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Some relevant basic notation

• ∅ denotes the empty set.

• A ⊆ B means that the set A is contained in the set B (that is, A is a subset of B),
and the equality case A = B is allowed; strict inclusions would be denoted (if at
all) by ⊂ or (.

• For a function f : X → Y between sets, and any subset B ⊆ Y, we denote by
f−1(B) = {x ∈ X : f (x) ∈ B} the inverse image of B under f . When B = {b}
is a singleton (i.e., has only one element), f−1(B) is written simply as f−1(b)
instead of the more technically correct f−1({b}), even when f is not an invertible
function; these are called the fibers of f .

• If X is any set and C is a collection of subsets of X, we write⋃
C=

⋃
C∈C

C = {x ∈ X : there is C ∈ C such that x ∈ C}

for the union of the collection C. And similarly for the intersection⋂
C=

⋂
C∈C

C = {x ∈ X : for every C ∈ C it holds that x ∈ C}

of C.

• The set-difference of two sets A and B is defined as A r B = {a ∈ A : a 6∈ B}.

• If X is any set, the identity function of X is denoted by IdX : X → X, and it is
given by IdX(x) = x for every x ∈ X.

• If f : X → Y is any function between sets, Gr( f ) = {(x, y) ∈ X × Y : y = f (x)}
is the graph of f .

• Rn×m denotes the vector space of all size n×m matrices with real entries. It is of
course isomorphic to Rnm, but we reserve the former notation for when treating
its elements as matrices.
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1 A crash course in general topology

1.1 Introduction

Before understanding differential topology, let’s first understand topology. Consider
the definition of continuity for a function: f : R→ R at a point a ∈ R:

∀ ε > 0, ∃ δ > 0 : ∀ x ∈ R, |x− a| < δ =⇒ | f (x)− f (a)| < ε. (1.1)

What is (1.1) effectively saying? The distance between f (x) and f (a) gets smaller as
the distance between x and a gets smaller. So it is the distance that matters here, and
not the algebraic structure of R!

Definition 1 (Metric space)

A metric space is a pair (X, d), where X is a set and d: X × X → [0, ∞) is a
distance function on X, i.e, d satisfies the following properties, for all x, y, z ∈ X:

(i) d(x, y) = 0 ⇐⇒ x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y).

Condition (iii) is called the triangle inequality because it says that the length of a
side of a triangle is less or equal to the sum of the lengths of the other two sides. The
definition of continuity for a function f : X → Y between metric spaces (X, dX) and
(Y, dY), at a point a ∈ X, should read:

∀ ε > 0, ∃ δ > 0 : ∀ x ∈ X, dX(x, a) < δ =⇒ dY( f (x), f (a)) < ε. (1.2)

Of course, d : Rn ×Rn → [0, ∞) given by d(x, y) = ‖x− y‖, where ‖ · ‖ : Rn → [0, ∞)
defined by ‖(x1, . . . , xn)‖ = (x2

1 + · · ·+ x2
n)

1/2 is the standard Euclidean norm, makes
(Rn, d) a metric space. For (X, d) = (Y, d) = (Rn, d) and n = 1, (1.2) reduces to (1.1).

In metric spaces, just like in the real line, it makes sense to talk about open sets. We
just need to replace open intervals with something appropriate.

Definition 2 (Open balls and open sets in metric spaces)

Let (X, d) be a metric space.

• The open ball centered at a ∈ X with radius r > 0 is defined as the set
Br(a) = {x ∈ X : d(x, a) < r}. It replaces the open interval (a− r, a + r) in
the real line. The closed ball is Br[a] = {x ∈ X : d(x, a) ≤ r}.

• A subset U ⊆ X is called d-open if for every point a ∈ U there is ε > 0 such
that Bε(a) ⊆ U.
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Bε(a)

U

a

a

r

Br(a)

Figure 1: An open ball and a d-open set in a metric space.

Note that open balls Br(a) are always d-open,
or else these definitions would do us no good, but
make sure you understand that this does require
some proof: the terms “open ball” and “d-open”
were defined separately and you should not be
fooled by the similar terminology. In any case, the
proof consists in noting that whenever x ∈ Br(a),
we have that Br−d(x,a)(x) ⊆ Br(a) as a consequence
of the triangle inequality: if y ∈ Br−d(x,a)(x), we
have that

d(y, a) ≤ d(y, x) + d(x, a)
< r− d(x, a) + d(x, a)
= r,

as claimed.

a
r

Br(a)

xd(x
, a)

Figure 2: Illustrating the set-
inclusion Br−d(x,a)(x) ⊆ Br(a).

The collection τd of all d-open subsets of X satisfies the following properties:

(i) ∅ and X are d-open.

(ii) arbitrary unions of d-open sets are d-open.

(iii) finite intersections of d-open sets are d-open.

(1.3)

Exercise 1

Check that (1.3) holds.

The definition of continuity can be completely rephrased in terms of d-open sets.

Proposition 1

For a function f : X → Y between metric spaces (X, dX) and (Y, dY), the following
conditions are equivalent:

(a) f is continuous (at all points), in the sense of (1.2).

(b) For every U ⊆ Y which is dY-open, the inverse image f−1(U) ⊆ X is dX-open.
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Proof:

• First we check that (a) implies (b). Let a ∈ f−1(U), so that f (a) ∈ U. As U is
dY-open, there is ε > 0 such that Bε( f (a)) ⊆ U. By continuity of f at a, there
is δ > 0 such that, for any x ∈ X, dX(x, a) < δ =⇒ dY( f (x), f (a)) < ε. This
means that x ∈ Bδ(a) =⇒ f (x) ∈ Bε( f (a)) ⊆ U. But x ∈ Bδ(a) =⇒ f (x) ∈ U
is equivalent to Bδ(a) ⊆ f−1(U), and thus f−1(U) is dX-open.

• Now we check that (b) implies (a). Let a ∈ X and ε > 0. Then Bε( f (a)) ⊆ Y is
dY-open. By assumption, f−1(Bε( f (a))) ⊆ X is dX-open, and it clearly contains
a. Then there is δ > 0 such that Bδ(a) ⊆ f−1(Bε( f (a))). This means that, for any
x ∈ X, dX(x, a) < δ =⇒ dY( f (x), f (a)) < ε, as required. Since a ∈ X was
arbitrary, f is continuous and we are done.

The above equivalence means that we don’t really need even distances to make
sense of continuity, as long as we have a collection of “open sets” with the correct
properties. With this in mind, we axiomatize (1.3):

Definition 3 (Topology)

A topology on a set X is a collection τ of subsets of X such that:

(i) ∅, X ∈ τ.

(ii) τ is closed under arbitrary unions.

(iii) τ is closed under finite intersections.

The elements of τ are then called open sets, and the pair (X, τ) is called a topo-
logical space.

With this in place, we may turn item (b) of Proposition 1 into a definition:

Definition 4 (Continuity)

A function f : X → Y between topological spaces (X, τ) and (Y, τ′) is continuous
if whenever U ∈ τ′, we have f−1(U) ∈ τ. In words, if inverse images of open sets
are open. In addition, f is called a homeomorphism if it is continuous, bijective,
and its inverse is also continuous.

Example 1 (Metric spaces are topological spaces, but not conversely)

If (X, d) is a metric space, the collection τd of all d-open sets is a topology on X,
and so (X, τd) is a topological space. As we will eventually see, there are topolo-
gies who are not of the form τd for any distance function d—the ones who are are
called metrizable, and have some nicer properties that general topologies might
not have.
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Here is the punchline:

A topology is the “minimum” amount of structure needed on a set
to be able to talk about continuity. Differential topology is about the
minimum amount of structure needed to talk about differentiability.

This will ultimately lead us to the notion of a smooth manifold, which we present in
Section 3: they are a special type of topological space, “locally modeled” on Euclidean
space, on which we can develop Calculus.

1.2 More examples of topological spaces and continuous functions

Let’s start with some less obvious examples of topological spaces and continuous
functions, so you can get a feeling for what Definitions 3 and 4 allow. Keep in mind
that a topology can be seen as a way of capturing “nearness” without relying on dis-
tances: two points x, y ∈ X can be considered morally “close to each other” if there is
an open subset U of X with x, y ∈ U, and the smaller U is, the closer x and y are—for
example, taking U = X is always possible in view of condition (i) in Definition 3, but
this doesn’t tell us much. If you don’t find this interpretation helpful, don’t think too
hard about it (at this stage this is just heuristics anyway)

Example 2 (The extreme cases)

If X is any set, the discrete topology on X is τdisc. = 2X (that is, all subsetsa of
X are declared to be open). The chaotic topology on X, in turn, is τch. = {∅, X}
(the reason for this name will be justified in Example 23). Conditions (i)-(iii) in
Definition 3 are easily verified to hold for both τdisc. and τch.. More interestingly,
if (Y, τ′) is a second topological space, then:

• every function f : (X, τdisc.)→ (Y, τ′) is continuous, since f−1(U) ∈ τdisc. no
matter what U ∈ τ′ is, and;

• every function f : (Y, τ′) → (X, τch.) is continuous, since only f−1(∅) = ∅
and f−1(X) = Y need to be tested, and they are both in τ′.

Note that, for the discrete topology τdisc., all singletons (i.e., sets with a single
element) are open. And in fact, this is enough: if you have a topology for which
all singletons are open, then this topology necessarily equals τdisc.: every set is the
union of the singletons of its points, while arbitrary unions of open sets are open,
cf. condition (ii) in Definition 3.

aFormally, AB denotes the set of all functions B → A. As 2 = {0, 1} (set-theoretically), 2X de-
notes the set of all functions X → {0, 1}. Then 2X is in bijective correspondence with the collection
of all subsets of X, justifying the notation. Namely, to each subset A ⊆ X we assign its character-
istic function χA ∈ 2X , defined by χA(x) = 1 if x ∈ A, and χA(x) = 0 if x 6∈ A. The inverse of the
assignment A 7→ χA takes f ∈ 2X to f−1(1) ⊆ X.
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Example 3 (The Sierpinski space)

Let X = {a, b} be a set with two elements. Apart from the topologies τdisc. and
τch. on X, there are just two more topologies on X, which are “equivalent” under
relabeling a↔ b. So let τ = {∅, {a}, {a, b}} be one of them, cf. Figure 3.

ba

Figure 3: The Sierpinski topology on a two-point set.

To check that τ is indeed a topology, we need to check that conditions (i)-(iii) in
Definition 3 are satisfied. For (i), there is nothing to do. For (ii) and (iii), brute
force does it: all possible unions and intersections of elements in τ are again in τ.

∪ ∅ {a} {a, b}

∅ {a} {a, b}

{a} {a, b}

{a, b}

∩ ∅ {a} {a, b}

∅ ∅ ∅

{a} {a}

{a, b}

(1.4)

Note that every open subset of X containing b also contains a. This means that the
topology τ doesn’t really distinguish the poins a and b, and it ought to be consid-
ered something “pathological”. We will make the concept of “distinguishing two
points” more precise in Section 1.7.

Finally, if (Y, τ′) is another topological space, a function f : (Y, τ′) → (X, τ) is
continuous if and only if f−1(a) ∈ τ′, since there are no other nontrivial inverse
images to check for.

The above situation illustrates a little useful trick: when X (or more generally, τ) is
finite, to show that τ satisfies (ii) and (iii) in Definition 3, it is enough to check that τ
is closed under unions and intersections of two sets—induction takes care of the rest.
We may also ignore ∅ and X in this process from the start once we know that they are
in τ, since ∅ ∪ A = X ∩ A = A, ∅ ∩ A = ∅, and X ∪ A = X for every subset A ⊆ X.
In addition, A ∪ A = A ∩ A = A for every A ⊆ X, so there is no need to address
these cases. In other words, whenever you want to organize your work using tables
such as the ones in (1.4), it suffices to fill in the entries strictly above the diagonal. To better
appreciate this shortcut, you should work out a concrete example yourself:
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Exercise 2

Show that the collection

τ = {∅, X, {a}, {c, d}, {a, c, d}, {b, c, d, e}}

of subsets of X = {a, b, c, d, e} is a topology on X. Represent the resulting topo-
logical space (X, τ) with a picture, as we have done in Example 3.

Fun fact: the number of topologies on a set with n elements, where n ranges from 1
to 7, is 1, 4, 29, 355, 6942, 209527, 9535241 [11, p. 43]. (https://oeis.org/A000798)
Not-so-fun fact: it doesn’t look like it is known how many of such possible topolo-
gies have particularly nice or specific properties (that we’ll encounter later, such
as metrizability, Hausdorffness, connectedness, etc.).

Often, the sets in a topology are not given explictly like in the situations above, but
instead are given through some rule.

Example 4 (Particular-point topology)

Let X be any nonempty set, and fix an element z ∈ X. Then, we claim that the
collection τz = {∅} ∪ {U ⊆ X : z ∈ U} is a topology on X. Condition (i) in
Definition 3 holds because ∅ ∈ τz by definition of τz, and X ∈ τz because z ∈ X.
Next, condition (ii) is satisfied because any union of subsets of X containing z
also contains z (and clearly, just one of them containing z would be enough). Fi-
nally, condition (iii) is verified because any intersection (not just the finite ones) of
subsets of X containing z again contains z.

Now, let Y be a second nonempty set equipped with the particular-point topo-
logy τw built using an element w ∈ Y. We conclude by observing that a func-
tion f : (X, τz) → (Y, τw) is continuous if and only if f (z) = w. Indeed, if f is
continuous, then {w} ∈ τw implies that f−1(w) ∈ τz, so that z ∈ f−1(w) and
finally f (z) = w. And conversely, if f (z) = w, we argue that f is continuous: for
U ∈ τw r {∅} we have that w ∈ U, and so z ∈ f−1(U) because f (z) = w ∈ U,
leading to f−1(U) ∈ τz, as required.

Exercise 3

Let X be any set, and τ1 and τ2 be two topologies on X. True or false? Prove or
give a counter-example:

(a) τ1 ∪ τ2 is also a topology on X.

(b) τ1 ∩ τ2 is also a topology on X.

The next situation is often presented as one of the first examples of topological
spaces, beyond metric spaces (that is, that is not metrizable):
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Exercise 4 (Cofinite and cocountable topologies)

Let X be any infinite set, and let τcof. = {∅} ∪ {U ⊆ X | X rU is finite}.

(a) Show that τcof. is a topology on X. It is called the cofinite topology on X.

Similarly, if X is uncountable, τcoco. = {∅} ∪ {U ⊆ X | X r U is countable}
is a topology, called the cocountable topology on X. Assume that this is the case.
Meanwhile, we also have the discrete and chaotic topologies on X, τdisc. and τch..

(b) Sort these four topologies according to inclusion: . . . ⊆ . . . ⊆ . . . ⊆ . . ..

Warning: it is not true in general that two different topologies on a same set are
necessarily comparable via inclusion.

Example 5 (Euclidean topologies on abstract vector spaces)

Let V be a finite-dimensional real vector space, and T : V → Rn be a linear iso-
morphism. If we define a subset U ⊆ V to be open if the image T(U) is an open
subset of Rn (equipped with its standard Euclidean topology), it is easy to check
that we obtain a topology on V. What is remarkable here is that

the resulting topology on V does not depend on the choice of T. (1.5)

Indeed, if S : V → Rn is a second isomorphism, then T ◦ S−1 : Rn → Rn is a
homeomorphism (since both T ◦ S−1 and its inverse S ◦ T−1 are continuous, be-
ing linear), and so T(U) ⊆ Rn is open if and only if S(U) ⊆ Rn is open, as a
consequence of the obvious relation S(U) = (S ◦ T−1)(T(U)).

We call the topology in (1.5) the Euclidean topology of V. By design, every linear
isomorphism between V and Rn becomes a homeomorphism, so V is topologi-
cally indistinguishable from Rn (as it should be). However, we have now freed
ourselves from the constraint dictating that elements of V should be n-tuples of
real numbers; the ultimate gain here is one of abstraction.

1.3 Subspaces

Relevant to the next part of the discussion is the next easy result, which we have
neglected to mention so far:

Lemma 1

The composition of continuous functions between topological spaces is also con-
tinuous.

Proof: Omitting the topologies from the notation (for the first time in many to come),
let f : X → Y and g : Y → Z be continuous. Then, whenever U ⊆ Z is open, the
inverse image (g ◦ f )−1(U) = f−1(g−1(U)) ⊆ X is open, being the inverse image
under the continuous function f of g−1(U) ⊆ Y (itself open by continuity of g and
openness of U).
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f
g

X Y Z

Ug−1(U)

f−1 (g−1(U)
)

Figure 4: Continuity of the composition of continuous functions.

Our main result here is:

Proposition 2 (Setting up the subspace topology, and its characteristic property)

Let (X, τ) be a topological space, and Y ⊆ X be any subset. Then the collection

τY = {V ⊆ Y : there is U ∈ τ such that V = U ∩Y}
= {U ∩Y : U ∈ τ}

(1.6)

is a topology on Y, and the inclusion mapping ι : Y ↪→ X is continuous.

In addition, if (Z, τ′) is a third topological space and
f : Z → Y is any function, then f is continuous if and
only if the composition ι ◦ f : Z → X is continuous, cf.
the next diagram. That is, τY allows for codomains to be
restricted when discussing continuity.

X

Z Y
f

ι◦ f
ι

Proof: Once more we return to Definition 3. For condition (i), note that ∅ = ∅ ∩ Y
and Y = X ∩ Y with ∅, X ∈ τ, so that ∅, Y ∈ τY. Now, for condition (ii), consider
any collection {Vα}α∈A ⊆ τY: for each α ∈ A, fix Uα ∈ τ with Vα = Uα ∩ Y; now take
unions to obtain

⋃
α∈A Vα = (

⋃
α∈A Uα) ∩ Y with

⋃
α∈A Uα ∈ τ, so that

⋃
α∈A Vα ∈ τY.

Finally, if V1, V2 ∈ τY are written as V1 = U1 ∩Y and V2 = U2 ∩Y for some U1, U2 ∈ τ,
we have that V1 ∩ V2 = (U1 ∩U2) ∩ Y with U1 ∩U2 ∈ τ, showing that V1 ∩ V2 ∈ τY
and establishing (iii). This proves that τY is a topology on Y.

It remains to verify the claims about the inclusion mapping. For the first, it suffices
to note that for every subset U ⊆ X we have that ι−1(U) = U ∩ Y, so that U ∈ τ
implies that ι−1(U) ∈ τY. Now, let (Z, τ′) and f be as in the result statement. If f
is continuous, then ι ◦ f is continuous, being the composition of continuous functions
(cf. Lemma 1). On the other hand, assuming that ι ◦ f is continuous, we show that
f is continuous: if V ∈ τY is written as V = U ∩ Y for some U ∈ τ, we have that
f−1(V) = (ι ◦ f )−1(U) ∈ τ′ by continuity of ι ◦ f , as required.
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See Figure 5:

X

Y U

V

Figure 5: Definition of subspace topology.

We are now allowed to write the next definition:

Definition 5 (Subspace topology)

Let (X, τ) be a topological space, and Y ⊆ X be any subset. The topology τY
defined in (1.6) is called the subspace topology in Y induced by X. If nothing
else is said, this is the topology taken on Y by default.

Example 6 (Euclidean topologies on subsets of abstract vector spaces)

If V is a finite-dimensional real vector space, equipped with its Euclidean topology
(Example 5), and Y ⊆ V is any subset, the subspace topology on Y induced by V
is called the Euclidean topology of Y.

The next exercises, aimed at the readers more concerned with subtler points of the
theory, have long statements but consist merely on unwinding the relevant definitions.

Exercise 5 (Paranoia or consistency?)

Let (X, τ) be a topological space, and Y, Z ⊆ X two subsets such that Z ⊆ Y. On
Z, we have two possible topologies: the first one is τZ, the subspace topology in
Z induced by X, and the second one is (τY)Z, the subspace topology in Z induced
by Y (which is itself equipped with its subspace topology induced by X).

Show that τZ = (τY)Z.
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Exercise 6 (Paranoia or consistency? 2: electric boogaloo)

Let (X, d) be a metric space, and Y ⊆ X be any subset. Write d′ for the restriction
of d to Y, so that (Y, d′) is a metric space on its own right. As we have seen in
Example 1, there is a topology τd on X, and a topology τd′ on Y. On the other
hand, there is a subspace topology (τd)Y on Y.

Show that (τd)Y = τd′ .

Exercise 7 (Equivalent metrics induce the same topology)

Let X be any set, and let d, d′ : X × X → [0.∞) be two distance functions on X.
Assume that d and d′ are Lipschitz-equivalent, that is, there are constants a, b > 0
such that ad(x, y) ≤ d′(x, y) ≤ bd(x, y) for all x, y ∈ X. Show that τd = τd′ .

