonal projection if
its image and kernel are orthogonal subspaces with respect to the inner product: Im(P ) ⊥ Ker(P ).
That is, ⟨Pw1, (idW −P )w2⟩ = 0 for all w1, w2 ∈W .

Orthogonal projections admit a important algebraic characterization involving the adjoint operator
P ∗, defined by ⟨Pw, v⟩ = ⟨w,P ∗v⟩ for all v, w ∈W .
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Proposition 4.11 (Characterization of Orthogonal Projections). A linear operator P : W → W
on a finite-dimensional Hilbert space W is an orthogonal projection if and only if it satisfies both
P 2 = P (idempotency) and P ∗ = P (self-adjointness).

Proof. (⇒) Assume that P is an orthogonal projection. We already know that P 2 = P . We need
to show that P ∗ = P .

Since W = Im(P )⊕Ker(P ) is an orthogonal decomposition, any w, v ∈W can be uniquely written
as:

w = w1 + w2 and v = v1 + v2,

where w1, v1 ∈ Im(P ) and w2, v2 ∈ Ker(P ).

Therefore, we have:
Pw = w1 and Pv = v1.

We now compute the inner products:

⟨Pw, v⟩ = ⟨w1, v1 + v2⟩ = ⟨w1, v1⟩+ ⟨w1, v2⟩ = ⟨w1, v1⟩,

since v2 ∈ Ker(P ) and is orthogonal to w1 ∈ Im(P ).

Similarly:
⟨w,Pv⟩ = ⟨w1 + w2, v1⟩ = ⟨w1, v1⟩+ ⟨w2, v1⟩ = ⟨w1, v1⟩,

since w2 ∈ Ker(P ) and is orthogonal to v1 ∈ Im(P ).

Since we have:
⟨Pw, v⟩ = ⟨w,Pv⟩ for all w, v ∈W,

it follows that P ∗ = P .

(⇐) Now assume that P 2 = P and P ∗ = P . We know that W = Im(P ) ⊕ Ker(P ). Let u ∈ Im(P )
and v ∈ Ker(P ). We want to show that ⟨u, v⟩ = 0.

Since u ∈ Im(P ), we have u = Pu. Since v ∈ Ker(P ), we have Pv = 0. Therefore:

⟨u, v⟩ = ⟨Pu, v⟩ = ⟨u, P ∗v⟩ (by the definition of adjoint).

Since P ∗ = P , we obtain:
⟨u, v⟩ = ⟨u, Pv⟩.

Since Pv = 0, it follows that:
⟨u, v⟩ = ⟨u, 0⟩ = 0.

Thus, Im(P ) ⊥ Ker(P ), and therefore, P is an orthogonal projection.

4.2.2 Projection-Valued Measures (PVMs) for Diagonalizable Operators

We now return to our setting of a diagonalizable operator A : W → W on a finite-dimensional
complex vector space W , with the eigenspace decomposition W =

⊕
λ∈Spec(A)Wλ. Let πλj ∈

Proj(W ) denote the unique projection onto the eigenspace Wλj along the direct sum of the other
eigenspaces

⊕
λk ̸=λj Wλk . These individual projections satisfy important orthogonality relations.
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Lemma 4.12 (Properties of Eigenspace Projections). Let A be diagonalizable with distinct eigen-
values Spec(A) = {λ1, . . . , λm}, and let πλj be the projection onto Wλj along

⊕
k ̸=jWλk . Then:

1.
∑m
j=1 πλj = idW (Resolution of Identity).

2. πλjπλk = δjkπλj (Orthogonality of Projections).

Proof.

(1) Any w ∈W decomposes uniquely as w =
∑m
k=1 wk with wk ∈Wλk . By definition, πλj (w) = wj .

Therefore, (
∑m
j=1 πλj )(w) =

∑m
j=1 πλj (w) =

∑m
j=1 wj = w = idW (w). Since this holds for all w,∑

πλj = idW .

(2) Consider πλjπλk . The image of πλk is Wλk . If j ̸= k, then Wλk is contained in the kernel of πλj
(since Ker(πλj ) =

⊕
l ̸=jWλl). Therefore, for j ̸= k, πλjπλk = 0. If j = k, then πλjπλj = (πλj )

2 =
πλj since πλj is a projection. Combining these, πλjπλk = δjkπλj .

These projections allow us to define a set function whose values are operators, associating subsets
of the complex plane to projections onto corresponding sums of eigenspaces.

Definition 4.13 (Projection-Valued Measure (Finite-Dimensional Case)). Let A : W → W be a
diagonalizable operator on a finite-dimensional complex vector space W . The projection-valued
measure (PVM) or spectral measure associated with A is the map

πA : P(C) −→ Proj(W ) (4.6)

(where P(C) is the power set of C) defined by assigning to each subset E ⊆ C the projection onto
the sum of eigenspaces corresponding to eigenvalues lying within E:

E 7→ πA(E) :=
∑

λj∈E∩Spec(A)

πλj

where πλj is the projection onto the eigenspace Wλj along
⊕

k ̸=jWλk . If E ∩ Spec(A) is empty, the
sum is empty and defined as the zero operator.

Remark 4.14 (Dependence on Spectrum). Observe that although the domain is formally written
as P(C), the map πA is constant on sets E having the same intersection with the finite set Spec(A).
It is non-zero only for sets E that contain at least one eigenvalue of A. Effectively, πA is supported
on Spec(A).

Remark 4.15 (Orthogonality for Normal Operators). If W is equipped with an inner product
⟨·, ·⟩ and the operator A is normal (i.e., A commutes with its adjoint, AA∗ = A∗A), then A is
diagonalizable, and its eigenspaces corresponding to distinct eigenvalues are mutually orthogonal:
Wλj ⊥ Wλk for j ̸= k. In this case, the direct sum W =

⊕
λj∈Spec(A)Wλj is an orthogonal direct

sum. Consequently, each individual projection πλj is an orthogonal projection (π∗
λj

= πλj ), and the

PVM πA(E) =
∑
λj∈E∩Spec(A) πλj is also an orthogonal projection for every E ⊆ C. This holds, in

particular, if A is self-adjoint (A∗ = A) or unitary (A∗A = AA∗ = idW ).

The map πA exhibits properties strongly analogous to those of a classical (scalar-valued) measure,
justifying its name.
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Proposition 4.16 (Properties of the PVM πA). The map πA : P(C) → Proj(W ) defined above
satisfies the following properties:

(i) Null Empty Set: πA(∅) = 0.

(ii) Normalization: πA(C) = πA(Spec(A)) = idW .

(iii) Finite Additivity: If E1, E2 ⊆ C are disjoint subsets, then

πA(E1 ∪ E2) = πA(E1) + πA(E2).

More generally, for pairwise disjoint E1, . . . , En, πA(∪ni=1Ei) =
∑n
i=1 πA(Ei).

(iv) Multiplicativity/Intersection Property: For any E1, E2 ⊆ C,

πA(E1 ∩ E2) = πA(E1)πA(E2).

These properties imply, in particular, that projections associated with disjoint sets commute and
their product is zero: if E1 ∩ E2 = ∅, then πA(E1)πA(E2) = πA(E1 ∩ E2) = πA(∅) = 0.

Proof. Let S = Spec(A).

(i) πA(∅) =
∑
λ∈∅∩S πλ = 0 (sum over empty set).

(ii) πA(C) =
∑
λ∈C∩S πλ =

∑
λ∈S πλ = idW by Lemma 4.12(1). Similarly for πA(S).

(iii) If E1 ∩ E2 = ∅, then E1 ∩ S and E2 ∩ S are disjoint subsets of S. The set of eigenvalues in
the union is the disjoint union of the eigenvalues in each set: (E1 ∪ E2) ∩ S = (E1 ∩ S) ∪ (E2 ∩ S).
Therefore,

πA(E1 ∪ E2) =
∑

λ∈(E1∪E2)∩S

πλ =
∑

λ∈(E1∩S)

πλ +
∑

λ∈(E2∩S)

πλ = πA(E1) + πA(E2).

(iv) Using the definition and the orthogonality property πλπµ = δλµπλ from Lemma 4.12(2):

πA(E1)πA(E2) =

( ∑
λ∈E1∩S

πλ

)Ñ ∑
µ∈E2∩S

πµ

é
=

∑
λ∈E1∩S

∑
µ∈E2∩S

πλπµ

=
∑

λ∈E1∩S

∑
µ∈E2∩S

δλµπλ

=
∑

λ∈(E1∩S)∩(E2∩S)

πλ (only terms with λ = µ survive)

=
∑

λ∈(E1∩E2)∩S

πλ

= πA(E1 ∩ E2).

The set of projections {πλj}λj∈Spec(A) associated with individual eigenvalues forms the core of the
PVM. They constitute a complete set of mutually orthogonal (in the sense πjπk = 0 for j ̸= k)
projections summing to the identity, often called a resolution of the identity associated with A.
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4.2.3 Connection to Probability Measures

The designation of the map πA : P(C) −→ Proj(W ) as a projection valued measure invites a
comparison to the more familiar concept of classical, scalar-valued measures, particularly probability
measures. While PVMs are operator-valued, their mathematical properties enable the construction
of classical probability measures associated with vectors in the underlying space, thereby providing
a general framework.

We first recall the basics of classical measure theory and probability spaces.

Definition 4.17 (Measurable Space and σ-Algebra). A measurable space is a pair (X,Σ), where
X is a non-empty set, often called the “sample space” or “universe of outcomes,” and Σ is a σ-
algebra (or σ-field) of subsets of X. Σ is a collection of subsets of X satisfying:

1. X ∈ Σ (the entire space is measurable).

2. If E ∈ Σ, then its complement X \ E is also in Σ (closure under complementation).

3. If {Ei}∞i=1 is a countable collection of sets in Σ, then their union ∪∞i=1Ei is in Σ (closure under
countable unions).

The elements of Σ are called “measurable sets” or, in probabilistic contexts, “events.”

Definition 4.18 (Positive Measure). A positive measure on a measurable space (X,Σ) is a
function µ : Σ→ [0,∞] (the set of non-negative extended real numbers) such that:

1. µ(∅) = 0 (the measure of the empty set is zero).

2. (Countable Additivity / σ-additivity) For any countable sequence {Ei}∞i=1 of pairwise disjoint
sets in Σ (i.e., Ei ∩ Ej = ∅ for i ̸= j),

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei).

From these axioms, several standard properties of measures follow, including:

• Finite Additivity: For any finite collection of pairwise disjoint sets E1, . . . , En ∈ Σ, µ(∪nk=1Ek) =∑n
k=1 µ(Ek).

• Monotonicity: If E,F ∈ Σ and E ⊆ F , then µ(E) ≤ µ(F ).

• Subadditivity: For any countable collection {Ei}∞i=1 of sets in Σ (not necessarily disjoint),
µ(∪∞i=1Ei) ≤

∑∞
i=1 µ(Ei).

• Continuity from below: If E1 ⊆ E2 ⊆ . . . is an increasing sequence of sets in Σ and E =
∪∞n=1En, then µ(E) = limn→∞ µ(En).

• Continuity from above: If E1 ⊇ E2 ⊇ . . . is a decreasing sequence of sets in Σ, E = ∩∞n=1En,
and µ(E1) <∞, then µ(E) = limn→∞ µ(En).

Definition 4.19 (Finite Measures and Probability Measures).

1. A positive measure µ is finite if µ(X) <∞.
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2. A positive measure P on (X,Σ) is a probability measure if P (X) = 1. The triple (X,Σ, P )
is then termed a probability space.

More generally, one defines signed measures (real-valued) and complex measures, both satisfying
countable additivity.

In the context of a PVM πA for a diagonalizable operator A on a finite-dimensional space W , the
spectrum Spec(A) is a finite set. We can take X = Spec(A) and Σ = P(Spec(A)) (the power set of
the spectrum). In this scenario, any finitely additive set function automatically satisfies countable
additivity because any countable disjoint union can only contain finitely many non-empty sets.

The PVM πA, as defined in Definition 4.13 has many parallels to the axiomatic structure of a
probability measure, especially concerning its behavior under set operations (Proposition 4.16).

(i) Null Empty Set: πA(∅) = 0. This is structurally identical to P (∅) = 0. The PVM assigns
the zero operator to the empty set of spectral values, signifying that the “spectral content”
associated with no eigenvalues is trivial (projection onto the zero-dimensional subspace {0W }).