1.4 Bases for topological spaces, and product spaces

We start with one more very instructive example of a topological space:

Exercise 8 (The Sorgenfrey line)

In the real line R, say that a subset U ⊆ R is Sorgenfrey-open if for every x ∈ U
there is ε > 0 such that [x, x + ε) ⊆ U.

(a) Show that the collection τS of all Sorgenfrey-open sets is a topology on R.

(b) Exhibit a subset of R which is Sorgenfrey-open, but not open in the standard
Euclidean topology of R (and prove that this is the case).

(c) Verify in detail that a function f : (R, τS) → (R, τS) is continuous if and only
if whenever a ∈ R, for every ε > 0 there is δ > 0 such that for any x ∈ R,
a ≤ x < a + δ implies that f (a) ≤ f (x) < f (a) + ε. Compare it with (1.1).

This τS is called the Sorgenfrey topology on R, and it serves as a counter-example
to many false statements you may come across when studying general topology.

As you may have already noticed, it is often convenient to define topologies in
terms of a “special” collection of subsets (who become open themselves, ex post facto):
open balls in metric spaces, the half-intervals in the Sorgenfrey line, or even singletons
for the discrete topology!

What properties are common to open balls and metric spaces, that ultimately allow
us to check that the collections of d-open sets and of Sorgenfrey-open sets do satisfy
conditions (i)-(iii) of Definition 3, and hence are topologies?

How to make sense of what should be the “building blocks” for a topology?
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Definition 6 (Bases for topological spaces)

A basis for a topological space (X, τ) is a subcollection B ⊆ τ (i.e., B consists of
open subsets of X) with the following property: whenever U ∈ τ and x ∈ U, there
is an element B ∈ B such that x ∈ B ⊆ U.

See Figure 6. In Linear Algebra, the fact that
every vector space has a basis is not quite
trivial and requires the use of Zorn’s Lemma.
In general topology, this is not an issue: if
worst comes to worst, we can always take
B = τ and call it a day. Of course, this
is not only not helpful, but also defeats the
purpose of introducing bases to begin with.
In other words, the smaller the basis we can
find, the better. Hoping for finite bases is ob-
viously wishful thinking here, but countabil-
ity is the next best thing. For this reason we
introduce the following notion:

X

x

U

B

Figure 6: A basic open neighbor-
hood B of x in X, contained in U.

Definition 7 (Second-countable spaces)

A topological space is second-countable if it admits a countable basis.

Remark. The above definition begs for an obvious question: if we’re talking about
second-countable spaces, what would first-countable spaces be? There is the concept of
a local basis at a point a in a topological space (X, τ)—it is a collection Ba ⊆ τ with
the properties (i) a ∈ B for all B ∈ Ba, and (ii) whenever U ∈ τ has a ∈ U, there exists
B ∈ Ba such that B ⊆ U. Then (X, τ) is called first-countable if at each point of X
there is a countable local basis. Note that

⋃
a∈X Ba is a basis for (X, τ) (in the sense of

the definition above), but this union is in general uncountable.

In any case, here are some examples:

Example 7 (Second-countability of the standard real line)

The real line with its standard Euclidean topology is second-countable: the collec-
tion B = {(a− ε, a + ε) : a ∈ Q and ε ∈ (0, ∞) ∩Q} is a basis, countable since Q

is countable. Indeed, let U ⊆ R be any open subset, and x ∈ U, so that there is
ε′ > 0 such that (x− ε′, x + ε′) ⊆ U. Now, choosing ε ∈ (0, ε′/2) ∩Q and a ∈ Q

such that |a − x| < ε, it follows that (a − ε, a + ε) ⊆ (x − ε′, x + ε′), and hence
(a− ε, a + ε) ⊆ U.

Page 11



SMOOTH MANIFOLDS IVO TEREK

Exercise 9 (Finite-dimensional vector spaces are second-countable)

Show that Rn (and hence any abstract finite-dimensional vector space) with its
standard Euclidean topology is second-countable.

Example 8 (Non-uniqueness of bases)

Whenever (X, d) is a metric space, the collection BO = {Br(p) : p ∈ X and r > 0}
is a basis for (X, τd)—this is a direct consequence of the very definition of d-open
sets (Definition 2). This, in general, is not the only possibility. For the plane
X = R2 equipped with its standard Euclidean (metric) topology, we could take
the basis consisting of all bounded open rectangles, or all open triangles, or all
open kites, to name a few:

Figure 7: Several bases for the standard Euclidean topology in R2.

Such bases are “equivalent” because every open ball contains an open rectangle
(or triangle, or kite), and vice-versa.

Example 9 (The optimal basis for a discrete space)

Let (X, τdisc.) be a discrete topological space. Then {{a} : a ∈ X} is a basis for
(X, τdisc.), since all subsets of X are open and whenever U ⊆ X has a ∈ U, we
necessarily have a ∈ {a} ⊆ U. In fact, it is not hard to see that this is the smallest
possible basis, so that (X, τdisc.) is second-countable if and only if X is countable.

Example 10 (The Sorgenfrey line is not second-countable)

Consider the Sorgenfrey line (R, τS) form Exercise 8: one basis for it, by design, is
the collection {[x, x + r) : x ∈ R and r > 0}. We claim, however, that (R, τS) is not
second-countable. The strategy to directly show that some topological space is not
second-countable is almost always the same: start with an arbitrary basis for the
topology, and produce an injective function from R to such basis. Since all bases
are uncountable, the given space cannot be second-countable. Here’s how such an
argument would go in this case: let Bbe any basis for (R, τS), and for each x ∈ R

choose Bx ∈ B such that x ∈ Bx ⊆ [x, x + 1). Then note that R 3 x 7→ Bx ∈ B is
injective: if x, y ∈ R are such that x < y, then Bx 6= By because x ∈ Bx but x 6∈ By.
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Example 11 (Second-countability is a hereditary property)

Let (X, τ) be a second-countable topological space, and Y ⊆ X be any subset.
Then Y, equipped with its subspace topology τY induced from X, is also second-
countable. It suffices to note that if B is a basis for (X, τ), then the collection
BY = {B ∩Y : B ∈ B} is a basis for (Y, τY) (and BY is countable whenever B is).
Indeed, if V ⊆ Y is open and x ∈ V, there is U ∈ τ such that V = U ∩ Y; from
x ∈ U and Bbeing a basis for (X, τ), there is B ∈ B so that x ∈ B ⊆ U, and hence
x ∈ B ∩Y ⊆ V.

Back to the comparison with linear algebra: every vector may be uniquely ex-
pressed as a linear combination of basis vectors, so every open set should be expressed
as the union of basic open sets. Of course, here we must drop the uniqueness require-
ment, since there’s no obvious notion analogue to “linear independence” for open sets
(disjointness surely won’t be it).

Lemma 2

Let (X, τ) be a topological space, and B be a basis for (X, τ). Then every open
subset of X may be written as a union of elements of B.

Proof: Let U ⊆ X be open and, for each x ∈ U, let Bx ∈ Bbe such that x ∈ Bx ⊆ U. In
other words, {x} ⊆ Bx ⊆ U. Taking the union of everything over all points in U and
using that

⋃
x∈U{x} = U, it follows that U ⊆ ⋃

x∈U Bx ⊆ U, and hence U =
⋃

x∈U Bx,
as required.

We are ready to state and prove our main result about bases:

Theorem 1 (Creating topologies from proposed bases)

Let X be a set, and B be a collection of subsets of X. Then B is a basis for a
topology in X if and only if the conditions below hold:

(i) X =
⋃
B, that is, X is the union of all elements in B; and

(ii) Whenever B1, B2 ∈ B and x ∈ B1 ∩ B2 are given, there is a third set B3 ∈ B

such that x ∈ B3 ⊆ B1 ∩ B2.

B1

x
B3

B2

Figure 8: The intersection property of a basis.
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Proof: Assume that there exists a topology τ on X for which B is a basis. Then (i)
holds as a consequence of Lemma 2 applied to U = X, while (ii) follows from the very
definition of basis: if B1, B2 ∈ B, in particular B1 and B2 are open, so that B1 ∩ B2 is
open as well; if x ∈ B1 ∩ B2, the definition of basis yields a third set B3 ∈ B such that
x ∈ B3 ⊆ B1 ∩ B2 as required.

Conversely, assume that B satisfies (i) and (ii), and let τ = {⋃ C : C ⊆ B}. In
words, we let τ consists of all possible unions of the sets in B. We claim that τ is
a topology on X. First, we have that ∅ ∈ τ because ∅ =

⋃
∅ and ∅ ⊆ B, while

X ∈ τ because X =
⋃
B (by (i)) and B ⊆ B. Next, we establish closure of τ under

unions: if {Ui}i∈I ⊆ τ, for some index set I, we may select subsets Ci ⊆ B such that
Ui =

⋃
Ci, and note that

⋃
i∈I Ui =

⋃
(
⋃

i∈I Ci) with
⋃

i∈I Ci ⊆ B, so that
⋃

i∈I Ui ∈ τ.
Finally, assuming that U1, U2 ∈ τ are given, we select subsets C1, C2 ⊆ B, and write
U1 ∩U2 =

⋃
(C1 ∩ C2) with C1 ∩ C2 ⊆ B, showing that U1 ∩U2 ∈ τ. This completes

the proof that τ is a topology. Of course, there is one remaining loose end: showing
that B is indeed a basis for τ. If U ∈ τ and x ∈ U, we select C ⊆ B such that
U =

⋃
C, and use the definition of union to obtain B ∈ C (hence B ∈ B) such that

x ∈ B; as B ⊆ ⋃ C= U, we are done.

Exercise 10

In the setting of the above proof, show that two collections B and B′ satistying
(i) and (ii) give rise to the same topology on X if and only if for every B ∈ B and
x ∈ B there is B′ ∈ B′ such that x ∈ B′ ⊆ B, and similarly if we switch the roles of
B and B′; compare this with the situation in Example 8.

See next how one applies the above result in practice:

Example 12 (The “vertical” topology)

Let’s say that a subset U ⊆ R2 is v-open if for each (a, b) ∈ U there is ε > 0 such
that {a} × (b− ε, b + ε) ⊆ U. See Figure 9.

(a, b)

U

Figure 9: An open subset in the “vertical” topology of the plane.
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We claim that the collection τvert. of all v-open sets is a topology on R2. Instead
of proving this directly using the given definition of a v-open set, consider the
collection

Bvert. = {{x} × J : x ∈ R and I ⊆ R is an open interval}

of all “open vertical segments” in the plane. Clearly R2 =
⋃

x∈R({x}×R), so that
Bvert saisfies (i). As for condition (ii), note that if ({x1}× J1)∩ ({x2}× J2) 6= ∅, so
that ({x1} ∩ {x2})× (J1 ∩ J2) 6= ∅, and (x, y) is a point in such intersection, then
x1 = x2 = x and y ∈ J1 ∩ J2. Then, {x} × (J1 ∩ J2) ∈ Bvert. (as the intersection of
two open intervals is an open interval) has

(x, y) ∈ {x} × (J1 ∩ J2) ⊆ ({x1} × J1) ∩ ({x2} × J2),

as required. By Theorem 1, τvert. is a topology.

Exercise 11

Show that (R2, τvert.) is not second-countable.
Hint: For every x ∈ R, the vertical line {x} ×R is v-open. Revisit Example 10.

The exercise below contains an example which will be relevant for us later, when
we start discussing manifolds.

Exercise 12 (The line with two origins)

Let X = (R r {0}) ∪ {z1, z2}, where z1, z2 6∈ R are distinct, and consider the
collection B consisting of all open intervals in R not containing zero, together
with all sets of the form (−a, 0) ∪ {zi} ∪ (0, a), i = 1, 2.

(a) Show that B is a basis for a topology τ on X.

The topological space (X, τ) is called the line with two origins. See Figure 10.

z1

R r {0}
z2

Figure 10: The line with two origins.

Proceeding, show that:

(b) every open set containing z1 intersects every open set containing z2.

(c) (X, τ) is second-countable.

Here is one of the reasons bases make our lives easier:
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Lemma 3 (Continuity can be tested on a basis)

Let (X, τ) and (Y, τ′) be topological spaces, Bbe a basis for (Y, τ′), and f : X → Y
be any function. If f−1(B) ∈ τ for every B ∈ B, then f is continuous.

Proof: Let V ∈ τ′ be arbitrary, and consider the inverse image f−1(V) ⊆ X. For
every point x ∈ f−1(V) there is Bx ∈ B such that f (x) ∈ Bx ⊆ V. We then claim
that f−1(V) =

⋃
x∈ f−1(V) f−1(Bx) is an union of open sets, and hence open: applying

f−1 to both sides of
⋃

x∈ f−1(V) Bx ⊆ V and using that inverse images distributes over
sums yields one inclusion; for the reverse inclusion, just note that if x ∈ f−1(V), then
f (x) ∈ Bx implies that x ∈ f−1(Bx).

With the language of bases, we can introduce another rather important class of
examples.

Proposition 3 (Setting up the product topology, and its characteristic property)

Let (X1, τ1) and (X2, τ2) be two topological spaces. The collection

τ1 × τ2 = {U1 ×U2 : U1 ∈ τ1 and U2 ∈ τ2} (1.7)

is a basis for a topology τ1⊗ τ2 on the cartesian product X1× X2, and both projec-
tions π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2 are continuous.

In addition, if (Z, τ′) is a third topological space and
f : Z → X1 × X2 is any function, then f is continuous if
and only if both compositions πi ◦ f : Z → Xi are con-
tinuous. That is, functions valued in product spaces are
continuous if and only if their components are continu-
ous.

Z X1 × X2

Xi

f

πi◦ f
πi

Remark. Technically, denoting by τ1× τ2 the collection in (1.7) is an abuse of notation;
we are not referring to the cartesian product of τ1 and τ2. The point here is that τ1× τ2
itself, in general, is not a topology on X1 × X2, instead only being a basis for one.

Proof: We will check that τ1 × τ2 in (1.7) satisfies both conditions in Theorem 1.
Condition (i) is trivially satisfied, as X × Y ∈ τ1 × τ2.
Condition (ii), in turn, is immediate from

(U1 ×U2) ∩ (V1 ×V2) = (U1 ∩V1)× (U2 ∩V2),

valid for any subsets U1, V1 ⊆ X1 and U2, V2 ⊆ X2. See
also Figure 11.

The natural projections are continuous, since both
preimages π−1

1 (U1) = U1 × Y and π−1
2 (U2) = X ×U2

are open in X × Y whenever U1 ⊆ X1 and U2 ⊆ X2 are
open.

Figure 11: The intersec-
tion of two rectangles.
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Finally, consider a function f : Z → X1 × X2. If f is continuous, then both π1 ◦ f and
π2 ◦ f are continuous by Lemma 1; conversely, if both π1 ◦ f and π2 ◦ f are continuous,
and U1 × U2 ⊆ X1 × X2 is a product of open sets, we have that the inverse image
f−1(U1 ×U2) = (π1 ◦ f )−1(U1) ∩ (π2 ◦ f )−1(U2) is an intersection of open sets, and
hence open as well. By Lemma 3, f is continuous.

Definition 8 (Product topology)

If (X1, τ1) and (X2, τ2) are topological spaces, the topology τ1 ⊗ τ2 defined in
Proposition 3 is called the product topology on X1 × X2.

The construction of the product topology can be done inductively for any finite
number (X1, τ1), . . . , (Xn, τn) of topological spaces to obtain a topology

⊗n
i=1 τi on the

product X = ∏n
i=1 Xi, all projections πi : X → Xi become continuous, and the obvi-

ous analogue of the characteristic property holds. Repeating this construction for an
infinite number of spaces actually yields something called the box topology on the
cartesian product, with the definition of product topology being more subtle. We will
not worry about this and work only on finite products here.

Exercise 13 (Paranoia or consistency? 3)

Let (Xi, τi), with i = 1, 2, 3, be topological spaces. We may consider the product
space (X1 × X2, τ1 ⊗ τ2), and then consider its product with (X3, τ3), obtaining
((X1 × X2)× X3, (τ1 ⊗ τ2)⊗ τ3). In a similar manner, we may consider the other
product (X1 × (X2 × X3), τ1 ⊗ (τ2 ⊗ τ3)). Show that both topologies on the triple
product X1×X2×X3 in fact agree (that is, ((x1, x2), x3) 7→ (x1, (x2, x3)) is a home-
omorphism).

Example 13 (Tori)

For any integer n ≥ 1, the n-torus is the cartesian product Tn = S1 × · · · × S1 of
n copies of the circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, equipped with its prod-
uct topology. This product topology in fact agrees with the subspace topology
induced from R2n, if we write

Tn = {(x1, y1, . . . , xn, yn) ∈ R2n : x2
1 + y2

1 = · · · = x2
n + y2

n = 1}.

There is a third way to describe tori, which we will see ahead in Example 14.

Exercise 14

The “vertical” topology from Example 12 is in fact equal to a certain product topol-
ogy on R2 = R×R. Can you identify it?

Hint: What is the subspace topology in the x-axis R× {0}?
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Exercise 15 (Bases for product spaces)

Let (X1, τ1) and (X2, τ2) be topological spaces with bases B1 and B2. Show that
{B1 × B2 : B1 ∈ B1 and B2 ∈ B2} is a basis for the product topology on X1 × X2.
Conclude that the product of two second-countable spaces is second-countable.

Exercise 16 (Paranoia or consistency? 3)

Let V be a finite-dimensional vector space, equipped with its Euclidean topology,
and assume that there is a direct-sum decomposition V = V1 ⊕V2, for some non-
trivial vector subspaces V1, V2 ⊆ V. These subspaces have Euclidean topologies of
their own. Identifying V with the cartesian product V1 × V2, show that the prod-
uct topology on V1×V2 agrees with the Euclidean topology of V. (In other words,
show that the sum map V1 ×V2 3 (v1, v2) 7→ v1 + v2 ∈ V is a homeomorphism.)

We will encounter more properties of product spaces later, and finish this section
with the following result:

Proposition 4 (The algebra C0(X))

Let (X, τ) be a topological space, and let f , g : X → R be continuous functions,
where R is equipped with its standard Euclidean topology. Then the functions

f + g : X → R, f g : X → R, and
f
g

: X r g−1(0)→ R

are also continuous. In particular, the set C0(X) of all real-valued continuous
functions on X, equipped with pointwise operations, is an R-algebraa.

aIf K is any field, a K-algebra is a vector field A over K equipped with a K-bilinear operation
A× A→ A. We will see this concept again when discussing tangent spaces to manifolds later.

Proof: The addition a : R × R → R, multiplication m : R × R → R, and division
d : R× (R r {0})→ R, given by

a(u + v) = u + v, m(u, v) = uv, and d(u, v) = u/v,

are all continuous functions (verify it!). Then

f + g = a ◦ ( f , g), f g = m ◦ ( f , g), and f /g = d ◦ ( f , g)

must also be continuous, being compositions of continuous functions (cf. Lemma 1).
That the pointwise operations in C0(X) satisfy the axioms required in the definition of
an R-algebra trivially follows from the corresponding axioms satisfied by the opera-
tions a and m in R.
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1.5 Quotient spaces

Recall that when X is any set and ∼ is an equivalence relation1 on X, we may
consider the quotient set X/∼ = {[x]∼ : x ∈ X}—its elements are the equivalence
classes of ∼, defined as [x]∼ = {y ∈ X : x ∼ y}. Some basic facts are that [x]∼ = [y]∼
if and only if x ∼ y, and [x]∼ ∩ [y]∼ = ∅ if x 6∼ y; hence X is a disjoint union of
equivalence classes of ∼. If Z is a second set and f : X → Z is any function which is
constant on each equivalence class of ∼, there is a unique function f̃ : X/∼ → Z such
that f̃ ◦π = f , where π : X → X/∼ is the quotient projection, defined by π(x) = [x]∼.

As usual, we describe this situation with a commutative
diagram. As π is surjective, the images of f and f̃ co-
incide. Moreover, if for every point x ∈ X the equality
[x]∼ = {y ∈ X : f (y) = f (x)} holds, then f̃ is injec-
tive. (Constancy of f on the equivalence classes of ∼
only guarantees one inclusion.)

X

X/∼ Z

π
f

f̃

(1.8)

Here, however, we are interested in topology. If X starts with a topology, does the
quotient X/∼ inherit a topology in any natural way? Is the projection π continuous?
If the function f is continuous, does f̃ come out continuous as well?

Very fortunately, the answers to all of these questions is yes, and π : X → X/∼ turns
out to be the protagonist of the story. Quotient constructions are a very rich source of
examples in topology.

Consider the situation where f : X → Y is any surjective function between sets, and
we define a binary relation ∼ on X by saying that x1 ∼ x2 if f (x1) = f (x2). Then ∼ is
an equivalence relation on X and, by construction, the induced function f̃ : X/∼ → Y
is a bijection. In fact, any equivalence relation is of this form, with Y = X/∼ and f = π.

In view of the above, we may phrase things in a slightly more general manner,
replacing X/∼ with a generic set Y. This is because topology “does not really care”
about the particular equivalence relation ∼ under consideration.

Proposition 5 (Setting up the quotient topology, and its characteristic property)

Let (X, τ) be a topological space, Y be any set, and π : X → Y be any function.
Then, the collection

(1.9) τπ = {U ⊆ Y : π−1(U) ∈ τ}

is a topology on Y, and π itself is continuous.

In addition, if (Z, τ′) is a third topological space and
g : Y → Z is any function, then g is continuous if and
only if g ◦ π : X → Z is continuous, cf. the next diagram.

X

Y Z

π
g◦π

g

1That is, ∼ is a binary relation on X which is reflexive (x ∼ x), symmetric (x ∼ y implies y ∼ x), and
transitive (x ∼ y and y ∼ z implies that x ∼ z).
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Proof: We verify the three conditions in Definition 3. First, ∅ ∈ τπ simply because
π−1(∅) = ∅ ∈ τ. Secondly, if {Uα}α∈A ⊆ τπ is any collection of open sets, we have
that π−1(

⋃
α∈A Uα) =

⋃
α∈A π−1(Uα) ∈ τ, as each π−1(Uα) is in τ by assumption, so

that
⋃

α∈A Uα ∈ τπ. In a similar manner, π−1(U1 ∩ U2) = π−1(U1) ∩ π−1(U2) ∈ τ
whenever U1, U2 ⊆ τπ, implying that U1 ∩ U2 ∈ τπ. Hence, τπ is a topology on Y.
Continuity of π : X → Y is obvious.

Now, consider the characteristic property. If g is continuous, then g ◦ π is continu-
ous by Lemma 1. Conversely, observe that π−1(g−1(U)) = (g ◦ π)−1(U) for every
subset U ⊆ Z. If U ∈ τ′ and g ◦ π is continuous, the previous formula implies that
π−1(g−1(U)) ∈ τ, and thus g−1(U) ∈ τπ, by definition of τπ, meaning that g is con-
tinuous.

Definition 9 (Quotient topology)

If (X, τ) is a topological space, Y is any set, and π : X → Y is any function, the
topology τπ in Proposition 5 is called the quotient topology on Y induced by π.

The characteristic property of the quotient topology is, in some categorical sense
which can be made precise, “dual” to the characteristic property of the subspace topol-
ogy. Here are some examples:

Example 14 (Circles as quotients)

In the real line R equipped with its standard Euclidean topology, define an equiv-
alence relation ∼ by x ∼ y if and only if x − y ∈ Z. The quotient space R/∼ is
usually denoted by R/Z since, for each x ∈ R, its equivalence class is given by
[x]∼ = x +Z = {x + n : n ∈ Z}. We always equip R/Z with the quotient topol-
ogy induced by π : R → R/Z. Imagine that we curl up the real line onto itself in
such a way that all integer points lay on top of each other. Alternatively, note that
every x ∈ R has a representative in the interval [0, 1) (namely x− bxc, where b · c
is the floora function), so one can regard R/Z as the closed interval [0, 1] with its
endpoints glued together.

R R/Z

Figure 12: Visualizing the quotient space R/Z.

We will see ahead in Example 34 that R/Z is homeomorphic to the circle S1,
equipped with its standard Euclidean topology. One can make sense of Rn/Zn,
which turns out to be homeomorphic to the torus Tn from Example 13.
By the characteristic property of the quotient topology, if (Z, τ′) is any topological
space, continuous functions R/Z → Z are in one-to-one correspondence with
continuous functions f : R→ Z such that f (x + 1) = f (x) for all x ∈ R.

aFor example, b10.2c = 10, and b−2.3c = −3.
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Example 15 (Real projective space)

Let n ≥ 2 be an integer, and consider in Rn+1 r {0} the binary relation given by
p ∼ q if there is λ ∈ R r {0} such that q = λp. It is not hard to see that this is
an equivalence relation—the quotient set (Rn+1 r {0})/∼ is instead denoted by
RPn, and called the n-dimensional real projective space. Concretely, RPn is the
space of all lines passing through the origin of Rn+1.

By the characteristic property of the quotient topology, if (Z, τ′) is any topologi-
cal space, continuous functions RPn → Z are in one-to-one correspondence with
continuous functions f : Rn+1 r {0} → Z with the property that f (λp) = f (p) for
all p ∈ Rn+1 r {0} and λ ∈ R r {0}.

Example 16 (The topology on quotients by group actions)

Let (X, τ) be a topological space, and G be any group acting on X. This means
that there is a mapping G × X 3 (g, x) 7→ g · x ∈ X such that e · x = x and
g · (h · x) = (gh) · x for every g, h ∈ G and x ∈ X; recall that setting x ∼ y if there
is g ∈ G such that y = g · x defines an equivalence relation on X, and the quotient
set X/∼ is instead denoted by X/G. The equivalence class of x ∈ X is denoted by
G · x, and it is called the orbit of x. The quotient projection π : X → X/G, given by
π(x) = G · x, induces a quotient topology on X/G. When talking about topologies
on quotients of topological spaces under group actions, this is the topology chosen
by default.

By the characteristic property of the quotient topology, if (Z, τ′) is any topological
space, continuous functions X/G → Z are in one-to-one correspondence with
G-invariant continuous functions f : X → Z (that is, such that f (g · x) = f (x) for
all x ∈ X and g ∈ G.)

Exercise 17

Some spaces we have encountered before may also be realized as quotients. Con-
sider Z = R× {0, 1} equipped with the subspace topology induced by R2, and
define an equivalence relation ∼ on Z by setting (x, t) ∼ (y, s) if x = y 6= 0 (and,
otherwise, every element is ∼-related just to itself). Equip Z/∼ with its quotient
topology, induced by π : Z → Z/∼. Show that Z/∼ is homeomorphic to the line
with two origins (Exercise 12).

Hint: There are three types of equivalence classes. Namely, {(x, 0), (x, 1)} for
x 6= 0, then {(0, 0)}, and {(0, 1)}. Where should each of them get mapped to, in
the line with two origins? Use the characteristic property of the quotient topology
to show that your guess does produce a continuous function Z/∼ → X.

We introduce some more terminology:
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Definition 10 (Quotient mappings)

Let (X, τ) and (Y, τ′) be topological spaces, and f : X → Y be a surjective continu-
ous function. We call f a quotient mapping if the quotient topology on Y induced
by f in fact equals τ′.

In the next result, recall from set-theory that inverse images of singletons are usu-
ally called “fibers”.

Proposition 6 (Uniqueness of quotients)

Let (X, τ), (Y1, τ1), and (Y2, τ2) be topological spaces,
and π1 : X → Y1 and π2 : X → Y2 be (surjective) quo-
tient mappings. If π1 and π2 are constant along each
other’s fibers, there is a unique homeomorphism
F : Y1 → Y2 such that the diagram commutes:

X

Y1 Y2

π1 π2

F

Proof: With a moment of thought, we see that there is no other option to define F: if
y1 ∈ Y1, we choose x ∈ X such that π1(x) = y1, and then set F(y1) = π2(x). This
definition is correct (that is, F is well-defined) since π2 restricted to π−1

1 (y) is constant.
Continuity of F follows from continuity of π2 through the characteristic property of π1,
cf. Proposition 5. Repeating this argument, reversing the roles of (Y1, τ1) and (Y2, τ2),
as well as the ones of π1 and π2, yields the definition and continuity of F−1. Hence, F
is a homeomorphism.

There is one more concept which goes hand-in-hand with quotient mappings:

Definition 11 (Open mappings)

Let (X, τ) and (Y, τ′) be topological spaces, and f : X → Y be any function. We
say that f is an open mapping if f (U) ∈ τ′ whenever U ∈ τ, i.e., if direct images
of open sets are again open.

There is one main example we should keep in mind, for reasons which will be clear
much later:

Example 17 (Cartesian projections between Euclidean spaces are open)

The projection π : Rn × Rk → Rn given by π(x, y) = x is an open mapping.
Indeed, let U ⊆ Rn ×Rk be open, and consider π(U) ⊆ Rn. If x ∈ π(U), there is
y ∈ Rk such that (x, y) ∈ U, and we may find ε > 0 such that Bε(x, y) ⊆ U. But it
is clear that Bε(x) ⊆ π(Bε(x, y)), and so Bε(x) ⊆ π(U). Hence, π(U) is open.

Moreover, open mappings allow us to “transfer” a basis from the first space onto
the second.
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Proposition 7 (Open images of 2nd-countable spaces are 2nd-countable)

Let (X, τ) and (Y, τ′) be topological spaces, and f : X → Y be a surjective, contin-
uous, and open mapping. If (X, τ) is second-countable, so is (Y, τ′).

Proof: We claim that if B is a basis for (X, τ), then f (B) = { f (B) : B ∈ B} is a
basis for (Y, τ′). Indeed, let V ⊆ Y be open, and y ∈ V be any point. By surjectivity
of f there is x ∈ X such that f (x) = y, and we necessarily have x ∈ f−1(V). But
f−1(V) ⊆ X is open and B is a basis, so there is B ∈ B such that x ∈ B ∈ f−1(V).
It follows that y = f (x) ∈ f (B) ⊆ f ( f−1(V)) = V, as required (the last equality uses
surjectivity of f again). Whenever B is countable, so is f (B).

Continuous mappings are not necessarily open mappings, and open mappings are
not necessarily continuous: the two notions are logically independent. Even quotient
mappings are not necessarily open—but the ones who happen to be are particularly
nice. So, when are quotient mappings open?

With the same notation from the previous two definitions, a subset S ⊆ X is called
saturated if S = π−1(π(S)). This is just another way of saying that S must be a
union of fibers. Similarly, if A ⊆ X is any subset, the saturation of A is defined as
Sat(A) = π−1(π(A)). It is clear that A ⊆ Sat(A) always holds, and Sat(A) is the
smallest saturated subset of X containing A. Geometrically, Sat(A) is just the union of
all the fibers of π which intersect A, cf. Figure 13.

X

Y
π

A
Sat(A)X

Y
π

Figure 13: The saturation of a set.

Proposition 8

Let (X, τ) and (Y, τ′) be topological spaces, and π : X → Y be a quotient mapping.
Then π is an open mapping if and only if Sat(U) ∈ τ whenever U ∈ τ, that is, if
the saturation of any open set is open.

Proof: If π is an open mapping and U ⊆ X is open, then π(U) ⊆ Y is open, and then
continuity of π implies that Sat(U) = π−1(π(U)) is open.

Conversely, let U ⊆ X be open. To show that π(U) ⊆ Y is open, via the definition
of quotient topology, we must check that Sat(U) = π−1(π(U)) ⊆ X is open. But this
was our assumption.
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Example 18

Consider the unit sphere Sn ⊆ Rn+1, and let Z2
act on Sn by setting 1 · p = p and (−1) · p = −p,
for each p ∈ Sn. We equip the quotient set
Sn/Z2 with the quotient topology induced by
the projection π : Sn → Sn/Z2, which is given
by π(p) = {p,−p}. For each open subset
U ⊆ Sn, we have that Sat(U) = U ∪ (−U) is the
union of two open sets, and hence open. Here,
we write −U = {p ∈ Sn : −p ∈ U} (it is clearly
homeomorphic to U). By Proposition 8, π is an
open mapping.

U

−U Sn

Figure 14: The Z2-saturation
of an open subset U ⊆ Sn.

The situation from the above example has a great generalization:

Exercise 18

Let (X, τ) be a topological space, and G be a group acting on X by homeomor-
phisms (that is, each g ∈ G regarded as a mapping g : X → X is a homeomor-
phism). Show that the quotient projection π : X → X/G is an open mapping.

Finally, here is one last property we will need later.

Proposition 9

Let (X, τ) and (Y, τ′) be topological spaces, and π : X → Y be a quotient mapping.
Then, whenever U ⊆ X is open and saturated, the restriction π|U : U → π(U) is
also a quotient mapping. (Here, U and π(U) are equipped with their subspace
topologies induced by X and Y.)

For the (slightly technical) proof, see [20, Theorem 22.1].

1.6 Some more point-set concepts

Here, we introduce some useful terminology for when discussing aspects of sub-
spaces of topological spaces. We begin with the notion “dual” to the one of an open
subset:

Exercise 19 (Definition and basic properties of closed sets)

Let (X, τ) be a topological space. Let us say that a subset C ⊆ X is closed if
X r C ∈ τ, that is, if the complement X r C is open. Show that:

(a) ∅ and X are closed.
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(b) If (Ci)i∈I is a family of closed sets, then the intersection
⋂

i∈I Ci is also closed.

(c) If C1, C2 ⊆ X are closed, then C1 ∪ C2 is closed.

This means that to prescribe a topology on a set X, it suffices to prescribe a col-
lection of subsets of X satisfying (a)–(c) above, call them closed, and define open
subsets as being the complements of the closed ones.

Remark. There is a very important warning to be made here. If a set is not open, it
does not mean that it is closed! If it is not closed, it does not mean that it is open either!
A set may be both open and closed (such as the empty set, or the entire space X), or it
might be neither (such as [0, 1) ⊆ R, with the Euclidean topology).

Definition 12 (Interior and closure)

Let (X, τ) be a topological space, A ⊆ X be any subset, and x ∈ X be any point.

(i) x is an interior point of A if there is U ∈ τ such that x ∈ U ⊆ A.

(ii) x is a closure point of A if for every U ∈ τ with x ∈ U, we have U ∩ A 6= ∅.

The set of all interior points of A is called the interior of A and is denoted by Å
(or intX(A)), while the set of all closure points of A is called the closure of A and
is denoted by A (or clX(A)).

Clearly, the inclusions Å ⊆ A and A ⊆ A always hold.

The same idea behind Lemma 2 shows that Å is always open: for every x ∈ Å there
is Ux ∈ τ such that x ∈ Ux ⊆ A, but Ux itself (being open) is a witness that all of its
points are interior to A, so that Ux ⊆ Å. Hence, Å =

⋃
x∈Å Ux is an union of open sets.

Dually, A is always closed. Indeed, if x ∈ X r A, there is U ∈ τ such that x ∈ U
but U ∩ A = ∅. This last condition implies that U ⊆ A or U ⊆ X r A, but the
former possibility is ruled out by x ∈ A. No point in U is in A, so in fact U ⊆ X r A.
This means—by the very definition of interior point—that x ∈ (X r A)◦, and hence
X r A ⊆ (X r A)◦. We conclude that X r A = (X r A)◦ is open.

But there is more we can say:

Proposition 10

Let (X, τ) be a topological space, and A ⊆ X. Then:

(i) Å =
⋃{U ⊆ X : U is open and U ⊆ A};

(ii) A =
⋂{C ⊆ X : C is closed and A ⊆ C}.

In other words, Å is the largest open subset of X contained in A, while A is the
smallest closed subset of X containing A.
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Proof: We prove (ii) and leave (i) as an exercise.

If x ∈ A but there is a closed subset C ⊆ X such that A ⊆ C but x 6∈ C, then x ∈ X rC.
As X rC is open, the definition of closure implies that (X rC)∩ A 6= ∅, contradicting
A ⊆ C and establishing that A ⊆ ⋂{C ⊆ X : C is closed and A ⊆ C}.
For the reverse inclusion, let C ⊆ X and assume that A ⊆ C. We show that C ⊆ A: if
there were x ∈ C with x 6∈ A, we would be able to find an open set U with x ∈ U but
U ∩ A = ∅, implying that x 6∈ A and contradicting that A ⊆ C.

Corollary 1 (Open and closedness in terms of interiors and closures)

Let (X, τ) be a topological space, and A ⊆ X be any subset. Then:

(i) A is open if and only if A = Å.

(ii) A is closed if and only if A = A.

In particular, ˚̊A = Å and A = A.

Exercise 20

Prove (i) in Proposition 10, as well as Corollary 1.

We are due for some examples. There is one last concept that will help us form a
full picture of what is happening here:

Definition 13 (Topological boundary)

Let (X, τ) be a topological space, and A ⊆ X be any subset. A point x ∈ X is
called a boundary point of A if for every U ∈ τ with x ∈ X, we have U ∩ A 6= ∅
and U ∩ (X r A) 6= ∅. The set of all boundary points of A is called the boundary
of A, and is denoted by ∂A (or bdX(A)).

Note that ∂A = A ∩ X r A, by definition of closure. Hence, ∂A is always closed,
and the relation ∂A = ∂(X r A) holds.

See Figure 15.

A Å A ∂A

Figure 15: Visualizing the interior, closure, and boundary of a planar region.
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Example 19 (In the real line)

In the real line R equipped with its standard Euclidean topology, consider the
subset A = [0, 1) ∪ {2}. Then Å = (0, 1), A = [0, 1] ∪ {2}, and ∂A = {0, 1, 2}.

Example 20 (The extreme cases)

Let (X, τdisc.) be a discrete topological space, and A ⊆ X be any subset. Then
Å = A = A, while ∂A = ∅. At the other extreme, if we consider τch. instead of
τdisc. on X, we have Å = ∅ unless A = X, as well as A = X unless A = ∅, and
then ∂A = X whenever A 6∈ {∅, X}.

Example 21 (Closures of balls)

Let (X, d) be a metric space, a ∈ X, and r > 0. Then Br(a) ⊆ Br[a], since Br[a]
is closed and contains Br(a) (here we use Proposition 10). The reverse inclusion,
however, need not hold in general: with the discrete metric, consider for instance
B1/2(a) = B1/2[a] = {a}, with Br(a) = X. If X is a vector space and d is induced
by a norm ‖ · ‖ on X, the equality Br(a) = Br[a] holds: if x ∈ Br(a) and U ⊆ X
is any open subset containing x, there is ε > 0 such that Bε(x) ⊆ U, and then
a + (δ/r)(x− a) ∈ U ∩ Br(a) whenever r− ε < δ < r, showing that x ∈ Br(a).

Exercise 21

Let W ⊆ Rn be a vector subspace of Rn, and assume that Rn is equipped with its
standard Euclidean topology. Show that W is closed and, if W 6= Rn, then W̊ = ∅.

Example 22

In the Sorgenfrey line (R, τS), let us compute (0, 1]◦ and (0, 1].

Interior: for each n ≥ 1, we have that [1/n, 1) ∈ τS and [1/n, 1) ⊆ (0, 1]. Hence
(0, 1) =

⋃
n≥1[1/n, 1) ⊆ (0, 1], showing that (0, 1) ⊆ (0, 1]◦. It remains to decide

whether x = 1 is an interior point of (0, 1]. But for every ε > 0, we have that
[1, 1 + ε) ∩ (R r (0, 1]) 6= ∅, so that 1 6∈ (0, 1]◦, and thus (0, 1]◦ = (0, 1).

Closure: for each x > 1, then [x, ∞) ∩ (0, 1] = ∅, so that [x, ∞) ∈ τS implies that
x 6∈ (0, 1]; similarly, if x < 0, we have that [x, x/2) ∩ (0, 1] = ∅ with [x, x/2) ∈ τS
implies that x 6∈ (0, 1]. Finally, for every ε > 0 we have that [0, ε) ∩ (0, 1] 6= ∅, so
that 0 ∈ (0, 1]. We conclude that (0, 1] = [0, 1].

There are other ways to justify the above, e.g., showing directly that [0, 1] is Sor-
genfrey-closed.
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Exercise 22

Let X be any infinite set, equipped with the cofinite topology τcof., and A ⊆ X be
any subset. Show that A = X if and only if A is infinite.

As Figure 15 suggests, it is possible to detect whether subsets are open or not via
their boundary.

Proposition 11

Let (X, τ) be a topological space, and A ⊆ X be any subset. Then A is open if and
only if A ∩ ∂A = ∅.

Proof: In general, Å ⊆ X r ∂A, so Å ∩ ∂A = ∅. If A is open, then A = Å and hence
A ∩ ∂A = ∅. Conversely, assume that A ∩ ∂A = ∅, and let x ∈ A. As x 6∈ ∂A, there
is an open subset U ⊆ X such that x ∈ U and with either U ⊆ A or U ⊆ X r A—the
latter case cannot happen as x ∈ U ∩ A.