(ii) Normalization / Total Measure: πA(C) = πA(Spec(A)) = idW . This parallels P (X) =
1. The identity operator idW serves as the operatorial analogue of “total probability” or
“certainty.” It confirms that the entire spaceW is accounted for by the spectral decomposition
W =

⊕
λ∈Spec(A)Wλ. The sum of projections onto all distinct eigenspaces,

∑
λ∈Spec(A) πλ =

idW (see Lemma 4.12).

(iii) Finite Additivity: πA(E1 ∪E2) = πA(E1) + πA(E2) for disjoint E1, E2 ⊆ C. This mirrors
the additivity P (E1∪E2) = P (E1)+P (E2) for mutually exclusive events. The PVM property
follows from its definition as a sum over individual eigenspace projections:

πA(E1 ∪ E2) =
∑

λ∈(E1∩S)∪(E2∩S)

πλ =
∑

λ∈E1∩S

πλ +
∑

λ∈E2∩S

πλ = πA(E1) + πA(E2),

where S = Spec(A) and the disjointness of E1, E2 implies disjointness of E1 ∩ S and E2 ∩ S.
The sum is one of linear operators. For this sum πA(E1) + πA(E2) to itself be a projection
(which πA(E1 ∪ E2) is), a necessary and sufficient condition is that πA(E1)πA(E2) = 0 and
πA(E2)πA(E1) = 0. This condition is indeed satisfied due to property (iv) below, as E1∩E2 =
∅ =⇒ πA(E1)πA(E2) = πA(∅) = 0. The image of πA(E1 ∪ E2) is then the direct sum of the
images of πA(E1) and πA(E2).

The major difference from classical probability measures is that πA(E) is an operator (a projection)
and not a scalar value in [0, 1]. However, this operator-valued structure provides a way to generate
classical scalar measures, including probability measures, when an inner product and specific vectors
(states) are introduced. This is particularly transparent for normal operators, where the PVM
consists of orthogonal projections.

Let W be a finite-dimensional complex inner product space, and let A be a normal operator on
W . Then its PVM πA(E) consists of orthogonal projections (i.e., πA(E)∗ = πA(E) and πA(E)2 =
πA(E)). For any vector ψ ∈W , consider the map µψ : P(Spec(A))→ [0,∞) defined by:

µψ(E) := ⟨ψ, πA(E)ψ⟩.
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Since πA(E) is an orthogonal projection,

⟨ψ, πA(E)ψ⟩ = ⟨ψ, πA(E)∗πA(E)ψ⟩
= ⟨πA(E)ψ, πA(E)ψ⟩
= ∥πA(E)ψ∥2 ≥ 0.

This map µψ is a finite positive measure on Spec(A):

1. µψ(∅) = ∥πA(∅)ψ∥2 = ∥0ψ∥2 = 0.

2. (Finite Additivity) For disjoint E1, E2 ⊆ Spec(A): The projections πA(E1) and πA(E2) are or-
thogonal and their images are orthogonal subspaces because E1∩E2 = ∅ =⇒ πA(E1)πA(E2) =
0. This means that πA(E1)ψ is orthogonal to πA(E2)ψ. Thus,

µψ(E1 ∪ E2) = ∥πA(E1 ∪ E2)ψ∥2 = ∥(πA(E1) + πA(E2))ψ∥2

= ∥πA(E1)ψ + πA(E2)ψ∥2

= ∥πA(E1)ψ∥2 + ∥πA(E2)ψ∥2 (by the Pythagorean theorem)

= µψ(E1) + µψ(E2).

The total measure is µψ(Spec(A)) = ∥πA(Spec(A))ψ∥2 = ∥ idW ψ∥2 = ∥ψ∥2. Crucially, if the
vector ψ is normalized such that ∥ψ∥ = 1, then µψ(Spec(A)) = 1. In this case, µψ becomes a
classical probability measure on the finite set Spec(A). Thus, the PVM πA, while operator-valued,
naturally induces a family of probability measures, parameterized by the choice of a normalized
vector ψ. Each such µψ describes a probability distribution over the possible spectral values of A.

More generally, for any pair of vectors ϕ, ψ ∈W , the function µϕ,ψ(E) := ⟨ϕ, πA(E)ψ⟩ defines a com-
plex measure on Spec(A). These are essential for defining the integral ⟨ϕ, f(A)ψ⟩ =

∫
f(λ)dµϕ,ψ(λ)

for complex-valued functions f .

Once we have the probability measure µψ associated with a normalized vector ψ and a self-adjoint
operator A (whose spectrum is real), we can define the expectation of a function f : Spec(A) → R
in the classical sense:

Eµψ [f ] :=
∫
Spec(A)

f(λ) dµψ(λ) =
∑

λj∈Spec(A)

f(λj)µψ({λj}).

Using the functional calculus f(A) =
∑
λj∈Spec(A) f(λj)πλj and µψ({λj}) = ⟨ψ, πλjψ⟩ = ∥πλjψ∥2,

we find:

⟨ψ, f(A)ψ⟩ =

∞
ψ,

∑
λj∈Spec(A)

f(λj)πλjψ

∫
=

∑
λj∈Spec(A)

f(λj)⟨ψ, πλjψ⟩

=
∑

λj∈Spec(A)

f(λj)µψ({λj})

= Eµψ [f ].
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In particular, for f(λ) = λ, the “average value” ⟨ψ,Aψ⟩ is precisely the expectation Eµψ [λ], where λ
is viewed as a random variable distributed according to µψ. Similarly, the variance can be defined:

Varµψ (λ) = Eµψ [(λ− Eµψ [λ])2] = ⟨ψ, (A− ⟨ψ,Aψ⟩ idW )2ψ⟩.

This shows how the operatorial PVM framework connects directly to classical statistical concepts
through the vector-dependent probability measures.

The PVM property (iv) πA(E1∩E2) = πA(E1)πA(E2) is another major difference from the properties
of typical probability measures. For probabilities, P (E1∩E2) = P (E1)P (E2) holds if and only if the
events E1 and E2 are statistically independent. Independence is a specific relationship between
events contingent on a particular probability measure P , not an axiom of probability measures
themselves.

In contrast, for a PVM πA derived from a single operator A, the multiplicative property πA(E1 ∩
E2) = πA(E1)πA(E2) is an inherent structural property. It follows from the idempotency and mutual
orthogonality of the elementary spectral projections πλπµ = δλµπλ. Since all πA(E) are sums of
these πλ, they all commute: πA(E1)πA(E2) = πA(E2)πA(E1). This commutativity of projection
values for any two sets is a key feature. The property reflects the underlying logic of spectral
decomposition: applying a “filter” for eigenvalues in E2 and then a “filter” for eigenvalues in E1 is
equivalent to applying a single “filter” for eigenvalues in E1 ∩ E2. This robust algebraic property
is essential for ensuring that the functional calculus f 7→ f(A) defines an algebra homomorphism
(specifically, (fg)(A) = f(A)g(A)).

The true power of this measure-theoretic perspective, especially its connection to probability, be-
comes fully apparent in the context of infinite-dimensional Hilbert spaces and operators with con-
tinuous spectra (as discussed in Section 4.4).

1. The PVM πA associated with a self-adjoint operator A is defined on the Borel σ-algebra
B(σ(A)) of its spectrum.

2. The crucial property is countable additivity (strong operator topology-convergence):
for any sequence {Ei}∞i=1 of pairwise disjoint Borel sets,

πA

( ∞⋃
i=1

Ei

)
ψ =

∞∑
i=1

πA(Ei)ψ (for all ψ ∈ H).

This SOT-countable additivity of the PVM πA is precisely the condition required to ensure that
each derived scalar function µψ(E) = ∥πA(E)ψ∥2 is a true, countably additive probability measure
on (σ(A),B(σ(A))) when ∥ψ∥ = 1. This mathematical structure supports the probabilistic inter-
pretation of quantum measurements, even for observables with continuous spectra like position or
momentum, where sums turn into integrals against probability measures determined by the quantum
state.

To summarize, while PVMs are fundamentally operator-valued, they share core axiomatic traits with
scalar measures, particularly concerning normalization and additivity for disjoint sets. For normal
operators on an inner product space, the PVM, being composed of orthogonal projections, naturally
allows the construction of a family of classical positive scalar measures µψ(E) = ∥πA(E)ψ∥2. When
the vector ψ is normalized, µψ becomes a probability measure on the spectrum of A. This provides
a purely mathematical pathway to probabilistic interpretations. The expectation values formed
with respect to these probability measures align perfectly with the inner product expressions like
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⟨ψ, f(A)ψ⟩. The distinctive multiplicative property of PVMs, πA(E1 ∩ E2) = πA(E1)πA(E2), is an
algebraic feature that has no direct counterpart in general probability theory beyond the special
case of statistical independence; for PVMs, it is important for the homomorphism property of
the functional calculus. Overall, PVMs offer a mathematical framework in which operator-valued
measures can produce classical probability distributions when applied to specific states.

4.2.4 The Functional Calculus for Diagonalizable Operators

The primary purpose of the PVM formalism is to provide a unified way to define functions of the
operator A. This is known as the functional calculus. Applying functions to operators naturally
arises in various contexts, such as solving systems of linear differential equations (etA), defining
norms or condition numbers of matrices, and formulating observables and their evolution in quantum
mechanics.

First, the operator A itself can be reconstructed from its eigenvalues and the corresponding projec-
tions. Since A acts as λj idWλj

on the image of πλj , and
∑
πλj = idW , we can write A as a linear

combination of these projections, weighted by the eigenvalues.

Proposition 4.20 (Spectral Decomposition of A). Let A be a diagonalizable operator with distinct
eigenvalues Spec(A) = {λ1, . . . , λm} and corresponding eigenspace projections πλj . Then A can be
expressed as:

A =

m∑
j=1

λjπλj . (4.7)

This is often written suggestively as an integral with respect to the PVM:

A =

∫
C
λ dπA(λ) or A =

∫
Spec(A)

λ dπA(λ).

Proof. Let w ∈W . Decompose w =
∑m
k=1 wk where

wk = πλk(w) ∈Wλk .

Then

A(w) =

m∑
k=1

A(wk) =

m∑
k=1

λkwk.

Now compute the action of the sum:Ñ
m∑
j=1

λjπλj

é
(w) =

m∑
j=1

λjπλj

(
m∑
k=1

wk

)
=

m∑
j=1

m∑
k=1

λjπλjwk.

Since wk ∈Wλk , we have
πλjwk = δjkwk.

Thus, the sum becomes
m∑
j=1

m∑
k=1

λjδjkwk =

m∑
k=1

λkwk.
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This equals A(w). Since the operators agree on all w, they are equal. The integral notation em-
phasizes that A is synthesized from its spectral values λ weighted by the spectral measure πA
concentrated at those values.

This spectral decomposition naturally suggests how to define f(A) for functions f . If p(z) =∑N
k=0 ckz

k is a polynomial, then using Ak = (
∑
λjπλj )

k =
∑
λkjπλj (due to πjπl = δjlπj), we

find

p(A) =

N∑
k=0

ckA
k =

N∑
k=0

ck

Ñ
m∑
j=1

λkjπλj

é
=

m∑
j=1

(
N∑
k=0

ckλ
k
j

)
πλj =

m∑
j=1

p(λj)πλj .

This calculation shows that applying a polynomial p to the operator A is equivalent to applying p
to each eigenvalue λj and summing the results weighted by the corresponding projection πλj . This
motivates extending the definition from polynomials to arbitrary functions defined on the spectrum
of A.

Definition 4.21 (Functional Calculus). Let A :W →W be a diagonalizable operator with spectral
measure πA. Let f : Spec(A)→ C be any function defined on the spectrum of A. (We can extend f
to all of C arbitrarily, e.g., by setting f(λ) = 0 for λ /∈ Spec(A), as only its values on Spec(A) affect
the sum). The operator f(A) :W →W is defined as:

f(A) :=
∑

λj∈Spec(A)

f(λj)πλj . (4.8)

This can also be written using the integral notation:

f(A) =

∫
Spec(A)

f(λ) dπA(λ).

This map f 7→ f(A) is called the functional calculus for the diagonalizable operator A.

This definition provides a consistent and computationally effective way to apply functions to oper-
ators.

Example 4.22 (Applying Functions to Functional Calculus).

• The operator exponential etA (important for solving linear ODE systems ẋ = Ax) is given by

etA =

m∑
j=1

etλjπλj .

• If 0 /∈ Spec(A), meaning A is invertible, we can define f(λ) = 1/λ for λ ∈ Spec(A). Then the
inverse is

A−1 = f(A) =

m∑
j=1

1

λj
πλj .

We can verify this:

AA−1 = (

m∑
k=1

λkπλk)(

m∑
j=1

1

λj
πλj ) =

m∑
j,k=1

λk
λj
πλkπλj =

m∑
j=1

λj
λj
πλj =

m∑
j=1

πλj = idW .
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• Consider the matrix A =

Å
2 0
0 −1

ã
. The spectrum of A is given by

Spec(A) = {2,−1}.

Let

W2 = span

ßÅ
1
0

ã™
, W−1 = span

ßÅ
0
1

ã™
.

The corresponding projection operators are

π2 =

Å
1 0
0 0

ã
, π−1 =

Å
0 0
0 1

ã
.

Now, let f(x) = x3. We can compute f(A) as follows:

f(A) = f(2)π2 + f(−1)π−1 = 8π2 + (−1)π−1 =

Å
8 0
0 −1

ã
,

which is equal to A3.

Next, let g(x) =
√
x (defined for positive eigenvalues). If

A =

Å
4 0
0 9

ã
,

then we compute g(A) as follows:

g(A) =
√
4π4 +

√
9π9 = 2π4 + 3π9 =

Å
2 0
0 3

ã
,

which is one possible square root of A.

The functional calculus possesses important algebraic properties, formalizing the idea that calcula-
tions with f(A) mirror calculations with the function f itself on the spectrum. Let F(Spec(A)) be
the algebra of complex-valued functions on the finite set Spec(A) equipped with pointwise addition,
scalar multiplication, and pointwise multiplication. Let L(W ) be the algebra of linear operators on
W .

Theorem 4.23 (Properties of the Functional Calculus). The functional calculus map Ψ : F(Spec(A))→
L(W ) defined by Ψ(f) = f(A) is an algebra homomorphism. That is, for f, g ∈ F(Spec(A)) and
c ∈ C:

1. Ψ(f + g) = (f + g)(A) = f(A) + g(A) = Ψ(f) + Ψ(g) (Additivity).

2. Ψ(cf) = (cf)(A) = cf(A) = cΨ(f) (Homogeneity).

3. Ψ(fg) = (fg)(A) = f(A)g(A) = Ψ(f)Ψ(g) (Multiplicativity).

4. Ψ(1) = 1(A) = idW , where 1 is the constant function f(λ) = 1.

5. Ψ(idC) = idC(A) = A, where idC is the identity function f(λ) = λ.
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If W is equipped with an inner product and A is a normal operator, then Ψ is furthermore a *-
homomorphism, meaning it respects the adjoint operation (involution):

6. Ψ(f̄) = f̄(A) = (f(A))∗ = (Ψ(f))∗, where f̄ is the complex conjugate function f̄(λ) = f(λ).

Proof. Properties (1) and (2) follow directly from the linearity of the summation in the definition
(4.8):

(f + g)(A) =
∑

(f + g)(λj)πj

=
∑

(f(λj) + g(λj))πj

=
∑

f(λj)πj +
∑

g(λj)πj

= f(A) + g(A)

and

(cf)(A) =
∑

(cf)(λj)πj

=
∑

cf(λj)πj

= c
∑

f(λj)πj

= cf(A).

(3) Multiplicativity:

f(A)g(A) =

Ñ
m∑
j=1

f(λj)πλj

é(
m∑
k=1

g(λk)πλk

)

=

m∑
j,k=1

f(λj)g(λk)(πλjπλk)

=

m∑
j,k=1

f(λj)g(λk)(δjkπλj ) (using Lemma 4.12(2))

=

m∑
j=1

f(λj)g(λj)πλj

=

m∑
j=1

(fg)(λj)πλj = (fg)(A).

(4) 1(A) =
∑

1(λj)πλj =
∑

1 · πλj = idW by Lemma 4.12(1). (5) idC(A) =
∑

idC(λj)πλj =∑
λjπλj = A by Proposition 4.20. (6) Assume W is a Hilbert space and A is normal. Then each

πλj is an orthogonal projection, so π∗
λj

= πλj by Proposition 4.11 and Remark 4.15. The adjoint of
a sum is the sum of adjoints, and the adjoint of a scalar multiple is the conjugate scalar multiple of
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the adjoint:

(f(A))∗ =

Ñ
m∑
j=1

f(λj)πλj

é∗

=

m∑
j=1

f(λj)(πλj )
∗ (properties of Hilbert space adjoint)

=

m∑
j=1

f(λj)πλj (since π∗
λj = πλj )

=

m∑
j=1

f̄(λj)πλj = f̄(A).

4.3 Generalizations and Special Cases in Finite Dimensions

So far, we’ve seen how the framework of projection-valued measures provides a powerful, basis-
independent, and elegant way to understand diagonalizable operators on finite-dimensional vector
spaces. By shifting focus from eigenvectors to projections onto eigenspaces, we obtain a spectral
measure πA supported on the spectrum Spec(A). This measure satisfies properties analogous to
classical measures but takes values in the space of projection operators. The resolution of identity,∑
πλj = idW , allows the reconstruction of the operator itself via its spectral decomposition, A =∑
λjπλj .

This decomposition, in turn, forms the foundation for functional calculus, f 7→ f(A) =
∑
f(λj)πλj .

This calculus allows the application of arbitrary functions (defined on the spectrum) to the operator
A in a manner consistent with polynomial functions and respecting the algebraic structure (as
formalized by the homomorphism properties in Theorem 4.23). When dealing with normal operators
on Hilbert spaces, the PVM consists of orthogonal projections, and the functional calculus further
respects the adjoint operation, making it a *-homomorphism.

While developed here for simplicity in finite dimensions, the true significance of the projection-
valued measure and functional calculus perspective lies in its generalization to infinite-dimensional
Hilbert spaces. The Spectral Theorem extends this framework to normal operators (bounded or
unbounded). It asserts the existence of a PVM πA defined on the Borel σ-algebra of C (supported
on the spectrum σ(A), which may now be continuous) satisfying countable additivity, such that the
operator and functions of it can be represented as integrals:

A =

∫
σ(A)

λ dπA(λ) and f(A) =

∫
σ(A)

f(λ) dπA(λ).

This infinite-dimensional spectral theory is very valuable for quantum mechanics, where observables
are modeled by self-adjoint operators A. The spectral measure πA then dictates the possible out-
comes of measurements (the spectrum σ(A)) and their probabilities (via ⟨ψ, πA(E)ψ⟩ for a state ψ
and outcome range E). The finite-dimensional theory, therefore, serves as an essential conceptual
launchpad for understanding these deeper and more widely applicable results.

So far, we’ve seen the theory for a single diagonalizable operator. Now, we explore how to deal with
families of operators that can be simultaneously diagonalizable, which is important for analyzing
systems with multiple commuting observables or symmetries. This section explores these important
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specializations and generalizations within the finite-dimensional complex inner product space setting,
laying essential groundwork for infinite-dimensional spectral theory and applications in quantum
mechanics.

Throughout this section, unless otherwise specified, W denotes a finite-dimensional complex vector
space equipped with an inner product ⟨·, ·⟩, making it a finite-dimensional Hilbert space. We assume
the inner product is linear in the second argument and conjugate-linear in the first.

4.3.1 Simultaneous Diagonalization of Commuting Operators

In many physical and mathematical contexts, one encounters systems described by multiple operators
acting on the same space. A natural question is whether there exists a single basis in which all these
operators take a simple (diagonal) form. The ability to simultaneously diagonalize a family of
operators signifies the existence of a complete set of compatible observables or states distinguished
by a common set of eigenvalues. Commutativity plays the central role.

Theorem 4.24 (Simultaneous Diagonalizability). Let F = {A1, . . . , An} be a finite set of linear
operators Ai :W →W on a finite-dimensional complex vector space W .

1. (Necessity of Commutation) If the operators in F are simultaneously diagonalizable (i.e.,
there exists a basis B = {w1, . . . , wd} for W such that each wk is an eigenvector for every
Ai ∈ F), then the operators commute pairwise: AiAj = AjAi for all 1 ≤ i, j ≤ n.

2. (Sufficiency with Diagonalizability) Conversely, if the operators in F commute pairwise
(AiAj = AjAi for all i, j) and each operator Ai is individually diagonalizable, then the opera-
tors in F are simultaneously diagonalizable.

Proof. (1) Assume there exists a basis B = {wk} such that Aiwk = λikwk for all i, k. For any
wk ∈ B, we have:

AiAjwk = Ai(λjkwk) = λjk(Aiwk) = λjkλikwk

AjAiwk = Aj(λikwk) = λik(Ajwk) = λikλjkwk

Since complex numbers commute (λjkλik = λikλjk), we have AiAjwk = AjAiwk for all basis vectors
wk. By linearity, this extends to all vectors inW , so AiAj = AjAi. (Alternatively, using matrices: If
Ai = SDiS

−1 where Di are diagonal matrices representing the operators in the common eigenbasis B
(and S is the change-of-basis matrix), then AiAj = (SDiS

−1)(SDjS
−1) = SDiDjS

−1. Since diago-
nal matrices always commute, DiDj = DjDi, we have AiAj = SDjDiS

−1 = (SDjS
−1)(SDiS

−1) =
AjAi.)

(2) We prove this by induction on the dimension d = dimW . The base case d = 1 is trivial.
Assume the theorem holds for spaces of dimension less than d. Let A1, . . . , An be commuting and
individually diagonalizable operators onW . If all Ai are scalar multiples of the identity, Ai = ci idW ,
then any basis of W is a simultaneous eigenbasis, and we are done. Assume at least one operator,
say An, is not a scalar multiple of the identity. Since An is diagonalizable, it has at least two distinct
eigenvalues. Let Spec(An) = {λ1, . . . , λm} with m ≥ 1. The space W decomposes into a direct sum
of eigenspaces: W =

⊕m
j=1Wλj (An), where Wλj (An) = Ker(An − λj idW ). Since An is not scalar,

at least one eigenspace Wλj (An) must be a proper subspace of W , meaning dimWλj (An) < d.

Now, we use the commutativity. For any Ai (1 ≤ i ≤ n) and any v ∈Wλj (An), we have Anv = λjv.
Then, using AiAn = AnAi:

An(Aiv) = (AnAi)v = (AiAn)v = Ai(Anv) = Ai(λjv) = λj(Aiv)
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This calculation shows that if v ∈Wλj (An), then Aiv is also inWλj (An). Therefore, each eigenspace
Wλj (An) is invariant under all operators A1, . . . , An.

Consider the restriction of the operators A1, . . . , An to a specific eigenspace Wλj (An). Let A′
i =

Ai|Wλj
(An) : Wλj (An) → Wλj (An). These restricted operators A′

1, . . . , A
′
n still commute with each

other. Furthermore, since the original operators Ai were diagonalizable on W , their restrictions A′
i

to an invariant subspace are also diagonalizable (this relies on the fact that the minimal polynomial
of the restriction divides the minimal polynomial of the original operator, which has distinct roots.
Note that A′

n = An|Wλj
(An) is just λj idWλj

(An).

Since dimWλj (An) < d, we can apply the induction hypothesis to the commuting, diagonalizable
operators A′

1, . . . , A
′
n−1 acting onWλj (An). This guarantees the existence of a basis Bj forWλj (An)

consisting of vectors that are simultaneous eigenvectors for A′
1, . . . , A

′
n−1. Any vector w ∈ Bj is

also an eigenvector for A′
n (with eigenvalue λj), and thus it is a simultaneous eigenvector for all

A1, . . . , An.

By constructing such a basis Bj for each eigenspace Wλj (An) and taking their union B =
⋃m
j=1 Bj ,

we obtain a basis for W =
⊕
Wλj (An) consisting of simultaneous eigenvectors for all operators

A1, . . . , An.

Remark 4.25 (Importance of Diagonalizability). Commutativity alone is insufficient. Consider

A =

Å
1 1
0 1

ã
, B =

Å
1 2
0 1

ã
, AB =

Å
1 3
0 1

ã
, BA =

Å
1 3
0 1

ã
,

so A and B commute. However, neither A nor B is diagonalizable (their only eigenvalue is 1, but the
eigenspace is only 1-dimensional, spanned by (1, 0)T ). Consequently, they cannot be simultaneously
diagonalized. The condition that each operator be individually diagonalizable is essential for the
second part of the theorem.