Here is how interiors and closures behave under unions and intersections:

Proposition 12

Let (X, τ) be a topological space, and A1, A2 ⊆ X be any subsets. Then:

(i) Å1 ∩ Å2 = (A1 ∩ A2)
◦;

(ii) Å1 ∪ Å2 ⊆ (A1 ∪ A2)
◦;

(iii) A1 ∪ A2 = A1 ∪ A2;

(iv) A1 ∩ A2 ⊆ A1 ∩ A2.

Proof: We will use that taking interiors and taking closures are inclusion-preserving
operations, that is, if A ⊆ B then Å ⊆ B̊ and A ⊆ B—this follows immediately from
Proposition 10.

As we have that A1 ∩ A2 ⊆ Ai for i = 1, 2, we have that (A1 ∩ A2)
◦ ⊆ Åi, and so

(A1 ∩ A2)
◦ ⊆ Å1 ∩ Å2. For the reverse inclusion, we note that Å1 ∩ Å2 is open and

has Å1 ∩ Å2 ⊆ A1 ∩ A2, so that Å1 ∩ Å2 ⊆ (A1 ∩ A2)
◦. This establishes (i). Item

(ii) is dealt with similarly: as Ai ⊆ A1 ∪ A2, it follows that Åi ⊆ (A1 ∪ A2)
◦, and so

Å1 ∪ Å2 ⊆ (A1 ∪ A2)
◦.

Now we consider closures. As above, A1 ∪ A2 ⊆ A1 ∪ A2, while for the reverse
inclusion follows from noting that A1 ∪ A2 is closed and contains A1 ∪ A2, so that
A1 ∪ A2 ⊆ A1 ∪ A2; this proves (iii). Finally, we return to A1 ∩ A2 ⊆ Ai for i = 1, 2, so
that A1 ∩ A2 ⊆ Ai, and hence A1 ∩ A2 ⊆ A1 ∩ A2, establishing (iv).

Page 28



SMOOTH MANIFOLDS IVO TEREK

Exercise 23

Show by examples that the inclusions in items (ii) and (iv) of Proposition 12 can
indeed be strict.

In the next exercise, you can check how unions and closures behave relative to
taking complements:

Exercise 24 (Interior-closure duality)

Let (X, τ) be a topological space, and A ⊆ X be any subset. Show that:

(a) X r A = X r Å.

(b) (X r A)◦ = X r A.

Proposition 13

Let (X, τ) be a topological space, and A ⊆ X be any subset. Then

X = Å ∪̇ ∂A ∪̇ (X r A)◦. (1.10)

Here, the dots over the union symbols mean that we have a disjoint union.

Proof: Let x ∈ X. If x ∈ Å, we are done. Otherwise, for every open subset U ⊆ X
such that x ∈ U, we have that U ∩ (X r A) 6= ∅. If some such U is entirely contained
in X r A, then x ∈ (X r A)◦. Else, every such U has U ∩ A 6= ∅ and U ∩ (X r A) 6= ∅,
so that x ∈ ∂A.

For the last exercise in this section, we use the following definition: a subset D of a
topological space (X, τ) is called dense if D = X. This can be equivalently rephrased
as saying that D ∩U 6= ∅ for every non-empty open subset U ⊆ X.

Exercise 25

Unfortunately, metric spaces are not necessarily second-countable (cf. Example
9, with the discrete metrica), but when arguing in Example 7 that the collection
{(x − ε, x + ε) : x ∈ Q and ε ∈ (0, ∞) ∩Q} is a basis for the Euclidean topology
in R, we used very strongly that Q is dense in R. So, let’s say that a topological
space (X, τ) is separable if it contains a dense countable subset.

(a) Show that every second-countable topological space is separable.

(b) Show that the converse holds for metric spaces: every separable metric space
is second-countable.

aThat is, d : X × X → [0, ∞) is given by d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y. It indeed
satisfies the conditions in Definition 1 and we have that τd = τdisc. (verify it!).
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1.7 Convergence and Hausdorff spaces

One of the main concepts studied in real analysis is the one of convergence. Recall
that for a sequence (xn)n≥1 of real numbers, we say that xn → x if

∀ ε > 0, ∃ n0 ∈N>0 : ∀ n ∈N, n ≥ n0 =⇒ |xn − x| < ε. (1.11)

The generalization to convergence in a metric space (X, d) is immediate, if you remem-
ber how we started the entire discussion on topology from the definition of continuity:

∀ ε > 0, ∃ n0 ∈N>0 : ∀ n ∈N, n ≥ n0 =⇒ d(xn, x) < ε. (1.12)

The next definition should not be too surprising:

Definition 14 (Convergence in topological spaces)

Let (X, τ) be a topological space, and (xn)n≥1 be a sequence of points in X. We
say that (xn)n≥1 converges to a point x ∈ X if for every U ∈ τ with x ∈ U there is
an integer n0 ≥ 1 such that whenever n ≥ n0, we have xn ∈ U.

· · ·· · ·

x1
x2

xn0xn0−1 xn0+1 x

U

Figure 16: All but finitely many terms of (xn)n≥1 must enter U.

We denote this by xn → x.

There is an important warning to be made here, when working with this level of
generality: we are only allowed to write x = limn→+∞ xn once we know that limits
are unique, otherwise the symbol limn→+∞ xn could be ambiguous, referring to more
than one point in the space X.

The problem is that limits of sequences are not necessarily unique.

Example 23 (The true reason for the name “chaotic topology”)

Let X be any set, and equip it with the chaotic topology τch. = {∅, X}. If (xn)n≥1
is any sequence in X, and x ∈ X is any point, then xn → x. Indeed, the only open
set we need to consider when testing for Definition 14 is U = X, which always
contains all terms xn. In other words, any sequence converges to all points of X at
the same time!

Luckily, the spaces where limits fail to be unique are rather pathological—the ma-
jority of the spaces we encounter “in nature” are well-behaved.
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Proposition 14

Limits of sequences are unique in metric spaces.

Proof: Let (X, d) be a metric space, and (xn)n≥1 be a sequence in X such that xn → x
and xn → y, for some points x, y ∈ X. We will show that x = y. Let ε > 0 be arbitrary
and choose integers n1, n2 ≥ 1 such that (i) xn ∈ Bε/2(x) for every n ≥ n1, and (ii)
xn ∈ Bε/2(y) for every n ≥ n2. If we set n0 = max{n1, n2}, then for every n ≥ n0 we
have that

d(x, y) ≤ d(x, xn) + d(xn, y) <
ε

2
+

ε

2
= ε.

If 0 ≤ d(x, y) < ε for every ε > 0, then it must be d(x, y) = 0, and thus x = y.

ε/2 ε/
2

x y

has to enter here can’t stay here

Figure 17: Uniqueness of limits in metric spaces.

In other words, if a sequence must enter arbitrarily small balls around a point, it cannot
stay in arbitrarily small balls centered at different points.

What really mattered in the above proof was
not the fact that we had a distance function, but
instead that we were able to separate the points
x and y with disjoint open sets. We turn this
condition into a definition.

Definition 15 (Hausdorff spaces)

A topological space (X, τ) is called a Haus-
dorff space if whenever x, y ∈ X are dis-
tinct points, there are disjoint sets U, V ∈ τ
with x ∈ U and y ∈ V.

X

x

U y

V

Figure 18: The Hausdorff condition.

Figure 18, as expected, is what one usually has in mind when thinking about Haus-
dorff spaces.
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Proposition 15

Limits of sequences are unique in Hausdorff spaces.

Proof: Let (X, τ) be a Hausdorff space, and (xn)n≥1 be a sequence in X. If x, y ∈ X
are such that xn → x and x 6= y, we show that xn 6→ y. Namely, if this were to be
the case, and U, V ⊆ X are disjoint open sets with x ∈ U and y ∈ V, the definition of
convergence would provide us with integers n1, n2 ≥ 1 such that (i) xn ∈ U for every
n ≥ n1, and (ii) xn ∈ V for any n ≥ n2. Thus, if n0 = max{n1, n2} and n ≥ n0, it
follows that xn ∈ U ∩V, which is a contradiction.

Derivatives and integrals—the protagonists of Calculus—are, by definition, certain
limits. If manifolds should be topological spaces on which we can perform Calculus,
we should certainly require them to be Hausdorff spaces.

Some examples:

Example 24

Metric spaces are Hausdorff: if x, y ∈ X are distinct, we let r = d(x, y)/2 > 0, so
that Br(x) ∩ Br(y) = ∅; clearly x ∈ Br(x) and y ∈ Br(y).

Example 25

Discrete spaces are always Hausdorff: we can take U and V to be singletons.

Example 26

The two-point Sierpinski space ({a, b}, {∅, {a}, {a, b}}) (Example 3) is not Haus-
dorff. For example, the constant sequence equal to a converges to both a and b.

Example 27

You have shown in Exercise 12 that the line with two origins is not Hausdorff:
the two origins z1 and z2 cannot be separated by disjoint open sets. Alternatively,
note that the sequence given by xn = 1/n converges to both z1 and z2.

Exercise 26 (Hausdorffness of products and subspaces)

Show that any countably infinite set equipped with its cofinite topology (cf. Exer-
cise 4) is not Hausdorff.
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Exercise 27

Show that:

(a) subspaces of Hausdorff spaces are also Hausdorff.

(b) the product of two Hausdorff spaces is also Hausdorff.

(c) quotients of Hausdorff spaces need not be Hausdorff.

The proof of the result below is very helpful to see how the definition of conver-
gence plays along the definition of continuity:

Proposition 16

Let (X, τ) and (Y, τ′) be topological spaces, f : X → Y be a continuous function,
and (xn)n≥1 be a sequence in X such that xn → x, with x ∈ X. Then, f (xn)→ f (x).

Proof: The argument is very direct, applying the relevant definitions. Let V ∈ τ′ be
such that f (x) ∈ V, and consider f−1(V) ∈ τ (here is where continuity of f enters).
As x ∈ f−1(V), the definition of convergence gives us an integer n0 ≥ 1 such that
xn ∈ f−1(V) whenever n ≥ n0. Then f (xn) ∈ V whenever n ≥ n0, showing that
f (xn)→ f (x) as required.

Here is one more example:

Example 28 (Sn/Z2 is Hausdorff)

Consider again the quotient Sn/Z2, from Example 18. We claim that Sn/Z2 is
Hausdorff. Let {p,−p}, {q,−q} ∈ Sn/Z2 be distinct, so that p 6= q and p 6= −q.
As Sn is Hausdorff, there are mutually disjoint open subsets U1, U2, V1, V2 ⊆ Sn

such that p ∈ U1, −p ∈ U2, q ∈ V1, and −q ∈ V2. Then the images of U = U1 ∪U2
and V = V1 ∪ V2 under the projection Sn → Sn/Z2 are open, and in fact disjoint:
if not, we may write y = ±x for some choice of sign ±, for some x in either U1 or
U2 and y in either V1 or V2, with all possibilities leading to contradictions.

We conclude this section with an alternative characterization of the Hausdorff prop-
erty. Given any set X, its diagonal is defined as ∆ = {(x, y) ∈ X× X : x = y}.

Proposition 17

Let (X, τ) be a topological space. Then, (X, τ) is Hausdorff if and only if the
diagonal subspace ∆ ⊆ X× X is closed. (Here, X× X has the product topology.)

Proof: Assuming that (X, τ) is Hausdorff, we show that (X × X) r ∆ is open. If
(x, y) ∈ (X × X)r ∆, then x 6= y, and the Hausdorff condition allows us to choose
disjoint open subsets U, V ⊆ X with x ∈ U and y ∈ V. Then (x, y) ∈ U × V and
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U×V ⊆ (X× X)r ∆ (this is equivalent to U ∩V = ∅), showing that (x, y) is interior
to (X× X)r ∆. Thus (X× X)r ∆ is open, making ∆ closed. See Figure 19.

Conversely, assuming that ∆ is closed, we
show that (X, τ) is Hausdorff. If x, y ∈ X
are distinct, (x, y) 6∈ ∆. As the com-
plement (X × X) r ∆ is open, there ex-
ists an open subset W ⊆ (X × X) r ∆
such that (x, y) ∈ W. By definition of
product topology, there are open subsets
U, V ⊆ W such that (x, y) ∈ U ×V ⊆ W.
As seen above, U × V ⊆ (X × X) r ∆
means that U and V are disjoint, as re-
quired.

X

X ∆

U

V

(x, y)

Figure 19: The Hausdorff condition and
the diagonal subspace.

1.8 Compactness

In real analysis, the closed and bounded subsets of R play a central role—they are
called “compact” and can be characterized in terms of open coverings.

In a metric space, we define a subset to be bounded if it is contained in some open
ball (possibly with very large radius; the center of the ball doesn’t matter). As bound-
edness doesn’t make sense in arbitrary topological spaces, since there is no distance
function available, we must take the latter characterization as the definition of com-
pactness as we move on:

Definition 16 (Compactness)

A topological space (X, τ) is called compact if every open cover of X admits a
finite subcover, that is, whenever U ⊆ τ is such that

⋃
U = X, there is a finite

subcollection F⊆ U such that
⋃
F= X.

Remark. While phrasing the definition of compactness in terms of subcollections Uof
τ is certainly clean, the reader not used to working with such set-theoretical language
might have a difficult time parsing it. You may think of it in terms of indexed collec-
tions: whenever {Uα}α∈A ⊆ τ has

⋃
α∈A Uα = X, there is a finite subset F ⊆ A such

that
⋃

α∈F Uα = X. Here, U= {Uα}α∈A and F= {Uα}α∈F. Rewrite some of the proofs
coming next in terms of such indexed families and see for yourself: often the index set
A and the indices α ∈ A amount to just extra notational baggage.

This definition of compactness can be difficult to digest at a first read. In my expe-
rience, it pays off to think about it “operationally”, that is, what does this definition
“do” and how do we use it in proofs? Say there is some process or algorithm we
want to run on the space X, and we need it to “end in finite time”. If we are able to
achieve this on enough open subsets to cover X, and X is compact, then we are able
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to achieve it on X itself. This is vague, but later in this section we present a series of
propositions containing basic properties of compact spaces—their proofs might help
you understand what I am trying to get at here.

Figure 20: Definition of compactness via open covers.

Compact spaces should be thought of as “small”, without being finite. Proving that
a space is not compact is often much easier than proving that it is compact: the former
requires just exhibiting one open cover without a finite subcover, while the latter re-
quires showing that any open cover has a finite subcover. To renew your intuition for
compactness, it is helpful to also see examples which are not compact.

Example 29 (Unbounded metric spaces are not compact)

The Euclidean space Rn is not compact: the open cover U = {Br(0) : r > 0}
admits no finite subcover—the union of any finite subcover of U is always equal
to some open ball centered at the origin, and not the entire Rn. This argument
shows, more generally, that unbounded metric spaces are not compact; see also
Proposition 21 ahead.

Example 30 ([0, 1) is not compact)

The half-open interval [0, 1), with its standard Euclidean topology, is not compact:
the open cover U = {[0, r) : r ∈ (0, 1)} of [0, 1) has no finite subcover, since the
union of any finite subcollection of U is of the form [0, R) for some R ∈ (0, 1), and
thus [0, R) ( [0, 1).

The idea here is that if there is any point which “should be” in the given set, but is
not there, we can try to set up an open cover Uwhich “approaches” said point in
such a way that removing even a single set from Umakes it no longer be a cover.
This is of course related to whether our given set is closed or not—we will revisit
this idea ahead in Proposition 20.

The next example is particularly important, playing a role in the proof of the Heine-
Borel Theorem (we will prove it later in this section), and so we phrase it as a lemma:
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Lemma 4

Every bounded closed interval [a, b] ⊆ R, equipped with its standard Euclidean
topology, is compact.

Proof: We may assume without loss of generality that [a, b] = [0, 1]. Let Ube an open
cover of [0, 1], and consider the set

I = {t ∈ (0, 1] : [0, t] is covered by finitely many elements of U}.

The proof will be concluded once we show that 1 ∈ I. First, note that 0 ∈ I, so that I is
non-empty, and therefore b = sup I exists. We will show that:

(i) I is closed under taking limits of increasing sequences,
implying that b = max I is actually an element of I, and;

(ii) b = 1.

(1.13)

If (tn)n≥1 ⊆ I is an increasing sequence and tn → t, we will show that t ∈ I as follows:
let U ∈ U be such that t ∈ U, and use the definition of convergence to select n0 ≥ 1
such that tn ∈ U for every n ≥ n0; fix one such tn ∈ U. Since tn ∈ I, there is a finite
subset F ⊆ U such that [0, tn] ⊆

⋃
F—it follows that [0, t] ⊆ ⋃

(F∪ {U}), and this
establishes (1.13-i).

As for (1.13-ii), assume by contradiction that b < 1, and let U ∈ U be such that b ∈ U.
Then, take b′ ∈ U ∩ (b, 1], and note that whenever F⊆ U is a finite subset such that
[0, b] ⊆ ⋃

F, then [0, b′] ⊆ ⋃
(F∪ {U}). This means that b′ > b and b′ ∈ I, against

maximality of b.

Example 31 (Closed and bounded sets need not be compact in metric spaces)

Since (a, b) ⊆ R gets replaced with Br(p) ⊆ X in a metric space (X, d), and the
closure of (a, b) equals [a, b], which is compact, the reader might be led to think
that (i) the closure of Br(p) is the closed ball Br[p] = {x ∈ X : d(x, p) ≤ r}, and
(ii) that Br[p] is compact (being obviously closed and bounded). Both claims are
false, and it is a serious mistake to think so.

If X is any set with the discrete metric, then for any point x ∈ X we have that
B1(x) = B1(x) = {x}, while B1[x] = X is not compact as soon as the set X is
infinite (since the open cover {{a} : a ∈ X} would have no finite open subcover).

In the next few results, we will often consider compactness of subspaces Y of a
given topological space (X, τ). Technically, the sets V in open coverings of the topo-
logical space (Y, τY) are in τY and so must be written as V = U ∩ Y with U ⊆ X
open—exploring the eventual compactness of (X, τ) (or of subspaces larger than Y)
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requires us to use Us instead of Vs. Going back and forth between Us and Vs is tire-
some and potentially obfuscates the main ideas behind the argument being carried
out; the collection of the Us should by all means be considered a valid open cover of
Y even though their union in general strictly contains Y, as opposed to being equal to
it as the union of the Vs would be.

Exercise 28 (Compactness is absolute)

Let (X, τ) be a topological space, and Y ⊆ X be a subset. Let’s say that Y is
compact in X if for every collection V of open subsets of X such that Y ⊆ ⋃

V,
there is a finite subset F ⊆ V such that Y ⊆ ⋃

F. Show that Y is compact in X
(in the above sense) if and only if the topological space (Y, τY) is compact. This
eliminates any ambiguity in saying “Y is compact”.

The exercise below is a great opportunity for you to check if you understood the
technical definition of compactness, and appreciate what Exercise 28 is doing (even if
you have not solved it yet).

Exercise 29

Let (X, τ) be a topological space, and K1, . . . , Kn ⊆ X be compact subsets. Show
that the union K =

⋃n
i=1 Ki is compact.

Remark. If you have the time to spare, try solving this exercise both using and not
using the result of Exercise 28, and compare both solutions.

Proposition 18 (Continuous images of compact spaces are compact)

Let (X, τ) and (Y, τ′) be topological spaces, and f : X → Y be continuous and
surjective. If (X, τ) is compact, then (Y, τ′) must also be compact.

Proof: Let V⊆ τ′ be an open cover of Y, and note that f−1(V) = { f−1(V) : V ∈ V}
is an open cover of X, since

⋃
f−1(V) = f−1(

⋃
V) = f−1(Y) = X and each such

f−1(V) is open by continuity of f . By compactness of (X, τ), there exists a finite subset
F′ ⊆ f−1(V) such that

⋃
F′ = X. Now we use surjectivity of f to show that the

collection F= {V ∈ V : f−1(V) ∈ F′} is a finite subcover of Y. Indeed, by surjectivity
of f the assignment F3 V 7→ f−1(V) ∈ F′ is injective2, so that finiteness of Ffollows
from the one of F′; if y ∈ Y, we choose x ∈ X so that f (x) = y, and then select some
f−1(V) ∈ F′ with x ∈ f−1(V)—now y ∈ V with V ∈ F shows that

⋃
F = Y, as

required.

2Namely, we use that if f : X → Y is a surjective function between sets, then f ( f−1(B)) = B for
every subset B ⊆ Y. Without surjectivity, we may only say that f ( f−1(B)) = B ∩ f (X).
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Example 32 (Quotients of compact spaces are compact)

If (X, τ) is any compact topological space and ∼ is an equivalence relation on X,
the quotient space X/∼ is also compact, being the image of X under the continu-
ous mapping π : X → X/∼.