Corollary 4.26 (Simultaneous Unitary Diagonalization). IfW is a finite-dimensional complex inner
product space and F = {A1, . . . , An} is a family of commuting normal operators (AiA

∗
i = A∗

iAi),
then they are simultaneously unitarily diagonalizable. That is, there exists an orthonormal basis for
W consisting of simultaneous eigenvectors for all Ai ∈ F .

Proof. Normal operators on a finite-dimensional complex inner product space are always diagonal-
izable (Spectral Theorem, see below). Since the Ai commute and are individually diagonalizable,
Theorem 4.24(2) guarantees they are simultaneously diagonalizable. Furthermore, the proof shows
that we can find an eigenbasis within each joint eigenspace. Since eigenspaces of normal operators
corresponding to distinct eigenvalues are orthogonal, and within a degenerate eigenspace we can
always choose an orthonormal basis, the resulting simultaneous eigenbasis for W can be chosen to
be orthonormal.

The PVM formalism generalizes naturally to infinite dimensions, providing the core object for the
spectral theorem.

Definition 4.27 (Spectral Measure / PVM). Let (X,Σ) be a measurable space (where Σ is a σ-
algebra of subsets of X) and let H be a complex separable Hilbert space. Let Proj⊥(H) denote the
set of orthogonal projection operators on H. A map

π : Σ→ Proj⊥(H)
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is called a spectral measure (or projection-valued measure, PVM) if it satisfies:

1. Normalization: π(∅) = 0 (the zero operator) and π(X) = idH (the identity operator).

2. Countable Additivity (Strong): If {Ei}∞i=1 is a sequence of pairwise disjoint sets in Σ
(Ei ∩ Ej = ∅ for i ̸= j), then for any vector ψ ∈ H, the series

∑∞
i=1 π(Ei)ψ converges in the

norm topology of H to π(∪∞i=1Ei)ψ:

π

( ∞⋃
i=1

Ei

)
ψ =

∞∑
i=1

π(Ei)ψ (convergence in H).

This is equivalent to requiring convergence in the strong operator topology.

3. Multiplicativity: For any E1, E2 ∈ Σ,

π(E1 ∩ E2) = π(E1)π(E2).

Remark 4.28 (Geometric Picture and PVM on V ∗). Consider a family of commuting, diagonal-
izable operators {Ai}i∈I (where I is some index set). We can view this family as arising from
a representation of an abelian structure. For instance, let V = Cn and consider a linear map
A : V → End(W ) defined by A(c1, . . . , cn) =

∑n
i=1 ciAi, where {A1, . . . , An} is the commuting,

diagonalizable family. Since the Ai commute and are diagonalizable, the space W decomposes into
a direct sum of simultaneous eigenspaces, W =

⊕l
j=1W

(j). On each subspace W (j), every operator
Ai acts as scalar multiplication: Ai|W (j) = λij idW (j) . Consequently, any linear combination A(ξ)
for ξ = (c1, . . . , cn) ∈ V also acts as a scalar on W (j):

A(ξ)|W (j) =

(
n∑
i=1

ciAi

)
|W (j) =

n∑
i=1

ci(Ai|W (j)) =

n∑
i=1

ciλij idW (j) = θj(ξ) idW (j)

where θj : V → C is the linear functional defined by θj(c1, . . . , cn) =
∑n
i=1 ciλij. This functional

θj belongs to the dual space V ∗ = Hom(V,C). The tuple of eigenvalues (λ1j , . . . , λnj) thus defines a
point θj in the dual space V ∗.

This structure admits an interpretation as a projection-valued measure on the dual space V ∗. Let
π(j) be the projection onto the joint eigenspace W (j) along the sum of the other joint eigenspaces.
Then {π(j)}lj=1 forms a resolution of the identity:

∑l
j=1 π

(j) = idW and π(j)π(k) = δjkπ
(j). The

action of any operator A(ξ) can be written using this PVM:

A(ξ) =

l∑
j=1

θj(ξ)π
(j) =

∫
V ∗
θ(ξ) dπA(θ)

where the PVM πA is supported on the finite set {θ1, . . . , θl} ⊂ V ∗ and dπA(θ) assigns the projection
π(j) to the point θj. This perspective elegantly encodes the simultaneous spectral decomposition of
the entire commuting family via a single PVM on the dual space parameterizing the eigenvalues. It
mirrors the skyscraper sheaf interpretation where the operator is determined by its scalar actions on
stalks (eigenspaces) located at specific points (eigenvalue tuples/functionals) in a base space (V ∗).

4.3.2 Self-Adjoint Operators and the Spectral Theorem

We now specialize to operators that respect the inner product structure in a specific way: self-
adjoint operators, which play a important role as observables in quantum mechanics. Assume W is
a finite-dimensional complex inner product space.
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Definition 4.29 (Adjoint and Self-Adjoint Operator). Given a linear operator A : W → W , its
adjoint A∗ :W →W is the unique linear operator satisfying

⟨Av,w⟩ = ⟨v,A∗w⟩ for all v, w ∈W.

An operator A is called self-adjoint (or Hermitian) if A = A∗.

Remark 4.30 (Properties of Adjoint).

• Existence and uniqueness of A∗ follow from the Riesz representation theorem in finite dimen-
sions.

• In an orthonormal basis {ek}, if the matrix of A is [A]ij = ⟨ei, Aej⟩, then the matrix of A∗

is [A∗]ij = ⟨ei, A∗ej⟩ = ⟨Aei, ej⟩ = ⟨ej , Aei⟩ = [A]ji. Thus, the matrix of A∗ is the conjugate
transpose (Hermitian conjugate) of the matrix of A.

• Adjoint properties: (A+B)∗ = A∗ +B∗, (cA)∗ = c̄A∗, (AB)∗ = B∗A∗, (A∗)∗ = A.

• An operator A is self-adjoint if and only if its matrix representation in any orthonormal basis
is Hermitian (M =M†).

Self-adjoint operators possess remarkable spectral properties that simplify their analysis significantly.

Theorem 4.31 (Spectral Properties of Self-Adjoint Operators). Let A : W → W be a self-adjoint
operator on a finite-dimensional complex inner product space W . Then:

1. Normality and Diagonalizability: A is normal (AA∗ = A2 = A∗A) and therefore unitarily
diagonalizable. That is, there exists an orthonormal basis for W consisting of eigenvectors of
A.

2. Real Eigenvalues: All eigenvalues of A are real numbers.

3. Orthogonal Eigenspaces: Eigenspaces corresponding to distinct eigenvalues of A are mutu-
ally orthogonal.

Proof.

1. Normality A = A∗ =⇒ AA∗ = A2 and A∗A = A2, so AA∗ = A∗A. The theorem stating
that normal operators on finite-dimensional complex Hilbert spaces are unitarily diagonaliz-
able is important (often proved by induction on dimension, showing existence of at least one
eigenvector, considering the orthogonal complement which is invariant under A and A∗, and
applying induction).

2. Let λ ∈ C be an eigenvalue of A with corresponding non-zero eigenvector v: Av = λv. We
compute ⟨Av, v⟩ in two ways:

⟨Av, v⟩ = ⟨λv, v⟩ = λ⟨v, v⟩ = λ∥v∥2

Using self-adjointness (A = A∗):

⟨Av, v⟩ = ⟨v,A∗v⟩ = ⟨v,Av⟩ = ⟨v, λv⟩ = λ̄⟨v, v⟩ = λ̄∥v∥2

Equating the two expressions gives λ∥v∥2 = λ̄∥v∥2. Since v ̸= 0, ∥v∥2 ̸= 0, so we must have
λ = λ̄, which means λ is real. Thus, Spec(A) ⊂ R.
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3. Let λ, µ be distinct eigenvalues of A (λ ̸= µ, λ, µ ∈ R) with corresponding eigenvectors v, w:
Av = λv and Aw = µw. Consider ⟨Av,w⟩:

⟨Av,w⟩ = ⟨λv,w⟩ = λ⟨v, w⟩ (since λ ∈ R)

Using self-adjointness again:

⟨Av,w⟩ = ⟨v,A∗w⟩ = ⟨v,Aw⟩ = ⟨v, µw⟩ = µ⟨v, w⟩ (since µ ∈ R)

Equating the results gives λ⟨v, w⟩ = µ⟨v, w⟩, or (λ − µ)⟨v, w⟩ = 0. Since λ ̸= µ, we must
conclude that ⟨v, w⟩ = 0. Thus, v ⊥ w. This extends to show that the entire eigenspaces Wλ

and Wµ are orthogonal.

These properties lead to the finite-dimensional version of the Spectral Theorem for self-adjoint
operators, which can be elegantly stated using the PVM formalism.

Theorem 4.32 (Spectral Theorem for Self-Adjoint Operators (Finite Dimensions)). Let A : W →
W be a self-adjoint operator on a finite-dimensional complex inner product space W . Then there
exists a unique projection-valued measure πA, supported on the spectrum Spec(A) ⊂ R, whose values
πA(E) are orthogonal projections, such that

A =

∫
R
λ dπA(λ) =

∑
λj∈Spec(A)

λjπλj

where πλj = πA({λj}) is the orthogonal projection onto the eigenspace Wλj . Furthermore, W
decomposes as the orthogonal direct sum W =

⊕
λj∈Spec(A)Wλj .

Proof. Theorem 4.31 establishes that A is diagonalizable, its eigenvalues λj are real, and its eigenspa-
cesWλj are mutually orthogonal. The direct sumW =

⊕
Wλj is therefore an orthogonal direct sum.

As discussed in Remark 4.15, when the eigenspace decomposition is orthogonal, the corresponding
projections πλj onto Wλj (along the orthogonal complement

⊕
k ̸=jWλk) are orthogonal projections

(P 2 = P, P ∗ = P ). The PVM πA(E) =
∑
λj∈E∩Spec(A) πλj thus consists of orthogonal projections.

Its support is clearly Spec(A), which is a subset of R. The spectral decomposition A =
∑
λjπλj

holds as established in Proposition 4.20. Uniqueness of the PVM follows from the uniqueness of the
spectral decomposition.

4.3.3 Unitary Operators and the Spectral Theorem

Another crucial class of operators preserving the inner product structure are unitary operators,
representing geometric symmetries like rotations and reflections in Hilbert space.

Definition 4.33 (Unitary Operator). A linear operator U :W →W on a finite-dimensional complex
inner product space W is unitary if it preserves the inner product:

⟨Uv,Uw⟩ = ⟨v, w⟩ for all v, w ∈W.

Proposition 4.34 (Equivalent Characterizations of Unitary Operators). For a linear operator U :
W →W on a finite-dimensional complex inner product space, the following are equivalent:
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1. U is unitary (⟨Uv,Uw⟩ = ⟨v, w⟩).

2. U preserves norms: ∥Uv∥ = ∥v∥ for all v ∈W .

3. U∗U = idW .

4. U is invertible and U−1 = U∗.

5. UU∗ = idW .

6. The columns (or rows) of the matrix representation of U in any orthonormal basis form an
orthonormal basis for Cd.

Sketch.

(1 =⇒ 2): Set v = w. ∥Uv∥2 = ⟨Uv,Uv⟩ = ⟨v, v⟩ = ∥v∥2.

(2 =⇒ 1): Use the polarization identity to recover the inner product from the norm.

(1 ⇐⇒ 3): ⟨Uv,Uw⟩ = ⟨v, U∗Uw⟩. This equals ⟨v, w⟩ for all v, w if and only if U∗U = idW .

(3 =⇒ 4): Since W is finite-dimensional, a left inverse is also a right inverse, so U∗U = I implies
U is invertible and U−1 = U∗.

(4 =⇒ 5): U−1 = U∗ =⇒ UU∗ = UU−1 = I.

(5 =⇒ 3): UU∗ = I =⇒ U is invertible with U−1 = U∗, so U∗U = U−1U = I. Equivalence with
(6) involves writing out the inner product or matrix conditions in an orthonormal basis.

Unitary operators share the property of normality with self-adjoint operators, leading to similar
spectral conclusions.