Proposition 19

Closed subsets of compact spaces are compact.

Proof: Let (X, τ) be a compact topological space, and C ⊆ X be closed. Let U be an
open cover of C, and note that U∪ {X rC} is an open cover of X. Compactness yields
a finite subset F⊆ U∪ {X r C} such that

⋃
F= X, cf. Figure 21.

X

C

X r C

Figure 21: Producing an open cover of X from one of C, by adding X r C.

As (X r C) ∩ C = ∅, we have that C ⊆ ⋃
(Fr {X r C}), making Fr {X r C} the

desired finite subcover of U.

Proposition 20

Compact subspaces of Hausdorff spaces are closed.

Proof: Let (X, τ) be a Hausdorff space and K ⊆ X be compact. We argue that the
complement X rK is open as follows: let z ∈ X rK and, for every x ∈ K, take disjoint
open sets Ux, Vx ⊆ X such that x ∈ Ux and z ∈ Vx; then {Ux : x ∈ K} is an open cover
of K, so that compactness of K yields a finite subset F ⊆ K for which {Ux : x ∈ F}
covers K. See Figure 22.
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K

z
x1

x2

x3

U1

U2

U3

V1
V2

V3

Figure 22: Compact subsets of Hausdorff spaces are closed.

As F is finite, V =
⋂

x∈F Vx is an open neighborhood of z, and by construction we have
that V ⊆ X r K—if there is y ∈ V ∩ K, then y ∈ Ux for some x ∈ F, while at the same
time y ∈ Vx for this same x (as V ⊆ Vx), contradicting that Ux ∩ Vx = ∅. This shows
that z is an interior point of X r K, making X r K open and therefore K closed.

Proposition 21

Compact subspaces of metric spaces are bounded.

Proof: Let (X, d) be a metric space, and K ⊆ X be compact. Choose a ∈ X at will
and note that {Br(a) : r > 0} is an open cover of K. Extract a finite subcover and
denote by r1, . . . , rk > 0 the radii of the remaining balls in the subcover. Now let
R = max{r1, . . . , rk} > 0 and note that K ⊆ BR(a), making K bounded as required.

Corollary 2 (The Extreme-Value Theorem)

If (X, τ) is a compact topological space and f : X → R is a continuous function,
there are xmin, xmax ∈ X such that f (xmin) ≤ f (x) ≤ f (xmax) for every x ∈ X. In
words,

Proof: The image f (X) ⊆ R is bounded, so b = sup f < +∞ exists. At the same time,
f (X) is closed, so b = max f ∈ f (X) and there is xmax ∈ X such that f (xmax) = b,
so that f (x) ≤ f (xmax) for every x ∈ X. As sup(− f ) = − inf f , we may apply this
argument to − f as well to obtain the minimizer xmin ∈ X.

While Example 32 above regards compactness of quotient spaces, the next result is
about compactness of product spaces, essentially giving us the best possible outcome:
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Proposition 22 (Compact × compact = compact)

The product of two compact topological spaces is compact.

Remark. It turns out that arbitrary products (finite or not) of compact spaces are com-
pact—this is called Tychonoff’s Theorem, and it is a somewhat advanced result in
general topology (two of its standard proofs use nets and filters, respectively; you
will certainly come across these concepts when taking an actual topology class). For
the fanatics, by the way, this result is equivalent to the axiom of choice.

Proof: Let (X, τ) and (Y, τ′) be compact spaces, and {Wα}α∈A be an open cover of the
product X × Y. Without loss of generality, we may assume that Wα = Uα × Vα for
some open subsets Uα ⊆ X and Vα ⊆ Y, for every α ∈ A—having the same index set
A for both resulting open covers {Uα}α∈A and {Vα}α∈A of X and Y will be particularly
convenient for the following argument. For each x ∈ X, the set {x} × Y equipped
with its subspace topology from X × Y is homeomorphic to Y, via (x, y) 7→ y, and
hence is compact. Then {{x} × Vα}α∈A is an open cover of {x} × Y, and so we may
fix a finite subset Fx ⊆ A for which {{x} × Vα}α∈Fx covers {x} × Y. This implies that
each intersection Ux =

⋂
α∈Fx Uα is open in X, making {Ux}x∈X an open cover of X, cf.

Figure 23.

X

Y {x} ×Y

Uα ×Vα

Ux

Figure 23: The “tube lemma”.

Compactness of X now gives us points x1, . . . , xk ∈ X for which {Uxi}k
i=1 already

covers X. Then F =
⋃k

i=1 Fxi is a finite subset of A, and we finally claim that {Wα}α∈F
covers X×Y. Indeed: whenever (x, y) ∈ X×Y, there is i = 1, . . . , k such that x ∈ Uxi ,
and hence there is α ∈ Fxi (in particular, α ∈ F) such that y ∈ Vα; as Uxi ⊆ Uα, we
conclude that (x, y) ∈ Uα ×Vα = Wα, as required.

With Proposition 22 in place, we may finally recover one of the main theorems from
real analysis:
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Corollary 3 (The Heine-Borel Theorem)

A subset K ⊆ Rn is compact if and only if it is closed and bounded.

Proof: If K is compact, then K is closed and bounded as Rn is a metric space, by Propo-
sitions 20 and 21. Conversely, boundedness of K allows us to place it in a box, i.e., write
K ⊆ [a1, b1]× · · · × [an, bn] for suitable closed intervals [ai, bi] ⊆ R; each such interval
is compact by Lemma 4, so their product is compact by Proposition 22 (and induction)
and, finally, closedness of K allows us to invoke Proposition 21 to conclude that K is
compact, as desired.

Example 33 (Spheres and real projective spaces are compact)

The unit sphere Sn ⊆ Rn+1 is compact, being closed and bounded. It now follows
that the real projective space RPn (Example 15) is also compact: the restriction
of π : Rn+1 r {0} → RPn to Sn is continuous and still surjective onto RPn (since
π(p) = π(p/‖p‖) for every p ∈ Rn+1 r {0}).

A topological space is called Lindelöf if every open cover has a countable subcover.
This is a weakening of compactness. Every second-countable space is Lindelöf (can
you prove it?), but not conversely, in general (e.g., Sorgenfrey line). For metric spaces
(and in particular, manifolds), the converse does hold.

Exercise 30 (Compact × Lindelöf = Lindelöf)

Show that the product of a compact space with a Lindelöf space is Lindelöf.

Hint: adapt the proof of Proposition 22, but be careful—the product of two Lin-
delöf spaces need not be Lindelöf (e.g., Sorgenfrey line with itself).

We conclude this section with one application of the results obtained so far. When
trying to prove that some function between topological spaces is a homeomorphism,
the most challenging step is usually proving (once we know that the function is bijec-
tive) that the inverse function is also continuous. The result below provides us with a
very useful shortcut:

Theorem 2

Let (X, τ) and (Y, τ′) be topological spaces, and f : X → Y be a continuous bijec-
tion. If (X, τ) is compact and (Y, τ′) is Hausdorff, then f is a homeomorphism.

Proof: We just need to establish continuity of the inverse function f−1 : Y → X. We
use the following characterization of continuity: a function is continuous if and only if
inverse images of closed sets are closed. So, let C ⊆ X be closed. As (X, τ) is compact,
Proposition 21 gives us that C is compact. By Proposition 18, ( f−1)−1(C) = f (C) is
compact. Finally, as (Y, τ′) is Hausdorff, we conclude from Proposition 20 that f (C) is
closed, as required.
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Example 34 (R/Z ∼= S1)

Consider again the quotient space R/Z, from Example 14, with x ∼ y if and only
if x − y ∈ Z. The function f : R → S1 given by f (x) = (cos(2πx), sin(2πx)) is
continuous and surjective, and it holds that f (x) = f (y) if and only if x− y ∈ Z
(by properties of trigonometric functions). This means that there is a function f̃
for which the diagram

R

R/Z S1

π
f

f̃

commutes, and by the above combined with the characteristic property of the
quotient topology of R/Z, it follows that f̃ is a continuous bijection.

As the restriction of π : R→ R/Z to the interval [0, 1] is still surjective onto R/Z
(since every equivalence class has a representative in [0, 1)), compactness of [0, 1]
implies the one of R/Z. Thus, as S1 is Hausdorff, Theorem 2 says that f̃ is a
homeomorphism. A similar argument says that Rn/Zn ∼= Tn.

Example 35 (Sn/Z2
∼= RPn)

Consider again the quotient space Sn/Z2, as well as the real projective space RPn,
and the function f : Rn+1 r {0} → Sn/Z2 given by f (p) = {p/‖p‖,−p/‖p‖}.
Note that f is continuous, being a composition Rn+1 r {0} → Sn → Sn/Z2 of
continuous functions—the first arrow, of course, is given by p 7→ p/‖p‖. As
f (λp) = f (p) for every p ∈ Rn+1 r {0} and λ ∈ R, the function f survives in
the quotient: that is, there is a function f̃ : RPn → Sn/Z2 such that f̃ ◦ π, where
π : Rn+1 r {0} → RPn is the natural projection (taking a point p to the line Rp it
spans):

Rn+1 r {0}

Sn

RPn Sn/Z2

π

f

f̃

Continuity of f̃ follows from the one of f , via the characteristic property of the
quotient topology (of RPn, not of Sn/Z2). The image of f̃ equals the one of f ,
as π is surjective, and so surjectivity of f̃ follows from the one of f . But we
claim that f̃ is injective as well. Indeed, assume that f̃ (Rp) = f̃ (Rq). Then
{p/‖p‖,−p/‖p‖} = {q/‖q‖,−q/‖q‖}, meaning that p/‖p‖ = ±q/‖q‖ for some
choice of sign ±. In any case, q = λp for λ = ±‖q‖/‖p‖, so that Rp = Rq.
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Thus, f̃ is a continuous bijection. But RPn is compact by Example 33 and Sn/Z2

is Hausdorff by Example 28, so Theorem 2 allows us to conclude that f̃ is a home-
omorphism. In summary, we can see RPn geometrically as a sphere with pairs of
antipodal points identified.

1.9 Connectedness

One last important topological property there is still left to discuss is connected-
ness. It is the way we make precise the notion of a topological space consisting of one
single piece.

Definition 17 (Connected spaces)

A topological space (X, τ) is disconnected if it can be written as the disjoint union
of two proper open subsets. We then say that X is connected if it is not discon-
nected.

In other words, if (X, τ) is connected, the only subsets of X which are simul-
taneously open and closed are ∅ and X itself. Otherwise, if A is some such set,
X = A ∪ (X r A) would show that (X, τ) is disconnected.

Example 36

Consider the real line R, equipped with its Euclidean topology. You might have
seen in real analysis that a subset of R, with its subspace topology, is connected if
and only if it is an interval. In particular, R is connected and, more generally, Rn

is connected.

Example 37

Let X be any set. Then (X, τdisc.) is connected if and only if X is either empty or a
singleton. At the other extreme, (X, τch.) is always connected.

Example 38

The Sorgenfrey line (R, τS) is disconnected, since R = (−∞, 0) ∪ [0, ∞), and both
intervals (−∞, 0) and [0, ∞) are disjoint and Sorgenfrey-open.

Exercise 31

Is the “vertical” topology from Example 12 connected?
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Exercise 32 (Connectedness is absolute)

Like compactness, connectedness is also an “absolute” notion, in the sense similar
to the one given in Exercise 28. Turn this into a precise statement (and prove it).

Usually, when presenting standard results regarding connectedness, the arguments
all follow set-theoretic calculations with unions and intersections. Here, we take a
more “categorical” approach, focusing on functions rather than sets. The next result is
what allows us to get away with it:

Theorem 3 (Connectedness via functions)

Let (X, τ) be a topological space. Then X is connected if and only if every contin-
uous function f : X → {0, 1} is constant, where {0, 1} is equipped with its discrete
topology.

Proof: If X is disconnected and written as X = U ∪V, for U, V ⊆ X open and disjoint,
both characteristic functions χU, χV : X → {0, 1} are surjective and continuous (as
both χ−1

U (1) = χ−1
V (0) = U and χ−1

U (0) = χ−1
V (1) = V are open). Conversely, if there

is a surjective continuous function f : X → {0, 1}, then U = f−1(0) and V = f−1(1)
are open, disjoint, nonempty, and such that X = U ∪V.

We assume without further comment that {0, 1} is always equipped with its dis-
crete topology.

Proposition 23 (Intermediate Value Theorem)

Let X and Y be topological spaces, and ϕ : X → Y be a continuous function. If X
is connected, then the image ϕ(X) ⊆ Y is also connected.

Proof: Let f : ϕ(X) → {0, 1} be a continuous function, and note that the composition
f ◦ ϕ : X → {0, 1} is also continuous. By connectedness of X, it follows that f ◦ ϕ
is constant, and thus f is constant (on the image of ϕ) as required. Hence, ϕ(X) is
connected.

Remark. In the above proof, Exercise 32 would allow us to assume, without loss of
generality, that ϕ is surjective from the start.

Example 39 (Quotients of connected spaces are connected)

If (X, τ) is any connected topological space and ∼ is an equivalence relation on
X, the quotient space X/∼ is also connected, being the image of X under the con-
tinuous mapping π : X → X/∼. In particular, the real projective space RPn is
connected, being the image of the connected space Rn+1 r {0} under the contin-
uous projection π : Rn+1 r {0} → RPn.
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Exercise 33 (Connected × connected = connected)

Prove that the product of two connected topological spaces is also connected.

Proposition 24

Let X be a topological space and {Uα}α∈A be a family of connected subspaces of
X such that

⋂
α∈A Uα 6= ∅. Then, the union

⋃
α∈A Uα is connected.

Proof: Let f :
⋃

α∈A Uα → {0, 1} be a continuous
function. For each α ∈ A, as Uα is connected, the
restriction f |Uα : Uα → {0, 1} is continuous, and
hence constant, say cα ∈ {0, 1}. Now it is easy
to see that cα is in fact the same constant for all
α ∈ A: let z ∈ ⋂α∈A Uα and note that cα = f (z).
Thus f is constant and

⋃
α∈A Uα is connected.

z

Uα

Figure 24: Picking z ∈ ⋂α∈A Uα.

Here’s another concrete application of Theorem 3:

Example 40 (Connectedness of [0, 1] via functions)

The interval [0, 1] ⊆ R, with its Euclidean topology, is connected.

Let f : [0, 1]→ {0, 1} be continuous, and consider the set

I = {t ∈ [0, 1] : f (s) = f (0) for all s ∈ [0, t]}.

It is clear I is an interval with 0 ∈ I (if t ∈ I and t′ ∈ [0, t], then t′ ∈ I), allowing us
to consider b = sup I. We first claim that b ∈ I. Indeed, let (tn)n≥1 be a sequence
in I with tn ↗ b, and fix s ∈ [0, b]. If s = b, then making n → ∞ in f (tn) = f (0)
leads to f (b) = f (0), while if s ∈ [0, b) there is n ≥ 1 sufficiently large with tn ∈ I
and s < tn, so that s ∈ I as well. Finally, we claim that b = 1. Continuity of
f and openness of f−1( f (0)) yields δ > 0 such that, if x ∈ (b− δ, b + δ) ∩ [0, 1],
then f (x) ∈ f−1( f (0)). It it were b < 1 instead, we could choose ε > 0 such that
b + ε ∈ (b− δ, b + δ) ∩ [0, 1), showing that b + ε ∈ I, contradicting the definition
of b as the supremum of I. Thus I = [0, 1] and f is constant, showing that [0, 1] is
connected.

Similar arguments show that (0, 1) and [0, 1) are also connected.

To obtain more explicit examples of connected spaces from known ones, we may
directly apply Proposition 24—there is a lot of room for creativity when applying it.
When combined with Example 39, it shows that spaces obtained by “gluing” con-
nected spaces are again connected.
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Example 41 (Balls in Rn are connected)

Given any p ∈ Rn and r > 0, the open ball Br(p) is the union of radial half-open
line segments (all of which are connected) of length r starting at p and containing
it. By Proposition 24, Br(p) is connected. A similar argument shows that closed
balls are also connected (alternatively, see Exercise 35 below). More generally, any
convex subset of Rn is connected.

Example 42 (Spheres are connected)

For each integer n ≥ 1, the unit sphere Sn ⊆ Rn+1 is connected. Indeed, both
hemispheres U± = {(x0, x1, . . . , xn) ∈ Rn+1 : x0 = ±(1− x2

1 − · · · − x2
n)

1/2} are
connected, being homeomorphic to the closed unit ball in Rn.

U+

U−

Figure 25: The north and south hemispheres of Sn.

As U+ ∩U− 6= ∅ and U+ ∪U− = Sn, we may again apply Proposition 24.

You can practice further in the next three exercises how to use Theorem 3 to prove
results on connectedness without excessively relying on set-algebra.

Exercise 34

Let X be a topological space, and {Un}n≥1 be a sequence of connected subspaces
of X such that, for every n ≥ 1, we have Un ∩Un+1 6= ∅.

· · ·

Figure 26: A chained sequence of connected sets.

Show that the union
⋃

n≥1 Un is connected.

In general, interiors and boundaries of connected sets are not themselves con-
nected. For interior, consider the union of two closed balls in R2 which are tangent
to each other; for boundaries, just take a bounded interval in R. The story is different
with closures—you can explore that in the next exercise.
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Exercise 35

Let (X, τ) be a topological space, U ⊆ X be a connected subspace, and let V ⊆ X
be a subspace such that U ⊆ V ⊆ U. Show that V is connected as well. (In
particular, closures of connected sets are connected.)

Exercise 36 (Path-connectedness implies connectedness)

A topological space (X, τ) is called path-connected if whenever two points x, y ∈ X
are given, there is a continuous function γ : [0, 1]→ X (that is, a “path”) such that
γ(0) = x and γ(1) = y. Prove that every path-connected space is connected.
Hint: There are multiple ways to skin this cat. If you don’t want to use Theorem
3 you can, for example, mimic the idea from Example 41.

We conclude this section illustrating a general technique for dealing with proofs
involving connected spaces. Often, one knows that a certain property holds locally
(that is, on sufficiently small open subsets around each point), and wants to prove that
it holds globally. A very effective strategy is to consider the set consisting of the points
near which the property in question holds, and show that it is non-empty, open, and
closed. Connectedness then implies that this set must be the entire space. Here is an
example:

Proposition 25

Let (X, τ) be a topological space, and assume that it is locally path-connected, that
is, for every x ∈ X there is U ∈ τ such that U is path-connected (when equipped
with its subspace topology). If in addition (X, τ) is connected, then (X, τ) is itself
path-connected.

Proof: Fix a point z ∈ X, and consider the set A consisting of all x ∈ X for which there
is a continuous path γ : [0, 1] → X such that γ(0) = z and γ(1) = x. Considering the
constant curve cz : [0, 1] → X, given by cz(t) = z for all t ∈ [0, 1], shows that z ∈ A, so
that A 6= ∅.

We now claim that A is open. If x ∈ A and U ⊆ X is an open and path-connected
subset of X with x ∈ U, we in fact have that U ⊆ A. Indeed, if y ∈ U and γ : [0, 1]→ X
goes from z to x, while α : [0, 1] → U goes from x to y, the curve γ ∗ α : [0, 1] → X
defined by

(γ ∗ α)(t) =

{
γ(2t), if 0 ≤ t ≤ 1/2,
α(2t− 1), if 1/2 ≤ t ≤ 1,

(1.14)

is continuous3 and has (γ ∗ α)(0) = z and (γ ∗ α)(1) = y, showing that y ∈ A.

Finally, we argue that A is closed, by showing that X r A is also open. If x ∈ X r A
and U ⊆ X is an open and path-connected subset of X with x ∈ U, perhaps not

3This is not entirely trivial, and follows from the famous “pasting lemma”.
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surprisingly, we have that U ⊆ X r A. If there was a point y ∈ U ∩ A, then we could
join y to x with β : [0, 1]→ U, and then γ ∗ β : [0, 1]→ X defined as above would joint
z to x, contradicting that x ∈ X r A.

As (X, τ) is connected, it follows that A = X, as required.

Try experimenting with that technique yourself:

Exercise 37 (Locally constant functions on connected spaces are constant)

Let (X, τ) be a topological space, and f : X → R be a continuous function. As-
sume that f is locally constant: for every x ∈ X there is U ∈ τ such that x ∈ U
and f |U : U → R is constant. Show that if (X, τ) is connected, then f is constant.

Hint: Fix z ∈ X and let A = {x ∈ X : f (x) = f (z)}.

From here onwards, we will no longer denote a topological space by (X, τ), writing
just X, with the topology τ being implicitly understood—in the same way that we
simply say that V is a vector space, instead of writing the full tuple (V, K,+, ·) (or a
group is G instead of (G, ·), etc.).
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2 Multivariable calculus: derivatives as linear transfor-
mations and the IFTs

2.1 Derivatives as linear transformations

We already have a good grasp of what continuity means for arbitrary topologi-
cal spaces. Now, restricting ourselves to Euclidean spaces, we turn our attention to
differentiability. We assume that the reader has had some exposure to multivariable
calculus beyond R2 and R3, but not any familiarity with the notion of derivative as a
linear transformation. In any case the core idea, as always, is the one of “best linear
approximation”:

Definition 18 (Total derivative)

Let f : U ⊆ Rn → Rk be a function, where U ⊆ Rn is open, and p ∈ U. We say
that f is differentiable at p if there is a linear transformation T : Rn → Rk such
that

lim
h→0

‖ f (p + h)− f (p)− Th‖
‖h‖ = 0. (2.1)

Such T, if it exists, is unique and denoted by D f (p) : Rn → Rk. It is called the
total derivative of f at p. We say that f is differentiable if it is differentiable at
every point p ∈ U.

To validate the above definition, we need to prove that T is indeed unique.

Proof: Let T1 and T2 be two total derivatives of f at p, that is, assume that both of
them satisfy (2.1). By the triangle inequality, we have that

0 ≤ lim
h→0

‖T1(h)− T2(h)‖
‖h‖

≤ lim
h→0

‖ f (p + h)− f (p)− T1(h)‖
‖h‖ + lim

h→0

‖ f (p + h)− f (p)− T2(h)‖
‖h‖

= 0 + 0 = 0.

Hence

lim
h→0

‖T1(h)− T2(h)‖
‖h‖ = 0. (2.2)

Now, we fix an arbitrary vector v ∈ Rn r {0}, and argue that T1(v) = T2(v) as follows:
for any t ∈ R r {0}, linearity of T1 and T2 implies that

‖T1(v)− T2(v)‖
‖v‖ =

‖T1(tv)− T2(tv)‖
‖tv‖ , (2.3)

allowing us to set h = tv and pass to the limit t→ 0 in (2.3), so that (2.2) finally yields
‖T1(v)− T2(v)‖/‖v‖ = 0. This obviously implies that T1(v) = T2(v).
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Exercise 38

With the notation from Definition 18, show that if f is differentiable at p, then f is
continuous at p.

Once we know that such a function f is differentiable at p, we may compute D f (p)
like a directional derivative:

D f (p)v =
d
dt

∣∣∣∣
t=0

f (p + tv). (2.4)

The notation D f (p)v, in my experience teaching this topic, can be a huge source of
confusion. The original function is f , but D f is not a linear transformation; instead, it
is the function which assigns to p the linear transformation D f (p) : Rn → Rk. Then
D f (p)v ∈ Rk is the vector obtained by applying the linear transformation D f (p) to the
vector v. To justify (2.4) (its right side is usually denoted by (∂ f /∂v)(p)), assume for
simplicity that ‖v‖ = 1, and compute the limit (2.1) along the line spanned by v (this
is allowed because we assume that f is differentiable at p, so (2.1) may be computed
along any direction):

lim
t→0

‖ f (p + tv)− f (p)− t(∂ f /∂v)(p)‖
‖tv‖ = lim

t→0

∥∥∥∥ f (p + tv)− f (p)
t

− ∂ f
∂v

(p)
∥∥∥∥

=

∥∥∥∥lim
t→0

f (p + tv)− f (p)
t

− ∂ f
∂v

(p)
∥∥∥∥

= 0.

(2.5)

In particular, we have that D f (p)ej = (∂ f /∂xj)(p) for every j = 1, . . . , n, where
e1, . . . , en is the standard basis of Rn and (∂ f /∂xj) ∈ Rk is the vector containing the
partial derivatives relative to xj of all k components of f . This means that D f (p) does
contain information about all partial derivatives of all components of f at p and, in
particular, it tells us how to compute the matrix representation of D f (p) relative to the
standard bases of Rn and Rk. It is given by

J f (p) =


∂ f1/∂x1 ∂ f1/∂x2 · · · ∂ f1/∂xn

∂ f2/∂x1 ∂ f2/∂x2 · · · ∂ f2/∂xn
...

... . . . ...

∂ fk/∂x1 ∂ fk/∂x2 · · · ∂ fk/∂xn



∣∣∣∣∣∣∣∣∣∣∣∣
p

, (2.6)

where f = ( f1, . . . , fk). The matrix J f (p) ∈ Rk×n (it is not in Rn×k!) is called the
Jacobian matrix of f at p. We will often identify it with D f (p) itself, but what we care
about here is that there are two possible algorithms to compute it:

(1) Find the gradients ∇ f1(p), . . . ,∇ fk(p) ∈ Rn and place them as the rows of J f (p),
or;
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(2) Compute the vector partial derivatives (∂ f /∂x1)(p), . . . , (∂ f /∂xk)(p) ∈ Rk and
put them into the columns of J f (p).

The other reason why (2.4) is very relevant is that, even though we might not know
a priori whether f is differentiable at p, it gives us the unique candidate to the quantity
Th to be tested when computing the limit (2.1); of course, we replace v with h in (2.4).
More precisely, we first compute the right side of (2.4) with v replaced with h, then
plug the result into (2.1): if the limit is zero, then f is differentiable and our guess
for the definition of D f (p) is correct, while if the limit does not exist, then f is not
differentiable at p (because the only viable candidate failed). We illustrate this idea
with the examples below:

Example 43 (Differentiable curves)

Let I ⊆ R be an open interval, and consider a curve α : I → Rn, explicitly
written as α(t) = (x1(t), . . . , xn(t)), for suitable functions xi : I → R. If each
xi is differentiable (in the sense of single-variable calculus) at a point t0 ∈ I,
then α is differentiable at t0 in the sense of Definition (18), with the correspond-
ing linear transformation Dα(t0) : R → Rn given by Dα(t0)h = hα′(t0), where
α′(t0) = (x′1(t), . . . , x′n(t0)) is the classical velocity vector of α. In particular, we
see that Dα(t0) is the zero transformation if and only if α′(t0) is the zero vector;
outside of this degenerate case, Dα(t0) is essentially a parametrization for the line
spanned by α′(t0) (that is, the tangent line to α at t0, shifted to pass through the
origin). To prove that Dα(t0) is indeed what we are claiming, we compute:

lim
h→0

‖α(t0 + h)− α(t0)− hα′(t0)‖
|h| = lim

h→0

∥∥∥∥α(t0 + h)− α(t0)

h
− α′(t0)

∥∥∥∥
= lim

h→0

(
n

∑
i=1

(
xi(t0 + h)− xi(t0)

h
− x′i(t0)

)2
)1/2

=

(
n

∑
i=1

(x′i(t0)− x′i(t0))
2

)1/2

= 0.

In particular, if n = 1 and we consider
a single-variable real function f : I → R,
differentiable at a point x0 ∈ I, its total
derivative D f (x0) : R→ R must be given
by multiplication by a scalar (being a lin-
ear operator in a one-dimensional vector
space): this scalar is the classical deriva-
tive f ′(x0). The Jacobian matrix is a 1× 1
matrix, containing the number f ′(x0) and
nothing else.

α′(t0)

α

Rn

α(t0)

Figure 27: The velocity vector of α at t0.
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Example 44 (Differentiable scalar fields)

Let U ⊆ Rn be open, and consider a function f : U ⊆ Rn → R, differentiable at
a point p ∈ U. The total derivative D f (p) : Rn → R is a linear functional, and
therefore it may be represented as a vector: the gradient. Namely, we have that
D f (p)v = 〈∇ f (p), v〉, where 〈·, ·〉 denotes the standard inner product in Rn.

Exercise 39

Verify in the above example that the expression given for D f (p)v is indeed correct.

Example 45 (Linear transformations)

Let T : Rn → Rk be a linear transformation. What is the best linear approximation
to something which is already linear? Obviously, itself. So, we claim that T is
differentiable everywhere, with total derivative given by DT(p) = T for each
p ∈ Rn (that is, DT(p)v = T(v) for every v ∈ Rn). Indeed, by linearity of T we
have that

‖T(p + h)− T(p)− T(h)‖
‖h‖ = 0

even before passing to the limit.

Example 46 (Bilinear forms)

Let B : Rn ×Rk → Rm be a bilinear form. As

d
dt

∣∣∣∣
t=0

B(x + tv, y + tw) =
d
dt

∣∣∣∣
t=0

B(x, y) + t(B(x, w) + B(v, y)) + t2B(v, w)

= B(x, w) + B(v, y),

we claim that B is differentiable, with total derivative DB(x, y) : Rn ×Rk → Rm

given by DB(x, y)(v, w) = B(x, w) + B(v, y) for all (v, w) ∈ Rn × Rm. Indeed,
setting ‖B‖ = sup‖v‖=‖w‖=1 ‖B(v, w)‖ < ∞, we have that

0 ≤ ‖B(x + v, y + w)− B(x, y)− (B(x, w) + B(v, y))‖√
‖v‖2 + ‖w‖2

=
‖B(v, w)‖√
‖v‖2 + ‖w‖2

≤ ‖B‖‖v‖‖w‖√
‖v‖2 + ‖w‖2

Making (v, w) → (0, 0) in the above and using that ‖w‖/
√
‖v‖2 + ‖w‖2 → 0, it

follows that the proposed expression for DB(x, y) does verify (2.1), which means
that it is correct.

Now, let’s see a couple of more concrete examples:

Page 52



SMOOTH MANIFOLDS IVO TEREK

Example 47

Let f : R2 → R2 be given by f (x, y) = (x2 − y2, 2xy). We will soon have a quick
way of checking whether things are differentiable without resorting to the limit-
definition all the time. Taking this for granted here, we have that

D f (x, y) =

2x −2y

2y 2x

 .

Identifying elements of R2 with column vectors we have, for instance, that

D f (2, 1)(3, 4) =

4 −2

2 4

3

4

 =

 6

18

 .

Example 48

Let f : R3 → R4 be given by f (x, y, z) = (xz, yz, xy, xyz). We compute its total
derivative at an arbitrary point (x, y, z) ∈ R3 as

D f (x, y, z) =


z 0 x

0 z y

y x 0

yz xz xy

 .

To compute, for instance, D f (1, 1, 0)(3, 2, 2) ∈ R4, we evaluate

D f (1, 1, 0)(3, 2, 2) =


0 0 1

0 0 1

1 1 0

0 0 1




3

2

2

 =


2

2

5

2

 .

In other words, D f (1, 1, 0)(3, 2, 2) = (2, 2, 5, 2).

Exercise 40

Compute D f (2, 3, 4, 4)(0, 1, 1, 0), for the function f : R4 → R2 explicitly defined
by f (x, y, z, w) = (xy2 + zw, yew + xz2).
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Theorem 4 (Chain rule)

Let U ⊆ Rn and V ⊆ Rk be open sets, and f : U ⊆ Rn → Rk and g : V ⊆ Rk → Rm

be functions such that f (U) ⊆ V, with f differentiable at some point p ∈ U and g
differentiable at the point f (p) ∈ V. Then g ◦ f : U ⊆ Rn → Rm is differentiable
at p, and the relation D(g ◦ f )(p) = Dg( f (p)) ◦D f (p).

Remark. The slogan is “the derivative of a composition is the composition of the
derivatives”, once the points of evaluation are correct (for example, Dg(p) does not
make sense since p is in the domain of f , not of g). Consider the diagram

U ⊆ Rn V ⊆ Rk Rmf

g◦ f

g

and now “apply D to it”:

Rn Rk RmD f (p)

D(g◦ f )(p)

Dg( f (p))

Recall that in the case where n− k = 1, the big idea was that one wants to write

g( f (x + h))− g( f (x))
h

=
g( f (x + h))− g( f (x))

f (x + h)− f (x)
· f (x + h)− f (x)

h
(2.7)

and take the limit as h → 0 along with continuity of f at the point x to conclude that
(g ◦ f )′(x) = g′( f (x)) f ′(x), but this argument fails if f is constant near x (causing a
division by zero in (2.7)). This same subtlety must be dealt with in the general case;
see [24, Theorem 2.2, p. 19] or [19, Theorem 7.1, p. 56] for more details.

Corollary 4 (Other operational rules)

Let f : U ⊆ Rn → Rk and g : U ⊆ Rn → Rm be functions, where U ⊆ Rn is
open, and p ∈ U. If f and g are differentiable at p, the following functions are also
differentiable at p and have the indicated derivatives at p:

(i) f + g (if k = m), with D( f + g)(p) = D f (p) + Dg(p);

(ii) 〈 f , g〉 (if k = m), with D(〈 f , g〉)(p)v = 〈D f (p)v, g(p)〉+ 〈 f (p), Dg(p)〉;

(iii) f g (if k = 1), with D( f g)(p) = g(p)D f (p) + f (p)Dg(p);

(iv) f /g (if m = 1), with D( f /g)(p) = (g(p)D f (p) − f (p)Dg(p))/g(p)2, pro-
vided that g(p) 6= 0.
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Proof: The argument is similar to the one used in the proof of Proposition 4 (p. 18).
First, the addition function a : R2k = Rk ×Rk → Rk is linear, and f + g = a ◦ ( f , g),
so the chain rule combined with Example 45 yields (i). Considering the bilinear form
〈·, ·〉 : Rk ×Rk → R, with 〈 f , g〉 = 〈·, ·〉 ◦ ( f , g), and combining Example 46 with the
chain rule, gives (ii). Noting that m : R×Rk → Rk given by m(λ, x) = λx is bilinear
and that the derivative of d : Rk × (R r {0}) → Rk defined by d(x, λ) = m(1/λ, x) is
given by Dd(x, λ)(µ, y) = (λy− µx)/λ2, (iii) and (iv) follow from the chain rule.

Exercise 41

Let f : R3 → R2 satisfy the conditions f (0, 0, 0) = (1, 2) and

D f (0, 0, 0) =

1 2 3

0 0 1

 .

If g : R2 → R2 is defined by g(x, y) = (x + 2y + 1, 3xy), compute D(g ◦ f )(0, 0, 0).

Exercise 42

Let f : R2 → R3 and g : R3 → R2 be given by

f (x1, x2) = (e2x1+x2 , 3x2 − cos x1, x2
1 + x2 + 2),

g(y1, y2, y3) = (3y1 + 2y2 + y2
3, y2

1 − y3 + 1).

Compute D(g ◦ f )(0, 0) and D( f ◦ g)(0, 0, 0).

Hint: It is not a good idea to evaluate g ◦ f and f ◦ g explicitly.

Exercise 43

Let U ⊆ Rn be open and f : U ⊆ Rn → Rk be differentiable, and consider the
functions ϕ : U → Rn ×Rk and F : U ×Rk → Rk given by

ϕ(x) = (x, f (x)) and F(x, y) = y− f (x),

respectively. Show that both ϕ and F are differentiable, and that the relation
ker DF(x0, y0) = Im Dϕ(x0) holds for all x0 ∈ U and y0 ∈ Rk.

For the next exercise, we use the following definition: differentiable analogues of
homeomorphisms.
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Definition 19 (Diffeomorphism)

Let U, V ⊆ Rn be open subsets, and f : U → V be a function. We say that f is a
diffeomorphism if f is a differentiable bijection with differentiable inverse.

Exercise 44

Let f , g, h : Rn → Rn be differentiable functions, with h a diffeomorphism, and
such that f = h−1 ◦ g ◦ h. Show that h(p0) is a fixed point of g whenever p0 is a
fixed point of f , and that D f (p0), Dg(h(p0)) : Rn → Rn have the same eigenval-
ues.

Exercise 45

Let f : Rn → Rn be a differentiable function, and consider its norm-squared func-
tion, F : Rn → R given by F(x) = ‖ f (x)‖2. Note that F is also differentiable.

(a) Compute DF(x)h explicitly.

(b) Show that if ‖ f (x)‖ = 1 for all x ∈ Rn, then D f (x) : Rn → Rn is not invertible.
Hint: argue that D f (x) cannot be surjective.

2.2 Regularity and Hadamard’s lemma

Let U ⊆ Rn be an open set, and f : U ⊆ Rn → Rk be a function. We already
know what it means for f to be differentiable on U and, if this is the case, we may now
consider D f : U → Lin(Rn, Rk), where Lin(Rn, Rk) ∼= Rk×n is the vector space of all
linear transformations from Rn to Rk. Namely, D f assigns to each point p ∈ U the
linear transformation D f (p). As D f itself is now a function from an open subset of
a Euclidean space to another Euclidean space, it makes sense for us to ask ourselves
whether D f is continuous or differentiable.

Definition 20 (Cr-regularity)

Let U ⊆ Rn be an open set, and f : U ⊆ Rn → Rk be a differentiable function. We
say that:

• f is of class C1 if D f : U → Lin(Rn, Rk) is continuous.

• f is of class Cr, for r ≥ 2, if D f : U → Lin(Rn, Rk) is of class Cr−1.

• f is of class C∞ if it is of class Cr for every r ≥ 1.

Functions of class C∞ are usually just called smooth.
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At this point, it should be rather clear that sums, products, and compositions of
functions of class Cr are again of class Cr.

Later, we will restrict our attention to objects which are of class C∞, leaving the
cases of regularity Cr for finite r aside. The cheap reason is that we don’t want to
bother with keep tracking of how many derivatives each proof to come requires. The
more honest reason is that, to some extent that will be made precise later, there is
“no loss of generality” in assuming that things are C∞ when developing the theory of
smooth manifolds.

Exercise 46 (C∞ ( Cω)

Consider the function f : R→ R given by

f (x) =

{
e−1/x, if x > 0,
0, if x ≤ 0.

(a) Show by induction that for x > 0 and k ≥ 0, the k-th derivative f (k)(x) is of
the form p2k(1/x)e−1/x for some polynomial p2k(y) of degree 2k in y.

(b) Prove that f is of class C∞ on R and that f (k)(0) = 0 for all k ≥ 0.

This means that the Taylor series of f at x = 0, which is the zero series (and hence
has infinite radius of convergence), does not converge to f on any neighborhood
of x = 0. In other words, real-analiticity is strictly stronger than smoothness.

The rest of this section regards a technical result we will need when discussing
tangent vectors to smooth manifolds later.

Definition 21 (Starshaped sets)

A subset U ⊆ Rn is said to be starshaped
around a point p ∈ U if whenever x ∈ U
and t ∈ [0, 1] are given, we have that

p + t(x− p) ∈ U.

In other words, the set U is starshaped if
all line segments with endpoints in U are
entirely contained in U.

The point p is sometimes referred to as “the
center of the star”; see Figure 28 for context.

p

U

Figure 28: A starshaped subset of Rn.

Example 49

Open and closed balls in Rn are starshaped around their centers. More generally,
convex sets are starshaped around all of its points. The argument in Example 41
(p. 46) also shows that any starshaped set is connected.
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Theorem 5 (Hadamard’s Lemma)

Let f : U ⊆ Rn → R be a smooth function, where U is open and starshaped
around a point p ∈ U. Then, there are smooth functions g1, . . . , gn : U → R such
that

f (x) = f (p) +
n

∑
i=1

(xi − pi)gi(x), (2.8)

where x = (x1, . . . , xn) and p = (p1, . . . , pn). In particular, gi(p) = (∂ f /∂xi)(p)
for each i = 1, . . . , n.

Remark. This is essentially a first-order Taylor expansion4, but the would-be error
term gets absorbed into the functions gi. Their value at p equals the partial derivatives
of f because, there, the error is zero.

Proof: As U is starshaped, we have that p + t(x− p) ∈ U for every t ∈ [0, 1], and so
we may evaluate f along this line segment. Now, note that

d
dt

f (p + t(x− p)) = D f (p + t(x− p))(x− p)

= 〈∇ f (p + t(x− p)), x− p〉

=
n

∑
i=1

(xi − pi)
∂ f
∂xi

(p + t(x− p)).

Then, integrate everything to obtain

f (x)− f (p) =
∫ 1

0

n

∑
i=1

(xi − pi)
∂ f
∂xi

(p + t(x− p))dt. (2.9)

If we set

gi(x) =
∫ 1

0

∂ f
∂xi

(p + t(x− p))dt,

then (2.9) becomes (2.8). It is clear that gi(p) = (∂ f /∂xi)(p).