Theorem 4.35 (Spectral Properties of Unitary Operators). Let U :W →W be a unitary operator
on a finite-dimensional complex inner product space W . Then:

1. Normality and Diagonalizability: U is normal (UU∗ = I = U∗U) and therefore unitar-
ily diagonalizable. There exists an orthonormal basis for W consisting of eigenvectors of U .
(Follows from the general theorem that normal operators are unitarily diagonalizable).

2. Eigenvalues on Unit Circle: All eigenvalues λ of U have modulus 1, i.e., |λ| = 1.

3. Orthogonal Eigenspaces: Eigenspaces corresponding to distinct eigenvalues of U are mutu-
ally orthogonal.

Proof.

(1) Normality U∗U = UU∗ = I is part of the definition/equivalent characterizations. Diagonaliz-
ability follows from normality.

(2) Let Uv = λv for a non-zero eigenvector v. Since U preserves norms:

∥v∥2 = ∥Uv∥2 = ∥λv∥2 = |λ|2∥v∥2

As ∥v∥2 ̸= 0, we must have |λ|2 = 1. Thus, eigenvalues lie on the unit circle T = {z ∈ C : |z| = 1}.
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(3) Orthogonality of eigenspaces holds for all normal operators. Let Uv = λv and Uw = µw with
λ ̸= µ (|λ| = |µ| = 1).

⟨v, w⟩ = ⟨Uv,Uw⟩ = ⟨λv, µw⟩ = λ̄µ⟨v, w⟩

So (1 − λ̄µ)⟨v, w⟩ = 0. Since |λ| = 1, λ̄ = 1/λ. The condition becomes (1 − µ/λ)⟨v, w⟩ = 0. Since
λ ̸= µ, µ/λ ̸= 1, so the first factor is non-zero. Therefore, ⟨v, w⟩ = 0.

Again, these properties lead to a spectral theorem for unitary operators.

Theorem 4.36 (Spectral Theorem for Unitary Operators (Finite Dimensions)). Let U : W → W
be a unitary operator on a finite-dimensional complex inner product space W . Then there exists a
unique projection-valued measure πU , supported on the spectrum Spec(U) ⊂ T = {z ∈ C : |z| = 1},
whose values πU (E) are orthogonal projections, such that

U =

∫
T
λ dπU (λ) =

∑
λj∈Spec(U)

λjπλj

where πλj = πU ({λj}) is the orthogonal projection onto the eigenspace Wλj . Furthermore, W
decomposes as the orthogonal direct sum W =

⊕
λj∈Spec(U)Wλj .

Proof. Similar to the self-adjoint case: Theorem 4.35 establishes unitary diagonalizability with or-
thogonal eigenspaces and eigenvalues on T. The PVM πU (E) =

∑
λj∈E∩Spec(U) πλj consists of

orthogonal projections and is supported on Spec(U) ⊂ T. The spectral decomposition U =
∑
λjπλj

holds by Proposition 4.20.

4.3.4 Connection via Exponentiation and Unitary Representations

The functional calculus, particularly for normal operators, provides a powerful link between self-
adjoint and unitary operators via the complex exponential function. This connection is important
for understanding continuous symmetries and time evolution in quantum mechanics.

Let A : W → W be a self-adjoint operator. Its spectrum Spec(A) lies on the real axis R. Consider
the function ft(λ) = eitλ, where t ∈ R is a fixed real parameter. This function maps the real line
R to the unit circle T ⊂ C. Using the functional calculus for the normal (specifically, self-adjoint)
operator A, we can define the operator Ut = ft(A):

Ut := eitA = ft(A) =
∑

λj∈Spec(A)

ft(λj)πλj =
∑

λj∈Spec(A)⊂R

eitλjπλj

where πA = {πλj} is the orthogonal PVM for A.

Proposition 4.37. For any self-adjoint operator A on a finite-dimensional complex inner product
spaceW and any t ∈ R, the operator Ut = eitA is unitary. The family {Ut}t∈R forms a one-parameter
group of unitary operators: U0 = idW and Us+t = UsUt.

Proof. We use the ∗-homomorphism property of the functional calculus for normal operators (The-
orem 4.23(6)). The function defining Ut is ft(λ) = eitλ. Its complex conjugate function is f̄t(λ) =

f−t(λ) = eitλ = e−itλ (since λ, t ∈ R). The adjoint of Ut is:

(Ut)
∗ = (ft(A))

∗ = f̄t(A)
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Since f̄t(λ) = e−itλ, we have f̄t(A) = e−itA = U−t. Thus, (e
itA)∗ = e−itA. Now we check the unitary

condition:
(Ut)

∗Ut = (eitA)∗eitA = e−itAeitA

Using the multiplicative property of the functional calculus (Theorem 4.23(3)) for the functions
g(λ) = e−itλ and h(λ) = eitλ:

e−itAeitA = g(A)h(A) = (gh)(A)

where (gh)(λ) = e−itλeitλ = e0 = 1. So (gh) is the constant function 1.

(Ut)
∗Ut = 1(A) = idW

Hence, Ut is unitary.

The group property Us+t = UsUt follows from ei(s+t)λ = eisλeitλ and the multiplicative property of
the functional calculus. U0 = ei0A = e0(A) = 1(A) = idW .

This demonstrates that the exponentiation map A 7→ eitA takes self-adjoint operators (generators)
to one-parameter unitary groups (transformations). The map x 7→ eix relates the additive group
R (home of spectra for self-adjoint operators) to the multiplicative group T (home of spectra for
unitary operators):

exp(−i·) : R −→ T (4.9)

This relationship finds its deepest expression in Stone’s theorem on one-parameter unitary groups in
infinite-dimensional Hilbert spaces, which establishes a one-to-one correspondence between strongly
continuous one-parameter unitary groups Ut and (possibly unbounded) self-adjoint operators A
via Ut = eitA (or e−itA). This theorem is important for describing time evolution in quantum
mechanics, where the Hamiltonian H (a self-adjoint operator) generates the unitary time evolution
group Ut = e−itH/ℏ.

The ideas of simultaneous diagonalization and exponentiation combine naturally in the context of
unitary representations of abelian groups.

Example 4.38 (Unitary Representations of Rn). Let V be a finite-dimensional real vector space,
considered as an additive abelian Lie group. A unitary representation of V on a finite-dimensional
complex inner product space W is a continuous group homomorphism

A : V −→ U(W ) (4.10)

where U(W ) is the Lie group of unitary operators onW . Since V is abelian, the image A(V ) ⊂ U(W )
is a commuting family of unitary operators. By Corollary 4.26, the operators {A(ξ) | ξ ∈ V } are
simultaneously unitarily diagonalizable. Let W =

⊕
θWθ be the decomposition into simultaneous

eigenspaces. For a vector w ∈ Wθ, A(ξ)w = χθ(ξ)w for some scalar χθ(ξ) which depends on
ξ and the joint eigenspace θ. Since A(ξ) is unitary, |χθ(ξ)| = 1. Since A is a homomorphism
(A(ξ + η) = A(ξ)A(η)), we must have χθ(ξ + η) = χθ(ξ)χθ(η). This means χθ : V → T is a
continuous character of the additive group V = Rn. Such characters are precisely of the form
χθ(ξ) = ei⟨θ,ξ⟩ for some unique linear functional θ ∈ V ∗ = Hom(V,R). Therefore, the simultaneous
diagonalization involves a decomposition indexed by elements θ in the dual space V ∗. The spectral
decomposition for each operator A(ξ) can be written using a projection-valued measure πA supported
on a finite subset of V ∗:

A(ξ) =

∫
V ∗
ei⟨θ,ξ⟩ dπA(θ) =

∑
θj∈Supp(πA)

ei⟨θj ,ξ⟩πθj (4.11)
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where πθj is the orthogonal projection onto the simultaneous eigenspace Wθj on which every A(ξ)

acts as multiplication by the character ei⟨θj ,ξ⟩.

Remark 4.39 (Generalization to Abelian Groups). Example 4.38 generalizes to unitary represen-
tations A : G → U(W ) of any locally compact abelian (LCA) group G. The spectral decomposition
occurs over the Pontryagin dual group Ĝ, which is the group of continuous characters χ : G→ T. The
spectral theorem for such representations states that W decomposes into an orthogonal direct sum of
spaces Wχ on which A(g) acts as χ(g) idWχ

, leading to a spectral decomposition A(g) =
∫
Ĝ
χ(g)dπ(χ)

for a PVM π on Ĝ. This is important in harmonic analysis and representation theory.

4.3.5 Generalization: Unitary Representations of Locally Compact Abelian Groups
and Pontryagin Duality

The spectral decomposition of unitary representations of Rn leads to a very general theory encom-
passing all locally compact abelian (LCA) groups. This generalization is very powerful since LCA
groups provide the natural framework for symmetries encountered in many areas, including Eu-
clidean translations and time evolution (Rn), lattice symmetries (Zn), rotational symmetry (S1),
discrete time systems (Z), and more exotic structures arising in number theory (Qp, adeles). The
spectral theorem for LCA groups, closely related to Pontryagin duality, forms the foundations of
abstract harmonic analysis, revealing that any unitary representation of such a group decomposes
canonically according to its important frequencies, or characters.

We first establish the algebraic and topological setting.

Definition 4.40 (LCA Group). A topological group (G, ·, τ) is locally compact abelian (LCA)
if the underlying topological space (G, τ) is Hausdorff and locally compact, and the group operation
is commutative.

The combination of algebraic (abelian) and topological (locally compact Hausdorff) properties is
crucial. Local compactness ensures the existence of a Haar measure (a translation-invariant mea-
sure), vital for integration and Lp spaces. Hausdorff is a standard separation axiom. Commutativity
simplifies the representation theory immensely compared to the non-abelian case.

The concept dual to a group element is its “frequency component,” formalized as a character.

Definition 4.41 (Continuous Character). Let G be an LCA group. A continuous character of
G is a continuous group homomorphism χ : G→ T, where T = {z ∈ C : |z| = 1} is the circle group
under complex multiplication. That is, χ is continuous and satisfies χ(g1g2) = χ(g1)χ(g2) for all
g1, g2 ∈ G.

The target group T is chosen because we are interested in unitary representations, whose eigenvalues
(in the abelian case) must lie on the unit circle.

The set of all continuous characters of G forms a group itself, the Pontryagin dual.

Definition 4.42 (Pontryagin Dual Group). Let G be an LCA group. The Pontryagin dual of
G, denoted Ĝ, is the set of all continuous characters of G. The group operation on Ĝ is pointwise
multiplication: for χ1, χ2 ∈ Ĝ, their product χ1χ2 is defined by (χ1χ2)(g) = χ1(g)χ2(g) for all
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g ∈ G. The identity element is the trivial character χ0(g) = 1 for all g, and the inverse of χ is
χ−1(g) = χ(g) = (χ(g))−1. The topology on Ĝ is the compact-open topology, which coincides
with the topology of uniform convergence on compact subsets of G.

A important result of the theory, attributed to Pontryagin and van Kampen, is that the dual object
retains the essential properties of the original.

Theorem 4.43 (Duality Theorem for LCA Groups). If G is an LCA group, then its Pontryagin
dual Ĝ, equipped with pointwise multiplication and the compact-open topology, is also an LCA group.

This allows for an iteration of the duality construction. The Pontryagin Duality Theorem asserts a
powerful symmetry.

Theorem 4.44 (Pontryagin Duality Theorem). Let G be an LCA group and let
ˆ̂
G be the dual of its

dual group Ĝ. There is a canonical topological group isomorphism α : G→ ˆ̂
G given by evaluation:

α(g)(χ) = χ(g) for g ∈ G,χ ∈ Ĝ.

Thus, G is canonically isomorphic to the dual of its dual.

This theorem establishes a perfect duality. It also implies relationships between topological proper-
ties:

Theorem 4.45. G is compact if and only if Ĝ is discrete; G is discrete if and only if Ĝ is compact.

Proof. There are four directions to prove:

G is compact =⇒ Ĝ is discrete: To show Ĝ is discrete, we show {χ0} is an open set. Let
K = G. Since G is compact, K is compact. Let V = {z ∈ T : Re(z) > 0}. V is an open
neighborhood of 1 in T and contains no non-trivial subgroup of T. Consider the basic open set
U(G,V ) = {χ ∈ Ĝ : χ(G) ⊆ V }. If χ ∈ U(G,V ), then χ(G) is a subgroup of T contained in V .
Thus, χ(G) = {1}, which implies χ = χ0. So, U(G,V ) = {χ0}, meaning {χ0} is open in Ĝ. Hence,
Ĝ is discrete.

Ĝ is discrete =⇒ G is compact: If Ĝ is discrete, then by H discrete =⇒ Ĥ compact, applied to

the group H = Ĝ, we have that
ˆ̂
G is compact. By Pontryagin duality, G is topologically isomorphic

to
ˆ̂
G. Therefore, G is compact.

G is discrete =⇒ Ĝ is compact: If G is discrete, any homomorphism χ : G→ T is continuous. The
compact-open topology on Ĝ coincides with the topology of pointwise convergence. Ĝ can be viewed
as the set of all group homomorphisms from G to T. Consider the product space TG =

∏
g∈G Tg,

where each Tg = T. By Tychonoff’s theorem, TG is compact. The map Ψ : Ĝ→ TG given by χ 7→
(χ(g))g∈G embeds Ĝ into TG. The image Ψ(Ĝ) is the set {(ϕg)g∈G ∈ TG : ϕgh = ϕgϕh for all g, h ∈
G}. Let (χα) be a net in Ĝ converging pointwise to ϕ = (ϕg) ∈ TG. So, χα(g) → ϕg for all
g ∈ G. Then ϕgh = limα χα(gh) = limα(χα(g)χα(h)) = (limα χα(g))(limα χα(h)) = ϕgϕh. Thus, ϕ

represents a homomorphism, so ϕ ∈ Ψ(Ĝ). This shows Ψ(Ĝ) is a closed subset of the compact space
TG. Hence, Ĝ is compact.
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Ĝ is compact =⇒ G is discrete: If Ĝ is compact, then by H compact =⇒ Ĥ discrete, applied to

the group H = Ĝ, we have that
ˆ̂
G is discrete. By Pontryagin duality, G is topologically isomorphic

to
ˆ̂
G. Therefore, G is discrete.

Example 4.46 (Examples of Pontryagin Duality).

• G = Rn. Characters χθ(ξ) = ei⟨θ,ξ⟩ for θ ∈ Rn. The map θ 7→ χθ establishes the topological

group isomorphism R̂n ∼= Rn. Rn is self-dual.

• G = Zn. Characters χz(k) = zk = zk11 · · · zknn for z = (z1, . . . , zn) ∈ Tn. Thus Ẑn ∼= Tn.
(Discrete group maps to compact dual).

• G = Tn. Characters χk(z) = zk = zk11 · · · zknn for k = (k1, . . . , kn) ∈ Zn. Thus T̂n ∼= Zn.
(Compact group maps to discrete dual).

• If G is a finite abelian group, Ĝ is also a finite abelian group (isomorphic to G, though not
canonically in general).

With the dual group established, we can now state the central theorem regarding the structure of
unitary representations of LCA groups.

Definition 4.47 (Continuous Unitary Representation). Let G be an LCA group andH be a complex
Hilbert space. A homomorphism A : G → U(H) is a continuous unitary representation if the
map G × H → H given by (g, ψ) 7→ A(g)ψ is continuous. For separable H, this is equivalent to
requiring strong operator topology continuity: for each ψ ∈ H, the map g 7→ A(g)ψ is continuous
from G to H.

Since G is abelian, the image A(G) is a commuting family of unitary operators in U(H). This
commutativity is the key to a simultaneous spectral decomposition over the dual group Ĝ.

Theorem 4.48 (Spectral Theorem for Unitary Representations of LCA Groups). Let A : G→ U(H)
be a continuous unitary representation of an LCA group G on a complex separable Hilbert space H.
Then there exists a unique regular projection-valued measure (PVM) π defined on the Borel σ-
algebra B(Ĝ) of the Pontryagin dual group Ĝ, taking values in the lattice of orthogonal projections
Proj⊥(H) on H, such that for every group element g ∈ G:

A(g) =

∫
Ĝ

χ(g) dπ(χ)

The integral signifies that for all ϕ, ψ ∈ H:

⟨ϕ,A(g)ψ⟩ =
∫
Ĝ

χ(g) dµϕ,ψ(χ)

where µϕ,ψ(E) = ⟨ϕ, π(E)ψ⟩ is the unique regular complex Borel measure on Ĝ determined by the
PVM and the vectors ϕ, ψ. The PVM π is supported on the spectrum of the representation.

Remark 4.49.
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• Diagonalization over Characters: This theorem provides simultaneous diagonalization
for the commuting family {A(g)}g∈G. The “eigenvalues” are the characters χ ∈ Ĝ, and the
“eigenvalue” of a specific operator A(g) corresponding to the character χ is simply the scalar
χ(g) ∈ T. The PVM π plays the role of projecting onto the (possibly infinitesimal or continu-
ously distributed) “eigenspaces” corresponding to sets of characters.

• Integral Definition: The operator integral A(g) =
∫
χ(g)dπ(χ) is defined rigorously using the

scalar measures µϕ,ψ. For any bounded Borel function f : Ĝ→ C, one can define the bounded
operator B =

∫
f(χ)dπ(χ) uniquely via the sesquilinear form ⟨ϕ,Bψ⟩ =

∫
f(χ)dµϕ,ψ(χ). The-

orem 4.48 applies this construction to the function fχ(χ) = χ(g) (which is bounded since
|χ(g)| = 1).

• Regularity: The uniqueness statement includes regularity of the PVM, which is a technical
condition related to approximation properties needed to ensure well-definedness and compati-
bility with the topology of Ĝ and associated measures.

• Support and Spectrum: The support of the PVM π can be considered the spectrum of the
representation. If the support is discrete (a finite or countable set of characters {χj}), then
π is atomic, π(E) =

∑
χj∈E πj where πj = π({χj}) is the projection onto the eigenspace

Wχj = {w | A(g)w = χj(g)w for all g}. The Hilbert space decomposes into an orthogonal
direct sum H =

⊕
jWχj , and the integral reduces to the sum A(g) =

∑
j χj(g)πj. This recovers

the finite-dimensional result. If the support of π has a continuous part, the decomposition
involves direct integrals of Hilbert spaces.

The spectral theorem for LCA groups is linked to abstract harmonic analysis and generalized Fourier
transforms.

• Fourier Transform as Spectral Decomposition: The classical Fourier transform on Rn (or
Fourier series on Tn) arises from applying Theorem 4.48 to the (left) regular representation of
G = Rn (or G = Tn) on H = L2(G). The representation is given by translation: (A(g)f)(h) =
f(g−1h). The theorem decomposes L2(G) over the characters χ ∈ Ĝ. The unitary operator
that implements this decomposition (diagonalizes the translation operators into multiplication
operators by characters) is precisely the Fourier-Plancherel transform F : L2(G) → L2(Ĝ).
The spectral theorem essentially becomes the statement of the Plancherel theorem and Fourier
inversion for LCA groups.

• Decomposition of Functions/Signals: Just as Fourier analysis decomposes a signal into its
frequency components, the spectral theorem decomposes a unitary representation into com-
ponents corresponding to the irreducible characters of the group (which are the important
“frequencies” or “modes” associated with the group’s structure).

Overall, the spectral theorem for continuous unitary representations of LCA groups provides a
powerful canonical decomposition, reducing the study of the representation A : G → U(H) to
understanding the structure of the dual group Ĝ and the distribution of the representation across Ĝ
as described by the spectral measure π. It is a powerful result unifying algebra (group structure),
topology (LCA structure, continuity), and analysis (Hilbert spaces, measure theory, integration). It
is particularly useful for the quantum mechanical description of systems with abelian symmetries.

112



4.4 Spectral Theory on Hilbert Space

The spectral theory developed for diagonalizable operators in finite-dimensional spaces is useful,
but its full power only becomes apparent in the transition to infinite-dimensional complex Hilbert
spaces H. This generalization is very useful for modern physics, particularly quantum mechanics,
where state spaces are typically infinite-dimensional function spaces like L2(Rn), and key observables
correspond to operators that are not only infinite-dimensional but also often unbounded. This
transition, however, introduces many complications. We sketch this generalization, highlighting the
key challenges and results. Further details, rigorous proofs, and broader context can be found in
standard texts such as [28].

4.4.1 Challenges in Infinite Dimensions: Unboundedness and Spectrum

Several crucial distinctions arise when moving from finite to infinite dimensions.

In finite dimensions, every linear operator A : W → W is automatically bounded; that is, there
exists a constant C ≥ 0 such that ∥Aw∥ ≤ C∥w∥ for all w ∈ W . In infinite dimensions, many
physically and mathematically crucial operators fail to be bounded.

Definition 4.50 (Bounded and Unbounded Operators). Let A be a linear operator defined on a
subspace Dom(A) ⊆ H, mapping into H.

• A is bounded if Dom(A) = H and there exists C ≥ 0 such that ∥Aψ∥ ≤ C∥ψ∥ for all ψ ∈ H.
The smallest such C is the operator norm ∥A∥.

• A is unbounded if it is not bounded. This typically occurs because either A is only defined
on a proper subspace Dom(A) ̸= H (usually required to be dense for interesting theory), or
∥Aψ∥/∥ψ∥ is not bounded as ψ ranges over non-zero vectors in Dom(A).

Key operators in quantum mechanics, such as position (Qψ)(x) = xψ(x) and momentum (Pψ)(x) =
−iℏdψdx on H = L2(R), are canonical examples of unbounded operators. For instance, applying P to
sharply peaked wavefunctions can yield functions with arbitrarily large L2 norms, showing P cannot
be bounded. Unbounded operators require careful handling of their domains.

Definition 4.51 (Domain, Adjoint, Symmetric, Self-Adjoint). Let A be a linear operator with a
domain Dom(A) that is dense in H.

• The adjoint A∗ of A is defined as follows: Its domain Dom(A∗) consists of all ϕ ∈ H for which
there exists a unique ηϕ ∈ H such that ⟨Aψ, ϕ⟩ = ⟨ψ, ηϕ⟩ for all ψ ∈ Dom(A). For such ϕ, we
define A∗ϕ = ηϕ. The requirement that Dom(A) is dense ensures ηϕ (and thus A∗ϕ) is unique
if it exists. A∗ is always a closed operator.

• A is symmetric (or Hermitian) if ⟨Aψ, ϕ⟩ = ⟨ψ,Aϕ⟩ for all ψ, ϕ ∈ Dom(A). This is equivalent
to A ⊆ A∗, meaning Dom(A) ⊆ Dom(A∗) and A∗ψ = Aψ for all ψ ∈ Dom(A).

• A is self-adjoint if A = A∗. This requires both symmetry (A ⊆ A∗) and the domain condition
Dom(A) = Dom(A∗).

Self-adjointness is a significantly more restrictive condition than symmetry in infinite dimensions.
A symmetric operator may have many self-adjoint extensions or none at all. Boundary conditions
often play a crucial role in determining the domain of the adjoint and thus whether an operator is

113



self-adjoint. Self-adjointness is the condition required for an operator to be an observable in quantum
mechanics and for the spectral theorem (and Stone’s theorem) to hold in its strongest form.

The spectrum also requires slightly more detail.

Definition 4.52 (Resolvent and Spectrum). Let A be a (possibly unbounded) linear operator on
H with dense domain Dom(A).

• The resolvent set ρ(A) is the set of λ ∈ C such that the operator (A − λid) has a bounded
inverse (A− λid)−1 : H → H defined on all of H.

• The spectrum σ(A) is the complement of the resolvent set: σ(A) = C \ ρ(A).

For self-adjoint operators, the spectrum is always a closed subset of the real line, σ(A) ⊆ R.

In infinite dimensions, the spectrum σ(A) can be decomposed into different parts:

• Point Spectrum σp(A): The set of eigenvalues of A. λ ∈ σp(A) if (A− λid) is not injective
(i.e., ker(A− λid) ̸= {0}).

• Continuous Spectrum σc(A): The set of λ ∈ C such that (A − λid) is injective, its range
Range(A−λid) is dense in H, but the range is not equal to H (implying the inverse exists but
is unbounded).

• Residual Spectrum σr(A): The set of λ ∈ C such that (A− λid) is injective, but its range
Range(A− λid) is not dense in H.

These three sets are disjoint and their union is σ(A). A crucial simplification for self-adjoint oper-
ators is that their residual spectrum is empty: σr(A) = ∅. Their spectrum consists only of point
and continuous spectrum (where the continuous spectrum is sometimes further decomposed into
absolutely continuous and singular continuous parts, σc(A) = σac(A) ∪ σsc(A)).