Exercise 47

Establish a second-order version of Hadamard’s Lemma: if f : U ⊆ Rn → R is
smooth, with U ⊆ Rn open and starshaped, and p ∈ U is given, show that there
are smooth functions gij : U → R such that

f (x) = f (p) +
n

∑
i=1

(xi − pi)
∂ f
∂xi

(p) +
n

∑
i,j=1

(xi − pi)(xj − pj)gij(x),

and gij(p) + gji(p) = (∂2 f /∂xi∂xj)(p).

4Think of f (x) = f (p) + ∑n
i=1(xi − pi)

∂ f
∂xi

(p) + R(x), where lim
x→p

R(x)
‖x− p‖ = 0.
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2.3 The Inverse and Implicit Function Theorems

The next definition—later generalized to the setting of smooth manifolds—plays a
central role in the theory.

Definition 22 (Immersions and submersions between Euclidean spaces)

Let f : U ⊆ Rn → Rk be differentiable at a point p ∈ U, where U ⊆ Rn is open.
We say that:

(i) f is an immersion at p if D f (p) : Rn → Rk is injective.

(ii) f is a submersion at p if D f (p) : Rn → Rk is surjective.

(iii) the rank of f at p is the dimension of the image of D f (p).

If we say that f is an immersion or submersion without specifying the point p, we
mean that f is so at all points p ∈ U.

With the above notation, note that f being an immersion implies that n ≤ k, while
if it is a submersion it must be the case that n ≥ k. Here are some examples:

Example 50 (Regular curves)

A differentiable curve α : I → Rn, where I ⊆ R is an open interval, is an immer-
sion at t0 ∈ I if and only if α′(t0) 6= 0. This is because the only way the derivative
Dα(t0) : R→ Rn may fail to be injective is if Dα(t0) = 0, and this is equivalent to
vanishing of the velocity vector α′(t0), cf. Example 43. If α′(t) 6= 0 for all t ∈ I, we
say that α is a regular curve.

Example 51 (Real-valued submersions)

A differentiable function f : U ⊆ Rn → R, where U ⊆ Rn is open, is a submersion
at a point p ∈ U if and only if D f (p) 6= 0 (or, equivalently,∇ f (p) 6= 0, cf. Example
44). This is because D f (p) : Rn → R, being a linear functional, is either zero or
surjective.

Example 52 (Regular parametrized surfaces)

A differentiable function f : U ⊆ R2 → Rn, where U ⊆ R2 is open, is an im-
mersion at (u0, v0) ∈ U if and only if and only if the partial derivatives ∂ f /∂u
and ∂ f /∂v are linearly independent at (u0, v0). This condition essentially means
that the image f (U) ⊆ R2 “looks like a surface” near the point f (u0, v0), with a
well-defined tangent plane at that point (spanned by the partial derivatives of f
at (u0, v0)).
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Rn

f

u

v

U

f (u0, v0)
fu(u0, v0)

fv(u0, v0)

(u0, v0)

Figure 29: Linear independence of fu and fv at (u0, v0).

If this holds for every point (u0, v0) ∈ U, we say that f is a regular parametrized
surface.

Example 53 (Inclusions and projections)

Let n, m ≥ 1 be integers.

(i) The inclusion f : Rn → Rn ×Rm defined by f (x) = (x, 0) is an immersion,
as D f (x) : Rn → Rn ×Rm given by D f (x)v = (v, 0) is injective.

(ii) The projection f : Rn ×Rm → Rn defined by f (x, y) = x is a submersion, as
D f (x, y) : Rn ×Rm → Rn given by D f (x, y)(v, w) = v is surjective.

In both cases, the rank of f is maximal (and equal to n).

These last examples are locally universal: “up to a change of coordinates”, every
immersion and every submersion “locally look like” the above. To make precise sense
of this, we need the Inverse Function Theorem and the Implicit Function Theorem.

Theorem 6 (The Inverse Function Theorem)

Let U ⊆ Rn be an open subset, f : U ⊆ Rn → Rn be a function of class Ck, with
k ≥ 1, and p ∈ U be such that D f (p) : Rn → Rn is invertible. Then, there are
open subsets V, W ⊆ Rn, with p ∈ V and f (p) ∈ W, such that f |V : V → W is
invertible, with inverse ( f |V)−1 : W → V of the same class Ck. Finally, the relation
D( f−1)( f (p)) = D f (p)−1 holds (in fact, for any point in V).

For a proof, see [24, Theorem 2.11]. The core idea here is that good properties that
D f (p) has (e.g., invertibility) translate into good properties of f itself, near p. The
formula for the derivative of the local inverse of f is a direct consequence of the chain
rule: from f−1( f (p)) = p it follows that D( f−1)( f (p)) ◦D f (p) = IdRn .
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Example 54

Consider again the function f : R2 → R2 given by f (x, y) = (x2 − y2, 2xy), from
Example 47. This function is not injective (and hence not invertible), due to the
relation f (−x,−y) = f (x, y), valid for all (x, y) ∈ R2. However, we have that

det D f (x, y) = det

2x −2y

2y 2x

 = 4(x2 + y2) > 0

for every (x, y) 6= (0, 0). The Inverse Function Theorem says that f is locally
invertible with smooth inverse near every point (x, y) 6= (0, 0). On the other
hand, f is not invertible on any neighborhood of (0, 0)!

Exercise 48

Let f : R2 → R2 be given by f (x, y) = (ex cos y, ex sin y).

(a) Show that f is injective on U = R× (0, 2π).

(b) Determine the image f (U).

(c) If g = f−1, where defined, compute Dg(0, 1).

To state the Implicit Function Theorem, we need to understand how “fat” partial
derivatives work. The idea is the same as for classical partial derivatives: we fix one of
the variables and differentiate the function with respect to the other variable. The only
difference is that, here, these variables are vectors, and differentiating means taking a
total derivative. We have the following definition:

Definition 23 (Partial derivatives redux)

Let f : U ⊆ Rn ×Rk → Rm be a differentiable function, where U ⊆ Rn ×Rk is
an open subset. Given (x0, y0) ∈ U, the partial derivative Dx f (x0, y0) : Rn → Rm

is defined to be the total derivative at x0 of the function x 7→ f (x, y0). Similarly,
the partial derivative Dy f (x0, y0) : Rk → Rm is the total derivative at y0 of the
function y 7→ f (x0, y).

By design, we have that D f (x0, y0)(v, w) = Dx f (x0, y0)v + Dy f (x0, y0)w for all
(v, w) ∈ Rn ×Rk.

At this point, examples involving only two or three variables in the domain are “too
small” to be instructive. So, we need to consider something slightly more complicated
to properly illustrate Definition 23.
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Example 55

Let f : R5 → R3 be given by

f (x, y, z, r, s) =
(
x2y + z sin(r + s), xy + zr + s2, xez + yers).

At any point (x, y, z, r, s) ∈ R5 we have that

D f (x, y, z, r, s) =


2xy x2 sin(r + s) z cos(r + s) z cos(r + s)

y x r z 2s

ez ers xez ysers yrers

 ,

and it breaks into two partial-derivative blocks

D(x,y,z) f (x, y, z, r, s) =


2xy x2 sin(r + s)

y x r

ez ers xez


and

D(r,s) f (x, y, z, r, s) =


z cos(r + s) z cos(r + s)

z 2s

ysers yrers

 .

Of course, there are other possible block-partitions for D f (x, y, z, r, s), such as the
one involving D(x,y) f (x, y, z, r, s) and D(z,r,s) f (x, y, z, r, s), etc.

Understanding this new mechanism with partial derivatives in higher generality
can be instructive: let f : Rn1 × · · · ×Rnr → Rm1 × · · · ×Rms be a differentiable func-
tion, and write it in components as f = ( f1, . . . , fs), where for each j = 1, . . . , s we
have that f j : Rn1 × · · · ×Rnr → Rmj is differentiable. Writing x = (x1, . . . , xr), where
xi ∈ Rni for each i = 1, . . . , r, we then have that

D f (x) =


Dx1 f1(x) · · · Dxr f1(x)

... . . . ...

Dx1 fs(x) · · · Dxr fs(x)

 (2.10)

in block form, where Dxi f j(x) ∈ Rmj×ni for all i = 1, . . . , r and j = 1, . . . , s. When
n1 = · · · = nr = m1 = · · · = ms = 1, each block becomes a classical partial deriva-
tive ∂ f j/∂xi, and (2.10) reduces to (2.6). You can think of this as the first algorithm
described to compute Jacobian matrices, with the difference that each entry of the
“gradient” of f j is now a block matrix itself.

In any case, we proceed:
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Theorem 7 (The Implicit Function Theorem)

Let f : U ⊆ Rn×Rk → Rk be a function of class Cr on an open subset U ⊆ Rn ×Rk,
with r ≥ 1, and (x0, y0) ∈ U be such that Dy f (x0, y0) : Rk → Rk is invertible. Then,
if c = f (x0, y0), there are open subsets V ⊆ Rn and W ⊆ Rk such that x0 ∈ V and
y0 ∈ W, with V ×W ⊆ U, and a function ϕ : V → W of the same class Cr such
that

whenever (x, y) ∈ V ×W, we have f (x, y) = c ⇐⇒ y = ϕ(x). (2.11)

Finally, for any x ∈ V we have that Dϕ(x) = −Dy f (x, ϕ(x))−1 ◦Dx f (x, ϕ(x)).

Remark. The real content of the theorem is that f−1(c)∩ (V×W) = Gr(ϕ), that is, the
inverse image f−1(c) locally looks like the graph of a function of the same regularity
as f , near the starting point (x0, y0), cf. Figure 30.

Rn

Rk Rk

f

c

x0

y0

f−1(c)

V

W

Figure 30: The relation f−1(c) ∩ (V ×W) = Gr(ϕ): the part of f−1(c) inside the box
V ×W is the graph of a Cr function ϕ : V → W. Invertibility of Dy f (x0, y0) : Rk → Rk

means that the tangent line-segment to f−1(c), indicated in black, is not horizontal.

Proof: We start by considering the auxilliary function F : U → Rn × Rk given by
F(x, y) = (x, f (x, y)), which is of class Cr since f is, and compute its total derivative
as

DF(x0, y0) =

 Idn 0

Dx f (x0, y0) Dy f (x0, y0)

 .

It is invertible since Dy f (x0, y0) is. Thus we may apply the Inverse Function Theo-
rem to F, obtaining a local inverse F−1 : Z ⊆ Rn ×Rk → V0 ×W ⊆ Rn ×Rk of class
Cr; here, Z ⊆ Rn × Rk, as well as V0 ⊆ Rn and W ⊆ Rk, are all open. Such in-
verse, however, is necessarily of the form F−1(u, v) = (u, h(u, v)) for some function
h : Z →W of class Cr. With this in place, we define ϕ : V → W by ϕ(x) = h(x, c),
where V = {x ∈ Rn : x ∈ V0 and (x, c) ∈ Z} (it is open in Rn). To establish (2.11), note
that for every x ∈ V we have that

(x, c) = FF−1(x, c) = F(x, h(x, c)) = F(x, ϕ(x)) = (x, f (x, ϕ(x))),
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leading to c = ϕ(x); conversely, if (x, y) ∈ V ×W has f (x, y) = c, then (x, c) = F(x, y)
means that F(x, y) = F(x, ϕ(x)), and injectivity of F in this region yields y = ϕ(x).

It remains to establish the formula for the derivative of ϕ. However, it suffices to
differentiate the relation f (x, ϕ(x)) = c using the chain rule, to obtain the relation
Dx f (x, ϕ(x)) + Dy f (x, ϕ(x)) ◦ Dϕ(x) = 0. Invertibility of Dy f (x, ϕ(x)) allows us to
solve for Dϕ(x), as required.

Let’s see one concrete example:

Example 56

Let f : R4 → R2 be the (clearly smooth) function given by the formula

f (x, y, z, w) =
(
ez+w + x(z2 + w2) , sin(z + 2w) + x + y

)
.

Question: Can we describe the set in R4 given by the equation f (x, y, z, w) = (1, 0) as
the graph of a function (z, w) = ϕ(x, y), near the origin (x, y, z, w) = (0, 0, 0, 0)? Or
equivalently, can we solve the system{

ez+w + x(z2 + w2) = 1
sin(z + 2w) + x + y = 0

for z and w as functions of x and y near the origin?

We compute the partial derivative of f relative to (z, w) as

D(z,w) f (x, y, z, w) =

 ez+w + 2xz ez+w + 2xw

cos(z + 2w) 2 cos(z + 2w)

 ,

and evaluate it at the origin:

D(z,w) f (0, 0, 0, 0) =

1 1

1 2

 .

Answer: As the latter matrix is invertible, yes!

Since f (0, 0, 0, 0) = (1, 0), there are open subsets V, W ⊆ R2, with (1, 0) ∈ V and
(0, 0) ∈ W, and a smooth function ϕ : V → W such that whenever (x, y) ∈ V and
(z, w) ∈W, we have that

f (x, y, z, w) = (1, 0) ⇐⇒ (z, w) = ϕ(x, y).

The common abuse of notation, in a situation like this, would be to write the func-
tion ϕ as ϕ(x, y) = (z(x, y), w(x, y)), so that Dϕ contains all four partial deriva-
tives ∂z/∂x, ∂z/∂y, ∂w/∂x, and ∂w/∂y. In any case, we may also find Dϕ(0, 0)
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with the chain rule: from f (x, y, ϕ(x, y)) = (1, 0) it follows that

D(x,y) f (0, 0, 0, 0) + D(z,w) f (0, 0, 0, 0) ◦Dϕ(0, 0) = 0,

which reads as 0 0

1 1

+

1 1

1 2

Dϕ(0, 0) =

0 0

0 0

 ,

and leads to

Dϕ(0, 0) = −

1 1

1 2

−1 0 0

1 1

 =

 1 1

−1 −1

 .

(For example, the value of ∂z/∂x at (x, y) = (0, 0) is 1, while ∂w/∂x at the same
point is −1.)

Exercise 49

Let F : R2 → R be a function of class C2, with F(0, 0) = 0 and total derivative
given by DF(0, 0) = [2 3].

(a) Show that the “surface” F(x + 2y + 3z− 1, x3 + y2− z2) = 0 can be expressed,
near the point (−2, 3, 1), as the graph of a C2 function z = z(x, y).

(b) Compute (∂z/∂y)(−2, 3).

As it turns out, the Implicit and Inverse Function Theorems are logically equiva-
lent to each other. The next exercise gives you a guide to derive the Inverse Function
Theorem from the Implicit Function Theorem:

Exercise 50 (From Implicit to Inverse)

Here, we assume that the Implicit Function Theorem is true. Let f : U ⊆ Rn → Rn

be a function of class Cr, with r ≥ 1, and let x0 ∈ U be such that D f (x0) : Rn → Rn

is an isomorphism.

(a) Consider the function F : U ×Rn ⊆ R2n → Rn given by F(x, y) = f (x)− y. It
has F(x0, f (x0)) = 0. Show that DxF(x0, f (x0)) : Rn → Rn is an isomorphism.

(b) Explain how this implies the existence of neighborhoods V and W of x0 and
f (x0), respectively, together with a function ϕ : W → V having the property
that if (x, y) ∈ V ×W, then F(x, y) = 0 if and only if x = ϕ(y).

(c) Reducing V and W if needed, we may assume that V ⊆ f−1(W). Then con-
clude that f |V is a bijection onto its image, with ( f |V)−1 = ϕ, by showing that
both ϕ( f (x)) = x and f (ϕ(y)) = y for all (x, y) ∈ V ×W.

We are now ready to establish the local classifications of immersions and submer-
sions:
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Proposition 26 (Local form of immersions)

Let f : U ⊆ Rn → Rn+k be a function of class Cr, with r ≥ 1, where U ⊆ Rn is
open, and assume that f is an immersion at x0 ∈ U. Then, there are open subsets
V ×W and Z of Rn+k ∼= Rn ×Rk containing (x0, 0) and f (x0), respectively, and a
Cr diffeomorphism ψ : Z → V ×W such that (ψ ◦ f )(x) = (x, 0) for every x ∈ V.

Proof: By applying a permutation of the axes in Rn+k if needed, we may assume that
f (x) = (u(x), v(x)), with u(x) ∈ Rn, v(x) ∈ Rk, and Du(x0) : Rn → Rn invertible.
Now, we consider the auxiliary function (of the same class Cr) F : U × Rk → Rn+k

given by F(x, y) = (u(x), v(x) + y), and compute its total derivative as

DF(x0, 0) =

Du(x0) 0

Dv(x0) Idk

 .

It is invertible since Du(x0) is. The Inverse Function Theorem now yields the re-
quired neighborhoods V×W and Z in Rn+k ∼= Rn×Rk of (x0, 0) and f (x0), on which
F|V×W : V ×W → Z is invertible with Cr inverse. Setting ψ = (F|V×W)−1, we simply
compute (ψ ◦ f )(x) = (ψ ◦ F)(x, 0) = (x, 0), for every x ∈ V.

Corollary 5 (Immersions are locally injective)

Every immersion of class Cr, with r ≥ 1, is locally injective.

Proof: Inclusions are injective.

Proposition 27 (Local form of submersions)

Let f : U ⊆ Rn+k → Rn be a function of class Cr, with r ≥ 1, where U ⊆ Rn+k

is open, and assume that f is a submersion at (x0, y0) ∈ U. Then, there are open
subsets V ×W and Z in Rn+k containing ( f (x0, y0), y0) and (x0, y0), respectively,
and a Cr diffeomorphism ψ : V ×W → Z such that ( f ◦ ψ)(x, y) = x for every
(x, y) ∈ V ×W.

Proof: By applying a permutation of the axes in Rn+k if needed, we may assume that
Dx f (x0, y0) : Rn → Rn is invertible. Now, we consider the auxilliary function (of the
same class Cr) F : U → Rn+k given by F(x, y) = ( f (x, y), y), and compute its total
derivative as

DF(x0, y0) =

Dx f (x0, y0) Dy f (x0, y0)

0 Idk

 .

It is invertible since Dx f (x0, y0) is. By the Inverse Function Theorem, there are neigh-
borhoods Z and V ×W in Rn+k of (x0, y0) and ( f (x0, y0), y0), respectively, on which
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F|Z : Z → V ×W is invertible with Cr inverse. This inverse is necessarily of the form
F−1(u, v) = (h(u, v), v) for some function h of class Cr, which has f (h(u, v), v) = u for
all (u, v) ∈ V ×W (as a consequence of (F ◦ F−1)(u, v) = (u, v)). It follows that if we
set ψ = (F|Z)−1, we have that ( f ◦ ψ)(u, v) = u for all (u, v) ∈ V ×W, as required (we
now rename (u, v) back to (x, y)).

Corollary 6 (Submersions are open)

Every submersion of class Cr, with r ≥ 1, is an open mapping.

Proof: Euclidean projections are open mappings (cf. Example 17, p. 22).

Exercise 51

Give proofs of Propositions 26 and 27 directly using the Implicit Function Theo-
rem instead of the Inverse Function Theorem.

We will revisit and expand on the ideas discussed in this section once we have the
language of smooth manifolds available to us.
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3 From topological manifolds to smooth manifolds

3.1 Locally Euclidean spaces and examples

Armed with the tools from multivariable calculus seen in Section 2, we return to
topology and move towards the definition of a smooth manifold.

Definition 24 (Locally Euclidean spaces)

Let X be a topological space, and n ≥ 0 be an integer.

• An n-dimensional chart for X is a pair (U, ϕ), where U ⊆ X is open and
ϕ : U → ϕ(U) ⊆ Rn is a homeomorphism, with the image ϕ(U) being an
open subset of Rn.

• We say that X is locally Euclidean of dimension n (or, locally Rn) if for
every p ∈ X there is an n-dimensional chart (U, ϕ) with p ∈ U. In this case
we say that (U, ϕ) is a chart for X around p and, if ϕ(p) = 0, that (U, ϕ) is
centered at p. The dimension of X is defined to be dim X = n.

U

ϕ

X
Rn

ϕ(U)p

Figure 31: The definition of a locally Euclidean space.

Remark. If an open subset of Rn is homeomorphic to an open subset of Rm, then we
necessarily have that n = m. This is a very advanced theorem, called Invariance of
Domain. It in particular implies that if (U, ϕ) is an n-dimensional chart and (V, ψ) is
an m-dimensional chart, and U ∩ V 6= ∅, then n = m: just consider the homeomor-
phism ψ ◦ ϕ−1 : ϕ(U ∩ V) ⊆ Rn → ψ(U ∩ V) ⊆ Rm. It now follows that for each
n ≥ 0, the set

{p ∈ X : there is an n-dimensional chart (U, ϕ) around p}

is both open and closed in X. This means that if X is a topological space with the
property that around every point there is a chart, the resulting “dimension” of X is in
fact well-defined in each connected component of X. Some books such as [15] actually
allow for that in the definition of a locally Euclidean space, and consequently allow
for manifolds having connected components of different dimensions.
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We may now put together some of the main topological properties which Rn has:

Definition 25 (Topological manifold)

A topological manifold is a topological space M which is Hausdorff, second-
countable, and locally Euclidean. A collection A = {(Uα, ϕα)}α∈A of charts with⋃

α∈A Uα = M is called an atlas for M.