Absence of Eigenvectors in H: A striking feature of infinite dimensions is that self-adjoint
operators corresponding to important physical quantities might possess purely continuous spectra,
meaning they have no eigenvectors belonging to the Hilbert space H itself.

Example 4.53 (Position Operator Q). Consider A = Q acting as (Qψ)(x) = xψ(x) on H = L2(R).
Its domain consists of ψ ∈ L2(R) such that xψ(x) is also in L2(R). Q is self-adjoint on this domain.
Its spectrum is the entire real line, σ(Q) = R. However, Q has no eigenvalues in L2(R). If Qψ = λψ,
then (x− λ)ψ(x) = 0 for almost every x. This forces ψ(x) = 0 for x ̸= λ. A function non-zero only
at a single point has L2 norm zero, so the only solution in L2(R) is ψ = 0. Thus σp(Q) = ∅, and
σ(Q) = σc(Q) = R. (Physicists often work with non-normalizable “eigenfunctions” like Dirac delta
functions δ(x − λ) satisfying xδ(x − λ) = λδ(x − λ), but these are distributions, not elements of
L2(R).)

The existence of continuous spectra and the potential absence of a spanning set of eigenvectors
necessitates a spectral theory founded on projection-valued measures, which can handle continuous
decompositions of the identity.
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4.4.2 Spectral Measures on Hilbert Space

Earlier, we presented the PVM formalism in Definition 4.27, which gives us the core object for the
spectral theorem. Now, let’s discuss this in more detail, starting with some properties.

Remark 4.54 (Properties of PVMs).

• Property (3) immediately implies that π(E1) and π(E2) commute for any E1, E2 ∈ Σ.

• If E1∩E2 = ∅, then π(E1)π(E2) = π(E1∩E2) = π(∅) = 0. Since π(E1) and π(E2) are orthog-
onal projections, this means their images are orthogonal subspaces: Im(π(E1)) ⊥ Im(π(E2)).

• Monotonicity: If E1 ⊆ E2, then π(E1) ≤ π(E2), meaning Im(π(E1)) ⊆ Im(π(E2)), which is
equivalent to π(E1)π(E2) = π(E1) = π(E2)π(E1). This follows from π(E1) = π(E1 ∩ E2) =
π(E1)π(E2).

Spectral measures allow the definition of associated scalar and vector-valued measures, which are
essential for integration.

Proposition 4.55 (Associated Scalar Measures). Let π : Σ→ Proj⊥(H) be a spectral measure.

1. For any ψ ∈ H, the set function µψ : Σ→ [0,∞) defined by

µψ(E) := ⟨ψ, π(E)ψ⟩ = ∥π(E)ψ∥2

is a finite positive measure on (X,Σ) with total mass µψ(X) = ∥ψ∥2.

2. For any ϕ, ψ ∈ H, the set function µϕ,ψ : Σ→ C defined by

µϕ,ψ(E) := ⟨ϕ, π(E)ψ⟩

is a complex measure on (X,Σ). It can be recovered from the positive measures via polarization:

µϕ,ψ = 1
4

∑3
k=0 i

kµϕ+ikψ.

Proof. Countable additivity of µψ and µϕ,ψ follows directly from the countable additivity of π
(in SOT) and the linearity/continuity of the inner product. For µψ: µψ(∪Ei) = ⟨ψ, π(∪Ei)ψ⟩ =
⟨ψ,
∑
π(Ei)ψ⟩ =

∑
⟨ψ, π(Ei)ψ⟩ =

∑
µψ(Ei). Finiteness µψ(X) = ⟨ψ, π(X)ψ⟩ = ⟨ψ, idψ⟩ = ∥ψ∥2.

Similarly for µϕ,ψ.

These scalar measures pave the way for defining integrals of functions with respect to the operator-
valued measure π.

4.4.3 Strongly Continuous One-Parameter Unitary Groups and Stone’s Theorem

A crucial link between self-adjoint operators (potentially unbounded) and bounded unitary operators
is provided by Stone’s theorem on one-parameter unitary groups. This generalizes the relationship
A = A∗ ↔ Ut = eitA observed in finite dimensions (Section 4.3.4). We first need the correct notion
of continuity for families of operators on H.

Definition 4.56 (Strong Continuity). Let H be a separable Hilbert space and U(H) be the group
of unitary operators on H. A strongly continuous one-parameter unitary group is a group
homomorphism

U : (R,+) −→ U(H) (4.12)
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(satisfying U0 = id and Us+t = UsUt) such that the map t 7→ Ut is continuous with respect to the
strong operator topology (SOT). This means that for every fixed vector ψ ∈ H, the map

t 7→ Utψ

is continuous as a map from R to H (using the norm topology on H).

Remark 4.57 (Topologies). SOT-continuity is weaker than norm-continuity (which would require
∥Ut − Us∥ → 0 as t → s). Norm-continuity implies that the generator must be bounded. SOT-
continuity allows for unbounded generators, which is essential for physics.

Stone’s theorem establishes a important bijective correspondence.

Theorem 4.58 (Stone’s Theorem on One-Parameter Unitary Groups). Let H be a complex Hilbert
space. There is a one-to-one correspondence between self-adjoint operators A on H and strongly
continuous one-parameter unitary groups U : R→ U(H). The correspondence is given by

Ut = eitA

where eitA is defined via the spectral theorem and Borel functional calculus for the self-adjoint op-
erator A. Conversely, given the group Ut, its unique self-adjoint infinitesimal generator A is
obtained by

Aψ = lim
h→0

Uhψ − ψ
ih

where the domain of A, Dom(A), consists precisely of those vectors ψ ∈ H for which the limit exists
(in the norm topology of H). This domain is always a dense subspace of H. Equivalently,

Aψ =
1

i

d

dt
Utψ

∣∣∣∣
t=0

where the derivative is taken in the strong sense (limit in norm).

Proof Ideas. This is a deep theorem in functional analysis.

(A =⇒ Ut): Given a self-adjoint A, the spectral theorem (Section 4.4.4) allows definition of
Ut = eitA using the Borel functional calculus for the function f(λ) = eitλ. Since A is self-adjoint
and t ∈ R, f is a bounded Borel function with |f(λ)| = 1. The functional calculus properties ensure
Ut is unitary, Us+t = UsUt, and U0 = I. Proving strong continuity requires using the properties of
integration against the spectral measure πA and dominated convergence arguments for the scalar
measures µψ.

(Ut =⇒ A): Given Ut, one defines A via the strong derivative as in the theorem statement.
Proving that Dom(A) is dense and, critically, that the resulting operator A is self-adjoint (not just
symmetric) is the non-trivial part. Techniques often involve analyzing the resolvent of A or using
Fourier analysis (e.g., Bochner’s theorem relating positive definite functions to measures). The
uniqueness of the generator is also very important.

Stone’s theorem provides the rigorous mathematical foundation for quantum dynamics. In quantum
mechanics, the state of a system evolves according to the Schrödinger equation iℏ d

dtψ(t) = Hψ(t),
where H is the Hamiltonian operator. For the evolution to be physically meaningful (preserving
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probabilities, i.e., ∥ψ(t)∥2 = ∥ψ(0)∥2), the evolution operator U(t) relating ψ(t) = U(t)ψ(0) must
be unitary. Stone’s theorem guarantees that such a unitary evolution group U(t) exists and satisfies
the Schrödinger equation (in integrated form U(t) = e−iHt/ℏ) if and only if the Hamiltonian H
is a self-adjoint operator. The possibility of H being unbounded is essential for realistic physical
systems.

4.4.4 The Spectral Theorem for Self-Adjoint Operators on Hilbert Space

This theorem is arguably the most important result in the theory of operators on Hilbert space,
providing a canonical representation for any self-adjoint operator (bounded or unbounded) analo-
gous to the diagonalization of Hermitian matrices. It asserts that every self-adjoint operator can
be represented as multiplication by a real variable, possibly after a change of representation, or
equivalently, can be reconstructed from its spectral measure.

The infinite-dimensional PVM formulation directly generalizes the finite-dimensional version using
the PVM defined on Borel sets.

Theorem 4.59 (Spectral Theorem - PVM Form). Let A be a self-adjoint operator on a separable
complex Hilbert space H. There exists a unique spectral measure (PVM) πA, defined on the Borel
σ-algebra B(R) of the real line, taking values in Proj⊥(H), such that:

1. πA is supported on the spectrum σ(A) ⊆ R. That is, πA(R \ σ(A)) = 0.

2. The operator A can be represented as an integral with respect to πA:

A =

∫
R
λ dπA(λ) =

∫
σ(A)

λ dπA(λ). (4.13)

The integral and the domain of A are defined precisely as:

Dom(A) =

®
ψ ∈ H :

∫
σ(A)

|λ|2 dµψ(λ) <∞
´

where µψ(E) = ∥πA(E)ψ∥2. For ψ ∈ Dom(A), Aψ is defined uniquely by the relation

⟨ϕ,Aψ⟩ =
∫
σ(A)

λ dµϕ,ψ(λ) for all ϕ ∈ H,

where µϕ,ψ(E) = ⟨ϕ, πA(E)ψ⟩.

Proof. See Theorem VII.6 on page 263 of [28].

This formulation provides a powerful “continuous diagonalization.” The Hilbert space H is decom-
posed infinitesimally according to the spectral values λ ∈ σ(A), with πA(E) projecting onto the
subspace associated with spectral values in E. A acts like multiplication by λ on the “infinitesimal
eigenspace” corresponding to λ.

Multiplication Operator Formulation: This version provides a more concrete representation,
stating that any self-adjoint operator looks like multiplication by the independent variable on some
L2 space, up to a change of basis (unitary transformation).
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Theorem 4.60 (Spectral Theorem - Multiplication Operator Form). Let A be a self-adjoint operator
on a separable complex Hilbert space H. Then there exist a measure space (X,Σ, µ) (where µ is a
σ-finite measure), a real-valued measurable function g : X → R, and a unitary operator U : H →
L2(X,µ) such that:

1. U maps the domain of A onto the domain of the multiplication operator Mg:

U(Dom(A)) = Dom(Mg) =

ß
f ∈ L2(X,µ) :

∫
X

|g(x)|2|f(x)|2 dµ(x) <∞
™
.

2. A is unitarily equivalent to Mg: For any ψ ∈ Dom(A),

(UAψ)(x) = g(x)(Uψ)(x) or equivalently UAU−1 =Mg

where (Mgf)(x) = g(x)f(x).

Furthermore, the measure space can often be chosen more specifically. For instance, one can decom-
pose X based on spectral multiplicity, and often take X to be (a subset of) R and g(λ) = λ.

Sources. See references cited for the PVM form, as the two are essentially equivalent. This form
is often derived by constructing suitable “cyclic vectors” ψ and considering the space generated by
applying functions of A to ψ, then using the Riesz-Markov theorem to represent linear functionals
related to A as integration against a measure µψ. A direct sum over such cyclic subspaces yields
the full representation.

This formulation makes the analogy with finite-dimensional diagonalization explicit: U acts as the
change-of-basis matrix (to the “basis” where A is diagonal), and Mg is the “diagonal” form, where
multiplication by g(x) replaces multiplication by eigenvalues λj . The spectral properties of A (point
vs. continuous spectrum) are reflected in the properties of the measure µ (atoms vs. continuous
part) and the function g.

Borel Functional Calculus: A crucial consequence of both formulations of the spectral theorem is
the ability to define f(A) for a wide class of functions f , extending the functional calculus developed
for polynomials or continuous functions.

Definition 4.61 (Borel Functional Calculus). Let A be a self-adjoint operator with spectral measure
πA. For any Borel measurable function f : R → C, the operator f(A) is defined via the spectral
integral:

f(A) :=

∫
R
f(λ) dπA(λ) =

∫
σ(A)

f(λ) dπA(λ).

Its domain is

Dom(f(A)) =

®
ψ ∈ H :

∫
σ(A)

|f(λ)|2 dµψ(λ) <∞
´
.

Equivalently, using the multiplication operator form UAU−1 =Mg, we define

f(A) := U−1Mf◦gU

with domain U−1(Dom(Mf◦g)).

This functional calculus is remarkably robust.
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Theorem 4.62 (Properties of Borel Functional Calculus). Let A be self-adjoint. The map Ψ :
B(R) → L(H) (Borel functions to operators) defined by Ψ(f) = f(A) has the following properties
(among others):

1. It is an algebra homomorphism for bounded functions (linearity, multiplicativity Ψ(fg) =
Ψ(f)Ψ(g)). For unbounded functions, care with domains is needed, but composition often
works as expected, e.g., (f ◦ g)(A) = f(g(A)) under suitable conditions.

2. It is a *-homomorphism: (f(A))∗ = f̄(A). This implies f(A) is self-adjoint if f is real-valued,
and f(A) is unitary if |f(λ)| = 1 for λ ∈ σ(A).

3. Norm property: If f is bounded, ∥f(A)∥ = supλ∈σ(A) |f(λ)|.

4. Supports composition: If g is Borel and f is Borel, (f ◦ g)(A) = f(g(A)) under appropriate
domain conditions.

5. Spectral Mapping Theorem: For reasonable functions f (e.g., continuous, or Borel with care),
σ(f(A)) = f(σ(A)) (closure of the image of the spectrum under f).

This functional calculus allows us to rigorously define operators like eitA (for Stone’s theorem),
√
A

(for positive operators), projection operators 1E(A) = πA(E), and propagators in physics.

4.4.5 Connection to C∗-Algebras and the Functional Calculus for Bounded Normal
Operators

While the general spectral theorem, particularly in its PVM formulation, provides a comprehensive
framework applicable even to unbounded self-adjoint operators, there exists an alternative and
powerfully elegant approach rooted in the abstract theory of C∗-algebras for the important special
case of bounded normal operators. This algebraic perspective not only recovers the spectral theorem
for this class but also provides useful ideas for studying the representation of operator algebras as
function algebras. It’s very important for noncommutative geometry and abstract harmonic analysis.

Let H be a complex Hilbert space. Recall that B(H) denotes the space of all bounded linear
operators A : H → H.

Definition 4.63 (C∗-Algebra). A C∗-algebra is a complex Banach algebra A (i.e., a complex
algebra that is also a Banach space with a submultiplicative norm: ∥ab∥ ≤ ∥a∥∥b∥) equipped with
an involution map ∗ : A → A satisfying for all a, b ∈ A and λ ∈ C:

1. (a∗)∗ = a (Involution property)

2. (ab)∗ = b∗a∗ (Anti-multiplicativity)

3. (λa+ b)∗ = λ̄a∗ + b∗ (Conjugate-linearity)

4. The C∗-identity: ∥a∗a∥ = ∥a∥2.

Remark 4.64 (Significance of C∗-identity). The C∗-identity is a remarkably strong condition link-
ing the norm and the algebraic structure (*-operation). It implies, among other things, that the
involution is an isometry (∥a∗∥ = ∥a∥), and it guarantees that abstract C∗-algebras can always
be faithfully represented as norm-closed, self-adjoint subalgebras of B(H) for some Hilbert space H
(Gelfand-Naimark-Segal construction).
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Example 4.65 (Canonical Examples of C∗-Algebras).

1. The algebra B(H) of bounded linear operators on a Hilbert space H with the operator norm
and the Hilbert space adjoint operation is the prototypical example of a C∗-algebra.

2. For any compact Hausdorff space X, the algebra C(X) of continuous complex-valued func-
tions on X is a commutative C∗-algebra with pointwise addition and multiplication, complex
conjugation f∗(x) = f(x) as the involution, and the supremum norm ∥f∥∞ = supx∈X |f(x)|
as the norm. The C∗-identity ∥f∗f∥ = ∥|f |2∥∞ = (sup |f(x)|)2 = ∥f∥2∞ holds.

The structure of commutative unital C∗-algebras is completely characterized by the Gelfand-Naimark
theorem.

Theorem 4.66 (Gelfand-Naimark Theorem for Commutative C∗-Algebras). Let A be a commu-
tative unital C∗-algebra. Let X = Â be the spectrum (or maximal ideal space, or character
space) of A, consisting of all non-zero algebra homomorphisms ϕ : A → C (characters), equipped
with the weak-* topology (the coarsest topology making the evaluation maps â : ϕ 7→ ϕ(a) continu-
ous for all a ∈ A). Then X is a non-empty compact Hausdorff space. The Gelfand transform
γ : A→ C(X) defined by

γ(a)(ϕ) = ϕ(a) (for a ∈ A, ϕ ∈ X)

is an isometric *-isomorphism from A onto the C∗-algebra C(X) of continuous functions on X.

Remark 4.67 (Interpretation). This important theorem asserts that every abstract commutative
unital C∗-algebra can be concretely realized as the algebra of continuous functions on some compact
Hausdorff space, its spectrum. The algebraic and topological structure of A is completely encoded
in the topological structure of X and the function algebra C(X). The norm satisfies ∥γ(a)∥∞ =
supϕ∈X |ϕ(a)| = ∥a∥ (isometry), and the involution corresponds to complex conjugation γ(a∗) =

γ(a).

Now, let’s apply this powerful theorem to operators. Consider a bounded normal operator N on a
Hilbert space H. Recall normal means NN∗ = N∗N .

Definition 4.68 (C∗-Algebra Generated by a Normal Operator). Let N ∈ B(H) be a normal
operator. The C∗-algebra generated by N and the identity I, denoted C∗(N, I), is the smallest
C∗-subalgebra of B(H) that contains both N and I. It can be constructed by taking all polynomials
p(N,N∗) in N and its adjoint N∗, and then taking the closure with respect to the operator norm.

Proposition 4.69. If N is a normal operator, then the C∗-algebra C∗(N, I) is commutative.

Proof. Since N is normal, N commutes with N∗. Any polynomial p(N,N∗) involves sums of terms of
the form cklN

k(N∗)l. Since N and N∗ commute, any two such polynomials p(N,N∗) and q(N,N∗)
also commute: p(N,N∗)q(N,N∗) = q(N,N∗)p(N,N∗). The set of these polynomials is dense in
C∗(N, I) by construction. Since multiplication is continuous with respect to the norm topology, the
commutativity extends to the norm closure. Hence, C∗(N, I) is a commutative C∗-algebra.

Since C∗(N, I) is a commutative unital C∗-algebra, the Gelfand-Naimark theorem applies. There
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exists an isometric *-isomorphism:

γ : C∗(N, I)
∼=−→ C(X)

where X = ÿ�C∗(N, I) is the spectrum of the algebra. A crucial identification connects the abstract
spectrum X to the standard operator spectrum σ(N).

Theorem 4.70 (Spectrum Identification). Let N ∈ B(H) be a normal operator. The spectrum

X = ÿ�C∗(N, I) of the C∗-algebra C∗(N, I) is homeomorphic to the operator spectrum σ(N) ⊂ C via
the map ϕ 7→ ϕ(N).

Idea. A character ϕ ∈ X is determined by its value λ = ϕ(N). One shows that N − λI must be
non-invertible in C∗(N, I) (because ϕ(N − λI) = ϕ(N) − λϕ(I) = λ − λ = 0, and characters map
invertible elements to non-zero numbers), which implies λ ∈ σ(N). Conversely, for any λ ∈ σ(N),
one can construct a character ϕλ such that ϕλ(N) = λ. The map ϕ 7→ ϕ(N) is shown to be a
homeomorphism.

Combining these results yields the Gelfand isomorphism tailored to the operator N :

γ : C∗(N, I)
∼=−→ C(σ(N))

This isomorphism maps the operator N itself to the identity function f(λ) = λ restricted to the
compact set σ(N) ⊂ C. Similarly, N∗ maps to the function f(λ) = λ̄. More generally, a polynomial
p(N,N∗) maps to the function p(λ, λ̄)|σ(N).

This isomorphism immediately provides a rigorous way to apply any continuous function to the
operator N .

Definition 4.71 (Continuous Functional Calculus). Let N ∈ B(H) be a normal operator. For any
continuous function f ∈ C(σ(N)), the operator f(N) ∈ C∗(N, I) ⊂ B(H) is defined via the inverse
Gelfand transform:

f(N) := γ−1(f)

This map f 7→ f(N) is called the continuous functional calculus for N .

Theorem 4.72 (Properties of Continuous Functional Calculus). The continuous functional calculus
Ψc : C(σ(N))→ C∗(N, I) defined by Ψc(f) = f(N) is an isometric *-isomorphism satisfying:

1. It extends the polynomial functional calculus: if p(z) is a polynomial, Ψc(p|σ(N)) = p(N).
More generally, if p(z, w) is a polynomial in two variables, Ψc(p(λ, λ̄)|σ(N)) = p(N,N∗).

2. It is a *-homomorphism: (f + g)(N) = f(N)+ g(N), (fg)(N) = f(N)g(N), f̄(N) = (f(N))∗.

3. It is isometric: ∥f(N)∥ = ∥f∥∞ = supλ∈σ(N) |f(λ)|.

4. Spectral Mapping Theorem: σ(f(N)) = f(σ(N)) for all f ∈ C(σ(N)).

Proof. These properties follow directly from the fact that γ is an isometric *-isomorphism and
properties of the Gelfand transform (e.g., mapping spectrum to range for functions).
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The continuous functional calculus is powerful but limited to continuous functions f . To recover the
spectral theorem involving projections (which correspond to discontinuous characteristic functions
1E) and to integrate arbitrary measurable functions, we need to extend this calculus.

This extension relies on the Riesz-Markov-Kakutani representation theorem. For any vector ψ ∈ H,
the map f 7→ ⟨ψ, f(N)ψ⟩ defines a positive linear functional on C(σ(N)). By Riesz-Markov, there
exists a unique finite positive regular Borel measure µψ on σ(N) such that

⟨ψ, f(N)ψ⟩ =
∫
σ(N)

f(λ) dµψ(λ) for all f ∈ C(σ(N)).

Using polarization, we can define complex measures µϕ,ψ such that ⟨ϕ, f(N)ψ⟩ =
∫
σ(N)

f(λ) dµϕ,ψ(λ).

These measures allow us to define f(N) for any bounded Borel measurable function f : σ(N)→ C.
The operator f(N) is defined uniquely via the sesquilinear form:

⟨ϕ, f(N)ψ⟩ :=
∫
σ(N)

f(λ) dµϕ,ψ(λ)

This extended map f 7→ f(N) from the algebra Bb(σ(N)) of bounded Borel functions on σ(N) to
B(H) is still a *-homomorphism.

Now, we can define the PVM. For any Borel set E ⊆ σ(N), let 1E be its characteristic function
(which is a bounded Borel function). Define the projection operator πN (E) via the Borel functional
calculus:

πN (E) := 1E(N) =

∫
σ(N)

1E(λ) dπN (λ)

One can verify that πN (E) is indeed an orthogonal projection (πN (E)2 = πN (E), πN (E)∗ = πN (E))
and that the map E 7→ πN (E) satisfies the properties of a spectral measure (Definition 4.27).

Finally, applying the Borel functional calculus to the identity function f(λ) = λ, we recover the
spectral theorem integral representation for the bounded normal operator N :

N = idC(N) =

∫
σ(N)

λ dπN (λ)

Thus, the abstract C∗-algebra approach, via Gelfand theory and extension using Riesz-Markov,
provides an alternative pathway to the spectral theorem for the important class of bounded normal
operators.

This C∗-algebraic method relies inherently on the operator (and its generated algebra) being bounded
(specifically, residing within a C∗-algebra). It does not directly apply to unbounded self-adjoint
operators like position, momentum, or typical Hamiltonians. For these, the spectral theorem requires
the more direct PVM or multiplication operator formulations developed earlier, which handle domain
issues intrinsically.

Nonetheless, the C∗-algebra perspective provides a lot of information on the structure: the spectral
theorem importantly diagonalizes the operator by representing the commutative algebra it generates
as an algebra of functions on its spectrum. This viewpoint motivates generalizations in noncommu-
tative geometry, where one studies noncommutative C∗-algebras as if they were function algebras on
hypothetical “noncommutative spaces,” extending geometric and topological concepts beyond the
classical commutative setting.

122



References
[1] Ralph Abraham and Jerrold E. Marsden. Foundations of Mechanics. Second. Reading, Mass.:

Benjamin/Cummings Pub. Co., Advanced Book Program, 1978.
[2] Vladimir I. Arnold. Mathematical Methods of Classical Mechanics. Second. Vol. 60. Graduate

Texts in Mathematics. New York: Springer-Verlag, 1989.
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