Example 57 (Vector spaces are topological manifolds)

Euclidean space Rn admits a global chart (Rn, IdRn), and so Rn is locally Eu-
clidean (as it should be). Hence Rn is a topological manifold. More generally,
if V is any abstract finite-dimensional real vector space and T : V → Rn is an iso-
morphism, then (V, T) is a global chart for V. Recall that T is a homeomorphism
by the definition of the Euclidean topology on V, cf. Example 5 (p. 7).

Example 58 (Open subsets of topological manifolds)

Open subsets W of topological manifolds M are topological manifolds on their
own right, when equipped the subspace topology. The Hausdorff and second-
countability conditions are automatically inherited. Finally, whenever (U, ϕ) is a
chart for M with U ∩W 6= ∅, we have that (U ∩W, ϕ|U∩W) is a chart for W. In
particular, dim W = dim M.

Example 59 (A non-example: the cross)

Let X = (R×{0})∪ ({0}×R) be the union of the coordinate axes in R2, equipped
with its subspace topology. It is clearly Hausdorff and second-countable, but we
claim that it is not locally Euclidean—namely, there is no chart for X around the
point (0, 0) ∈ X. Indeed, since X is connected, we know that if X were locally
Euclidean, it would be a topological manifold of dimension 1.
However, we claim that there is no open
neighborhood of (0, 0) in X which is
homeomorphic to an open interval in R.
Indeed, if U were such a neighborhood
and ϕ : U ⊆ X → I ⊆ R were a chart,
ϕ would restrict to a homeomorphism
between U r {(0, 0)} and I r {ϕ(0, 0)},
and this is impossible: the former space
has four connected components, while
the latter has only two.

1

2

4

1 26∼=
3

Figure 32: The cross is not locally Eu-
clidean at the origin.

The condition that a topological space M is locally Euclidean alone implies that
M is locally connected (every point has a connected open neighborhood), locally
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compact (every point has an open neighborhood with compact closure), locally path-
connected (every point has a path-connected open neighborhood), and first-countable.
It does not imply, however, that M is Hausdorff or second-countable—which is the
reason these conditions had to be separately included in Definition 25.

Example 60 (The line with two origins redux)

Consider the line with two origins, from Exercise 12 (p. 15). In items (b) and (c),
you were asked to prove that it is not Hausdorff (the two origins z1 and z2 cannot
be separated by disjoint open subsets), and that it is second-countable. Here, we
also claim that it is locally Euclidean. If a ∈ (0, ∞) (or, a ∈ (−∞, 0)) we may
simply take the identity chart on (0, ∞) (or, on (−∞, 0)), while given i ∈ {1, 2}we
may set Ui = (R r {0}) ∪ {zi} and define ϕi : Ui → R by

ϕi(x) =

{
x, if x 6= zi,
0, if x = zi.

Then each (Ui, ϕi) is a chart around zi. In other words, an atlas for the line with
two origins is A = {((−∞, 0), Id(−∞,0)), ((0, ∞), Id(0,∞)), (U1, ϕ1), (U2, ϕ2)}.

Example 61 (The vertical topology redux)

Consider our vertical topology τvert. on R2, from Example 12 (p. 14).
It is Hausdorff, since if (x1, y1), (x2, y2) ∈ R2 are distinct, then either x1 6= x2
allows us to take U1 = {x1}×R and U2 = {x2}×R, while if x1 = x2 and y1 6= y2,
we may take U1 = {x1} × (y1 − ε, y1 + ε) and U2 = {x1} × (y2 − ε, y2 + ε) with
ε = |y1 − y2|/2 > 0; in either case, U1, U2 ∈ τvert. are disjoint with (x1, y1) ∈ U1
and (x2, y2) ∈ U2.
Next, you should have already verified in Exercise 11 (p. 15) that (R2, τvert.) is not
second-countable.
However, we claim that (R2, τvert.) is locally Euclidean and, in this case, its dimen-
sion as a topological manifold equals 1 (and not 2). Indeed, for any (x0, y0) ∈ R2,
we have that ϕx0 : {x0} ×R → R given by ϕx0(x0, y) = y is a one-dimensional
chart (the codomain is equipped with its Euclidean topology) around (x0, y0). In
other words, the collection A = {({x} ×R, ϕx)}x∈R is an atlas for (R2, τvert.).

Examples 59, 60, and 61 show that any of the three conditions—Hausdorffness,
second-countability, being locally Euclidean—in Definition 25 alone is not implied by
the remaining two together.

In the exercise below, you can further explore how these conditions play with each
other.
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Exercise 52 (Locally Euclidean topological groups)

Let G be a topological group, that is, a group equipped with a topology for which
the group operation G × G → G and the inversion mapping G → G are both
continuous. Assume that a chart around the identity element e ∈ G exists.

(a) Show that the singleton {e} is closed. (In fact, all singletons are closed in
locally Euclidean spaces.)

(b) Show that G is Hausdorff.
Hint: prove that the diagonal ∆ ⊆ G × G is closed by expressing it as the
inverse image of a closed set under a suitable continuous function G×G → G,
and use Proposition 17 (p. 33).

(c) Show that for each g ∈ G, the mapping Lg : G → G given by Lg(h) = gh is a
homeomorphism. Use this to show that G is locally Euclidean.

Unfortunately, the humble assumption that G is locally Euclidean just at the iden-
tity does not seem to imply that G is a topological manifold. But we still have the
conclusion that if a second-countable topological group is locally Euclidean at the
identity, then it is a topological manifold.

Finally, it will be useful to know that arbitrary charts can be modified to have “bet-
ter images”, such as balls, cubes, or the entire Euclidean space. More precisely:

Exercise 53

Let X be a locally Euclidean topological space, and let p ∈ X be fixed. In each item
below, show that there is a chart (U, ϕ) around p (that is, with p ∈ U), satisfying
the given condition:

(a) ϕ(p) = 0.

(b) ϕ(p) = 0 and ϕ(U) = Br(0), where r > 0 is prescribed.

(c) ϕ(p) = 0 and ϕ(U) = (−r, r)× · · · × (−r, r), where r > 0 is prescribed.

(d) ϕ(p) = 0 and ϕ(U) = Rn.

3.2 Ck-compatibility between charts and atlases

The definition of topological enough is still broad enough to allow for things like
the graph M = {(x, y) ∈ R2 : y = |x|} of the absolute-value function, with its
subspace topology induced from R2, to be topological manifolds (namely, we have
a global chart M 3 (x, y) 7→ x ∈ R). But the function x 7→ |x| is not differentiable
at x = 0, there is no “tangent line” to M at (0, 0), and we cannot reasonably perform
Calculus on M.
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y = |x|

x

y

Figure 33: The graph of y = |x| has a cusp at the origin.

If M is a topological manifold and n = dim M, two charts (U, ϕ) and (V, ψ) for M
with U ∩ V 6= ∅ always satisfy that ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) is a homeomor-
phism between open subsets of Rn; its inverse is ϕ ◦ ψ−1 : ψ(U ∩V)→ ϕ(U ∩V). See
Figure 34.

Rn Rn

M
U

V

ϕ
ψ

ψ ◦ ϕ−1
ϕ(U) ψ(V)

Figure 34: The chart transition ψ ◦ ϕ−1 : ϕ(U ∩V)→ ψ(U ∩V).

We need to demand more of ψ ◦ ϕ−1: being a homeomorphism is not strong enough
of a condition to enable us to do Calculus.

Definition 26 (Ck-compatibility of charts)

Let M be a topological manifold, and k ∈ {1, 2 . . . , ∞}. Two charts (U, ϕ) and
(V, ψ) are called Ck-compatible if either U ∩ V = ∅, or U ∩ V 6= ∅ and both
transitions ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) and ϕ ◦ ψ−1 : ψ(U ∩ V) → ϕ(U ∩ V)
are of class Ck. An atlas A for M is called a Ck-atlas (or, an atlas of class Ck) if all
of its charts are pairwise Ck-compatible.
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Example 62 (A C∞-atlas for the circle)

Consider the circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}, and let

U1 = {(x, y) ∈ S1 : x > 0}, U2 = {(x, y) ∈ S1 : y > 0}
U3 = {(x, y) ∈ S1 : x < 0}, U4 = {(x, y) ∈ S1 : y < 0}.

They are all open in S1—for example, U1 = ((0, ∞)×R) ∩ S1. See Figure 35.

U1

U2

U3 U4

Figure 35: Defining a smooth atlas for S1.

We define four charts ϕi : Ui → (−1, 1) by

ϕ1(x, y) = ϕ3(x, y) = y and ϕ2(x, y) = ϕ4(x, y) = x.

They are all continuous, being restrictions of continuous functions defined on all
of R2. To argue that they are indeed homeomorphisms, we exhibit their inverses,
thinking about how each open half of S1 (upper, lower, left, and right) can be
expressed as graphs of continuous functions:

ϕ−1
1 (t) =

(√
1− t2, t

)
, ϕ−1

2 (t) =
(
t,
√

1− t2
)
,

ϕ−1
3 (t) =

(
−
√

1− t2, t
)
, ϕ−1

4 (t) =
(
t,−

√
1− t2

)
.

They are continuous as functions valued in each Ui because they are continuous
when seen as functions valued in R2, cf. Proposition 2 (p. 8).

Let’s now show that the charts (U1, ϕ1) and (U2, ϕ2) are C∞-compatible. We have
that U1 ∩U2 = {(x, y) ∈ S1 : x, y > 0}, so that

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩U2)︸ ︷︷ ︸

=(0,1)

→ ϕ2(U1 ∩U2)︸ ︷︷ ︸
=(0,1)

given by (ϕ2 ◦ ϕ−1
1 )(t) =

√
1− t2 is of class C∞ on (0, 1) (but not on (0, 1]!); the

inverse ϕ1 ◦ ϕ−1
2 : (0, 1) → (0, 1) is also of class C∞, being given by the same for-

mula. Hence (U1, ϕ1) and (U2, ϕ2) are C∞-compatible.

A similar argument establishes C∞-compatibility of all other possible pairs of
charts, making A = {(Ui, ϕi)}4

i=1 a C∞-atlas for S1.
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Exercise 54 (A C∞-atlas for the sphere)

Generalize to S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, with its standard Euclidean
topology, the previous example. Namely, consider the following domains and
charts:

U1 = {(x, y, z) ∈ S2 : x > 0}, ϕ1(x, y, z) = (y, z)

U2 = {(x, y, z) ∈ S2 : x < 0}, ϕ2(x, y, z) = (y, z)

U3 = {(x, y, z) ∈ S2 : y > 0}, ϕ3(x, y, z) = (x, z)

U4 = {(x, y, z) ∈ S2 : y < 0}, ϕ4(x, y, z) = (x, z)

U5 = {(x, y, z) ∈ S2 : z > 0}, ϕ5(x, y, z) = (x, y)

U6 = {(x, y, z) ∈ S2 : z < 0}, ϕ1(x, y, z) = (x, y)

Exhibit each inverse function ϕ−1
i and its domain, describe the images ϕ3(U3∩U6)

and ϕ2(U2 ∩U5), and show that the transitions ϕ6 ◦ ϕ−1
3 and ϕ5 ◦ ϕ−1

2 are of class
C∞. With a little more patience, you can show that A = {(Ui, ϕi)}6

i=1 is a C∞-atlas
for S2.

How many charts would you need to cover the n-dimensional sphere Sn in this
manner? Can you write down the resulting atlas? (We will see later in Exercise 60
that it is actually possible to cover Sn with only two charts.)

Example 63 (Singleton atlases are C∞)

Any atlas for a topological manifold consisting of a single global chart (U, ϕ) is
automatically a C∞-atlas: there is only one transition mapping to consider, which
is the identity ϕ ◦ ϕ−1 = Idϕ(U).

In particular, for a finite-dimensional real vector space V, the global linear chart
(V, T) corresponding to an isomorphism T : V → Rn (cf. Example 57) is a C∞-atlas.
But we can say more: if (V, S) is another such global chart, induced by a second
isomorphism S : V → Rn, then (V, T) and (V, S) are C∞-compatible. Indeed, the
transitions T ◦ S−1, S ◦ T−1 : Rn → Rn are linear, and linear operators on Rn are
always of class C∞.

Example 64 (A C∞-atlas for the real projective plane)

Recall that the real projective plane is defined as the quotient RP2 = (R3 r{0})/∼,
where p ∼ q if q = λp for some λ ∈ R r {0}. We denote the equivalence class
of (x, y, z) by [x : y : z], so that π(x, y, z) = [x : y : z] for the quotient projection
π : R3 r {0} → RP2. We call [x : y : z] the homogeneous coordinates of the line
spanned by (x, y, z) since, by construction, the relation [λx : λy : λz] = [x : y : z]
holds for every λ 6= 0; note however that here the word “coordinates” does not
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refer to a chart or coordinate system. Let

U0 = {[x : y : z] ∈ RP2 : x 6= 0}, U1 = {[x : y : z] ∈ RP2 : y 6= 0},
and U2 = {[x : y : z] ∈ RP2 : z 6= 0}.

(3.1)

Note that they are well-defined open subsets of RP2—consider U0 for instance:
given λ 6= 0 and a point (x, y, z), we have that λx 6= 0 if and only if x 6= 0,
while π−1(U0) = {(x, y, z) ∈ R3 r {0} : x 6= 0} is clearly open in R3 r {0}. In
other words, taking an inverse image under π of such sets amounts to replacing
[x : y : z] with (x, y, z). Note that whenever [x : y : z] ∈ U0, we may “normalize”
the x-component and write [x : y : z] = [1 : y/x : z/x]. This tells us how to build
charts ϕi : Ui → R2 for RP2: just let

ϕ0([x : y : z]) =
(y

x
,

z
x

)
, ϕ1([x : y : z]) =

(
x
y

,
z
y

)
, and ϕ2([x : y : z]) =

(x
z

,
y
z

)
.

They are all continuous due to the characteristic property of the quotient topology,
as π−1(U0) 3 (x, y, z) 7→ (y/x, z/x) ∈ R2 is continuous (here, we use Proposition
9, p. 24), and similarly for the other two maps. Their inverses ϕ−1

i : R2 → Ui,
given by

ϕ−1
0 (u, v) = [1 : u : v], ϕ−1

1 (u, v) = [u : 1 : v], and ϕ−1
2 (u, v) = [1 : u : v],

are also continuous, being the composition of each of the continuous functions
(u, v) 7→ (1, u, v), (u, v) 7→ (u, 1, v), and (u, v) 7→ (u, v, 1), with π. This shows that
RP2 is locally Euclidean of dimension 2. Being homeomorphic to S2/Z2 (Example
35, p. 42), RP2 is also Hausdorff (Example 28, p. 33) and second-countable (by
Proposition 7 in p. 23, in view of Example 18 in p. 24), and hence a topological
manifold.

We now claim that A = {(Ui, ϕi)}2
i=0 is a C∞-atlas, and show in detail that the

charts (U0, ϕ0) and (U1, ϕ1) are C∞-compatible: their domains are explicitly given
by ϕ0(U0 ∩U1) = ϕ1(U0 ∩U1) = (R r {0})×R and both transitions

ϕ1 ◦ ϕ−1
0 , ϕ0 ◦ ϕ−1

1 : (R r {0})×R→ (R r {0})×R

computed as

(ϕ1 ◦ ϕ−1
0 )(u, v) = ϕ1([1 : u : v]) =

(
1
u

,
v
u

)
,

(ϕ0 ◦ ϕ−1
1 )(u, v) = ϕ0([u : 1 : v]) =

(
1
u

,
v
u

)
,
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are of class C∞ as their components are rational functions. Similarly, on their
appropriate domains, all other possible transitions

ϕ0 ◦ ϕ−1
2 , ϕ2 ◦ ϕ−1

0 , ϕ1 ◦ ϕ−1
2 , and ϕ2 ◦ ϕ−1

1

are also smooth.

Exercise 55 (A canonical C∞-atlas for RPn)

Generalize Example 64 and exhibit a C∞-atlas {(Ui, ϕi)}n
i=0 for the real projective

space RPn, verifying in detail its compatibility conditions.

The notion of Ck-compatibility of charts, however, has a crucial flaw: it is not an
equivalence relation. It is obviously reflexive (revisit Example 63), and symmetry is
built into its definition since both ψ ◦ ϕ−1 and ϕ ◦ ψ−1 are required to be of class Ck,
but it in general fails to be transitive: if (U, ϕ) and (V, ψ) are Ck-compatible, as well
as (V, ψ) and (W, σ), we may only guarantee that σ ◦ ϕ−1 : ϕ(U ∩W) → σ(U ∩W)
is of class Ck on the open subset ϕ(U ∩ V ∩W) ⊆ ϕ(U ∩W) (the “triple intersec-
tion”), which is where expressing σ ◦ ϕ−1 = (σ ◦ ψ−1) ◦ (ψ ◦ ϕ−1) as a composition of
Ck-functions is allowed; see Figure 36.

ϕ(U) ϕ(W)

ϕ(V)

ϕ(U ∩V ∩W) ⊆ ϕ(U ∩W)

Figure 36: The failure of the transitivity property for Ck-compatibility of charts.

The solution to this problem is to extend the notion of Ck-compatibility:

Definition 27 (Ck-compatibility of chart and atlas)

Let M be a topological manifold and k ∈ {1, 2 . . . , ∞}; let (U, ϕ) be a chart for M,
and A be a Ck-atlas for M. We say that (U, ϕ) and A are Ck-compatible if (U, ϕ) is
Ck-compatible with every chart in A or, equivalently, if the union A ∪ {(U, ϕ)} is
also a Ck-atlas for M.

This gives us the missing transitivity property: we replace the chart (V, ψ) in the
discussion preceding Figure 36 with an entire atlas. Instead of having the triple in-
tersection be fixed, we now have the freedom to say that any point in ϕ(U ∩W) lies
inside the image of some such triple intersection.
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Lemma 5

Let M be a topological manifold and k ∈ {1, 2 . . . , ∞}, and A be a Ck-atlas for M.
If (U, ϕ) and (W, σ) are both Ck-compatible with A, then they are Ck-compatible.

Proof: Consider the transition σ ◦ ϕ−1 : ϕ(U ∩W) → σ(U ∩W). Since “Ck-ness” is
a local notion, it suffices to show that σ ◦ ϕ−1 is of class Ck in an open neighborhood
of each point x ∈ ϕ(U ∩W). This neighborhood will be the image ϕ(U ∩ V ∩W)
of a triple intersection, where (V, ψ) ∈ A is a chart for M around ϕ−1(x). Namely,
in ϕ(U ∩ V ∩W), we may write σ ◦ ϕ−1 = (σ ◦ ψ−1) ◦ (ψ ◦ ϕ−1) as a composition of
Ck-functions. Therefore, σ ◦ ϕ−1 is of class Ck. We may prove with the same argument
that ϕ ◦ σ−1 is of class Ck, and so (U, ϕ) and (W, σ) are Ck-compatible, as required.

With Lemma 5 in place, there is one last issue to address. Even if M is a topological
manifold admitting a Ck-atlas A, what is to say that A is the best possible such atlas?
If (U, ϕ) ∈ A, and we have that U′ ⊆ U is an open subset and F : Rn → Rn is a
Ck-diffeomorphism, we may very well consider the charts (U′, ϕ|U′) and (F ◦ ϕ, U),
which are Ck-compatible with A, but they are not guaranteed to be in A. One way to
ensure that everything that could conceivably be a chart is indeed a valid chart in A,
is to impose a maximality condition on A.

Definition 28 (Ck-manifolds)

Let k ∈ {1, 2 . . . , ∞}.

• A Ck-structure on a topological manifold is a Ck-atlas A which is maximal,
that is, whenever (U, ϕ) is a chart for M which is Ck-compatible with A, we
have (U, ϕ) ∈ A.

• A Ck-manifold is a topological manifold equipped with a Ck-structure.

• A C∞-structure and a C∞-manifold are simply called a smooth structure and
a smooth manifold.

Remark. There are other conditions one can impose on homeomorphisms between
open subsets of Euclidean spaces, e.g. being piecewise-linear or real-analytic. There-
fore, it makes sense to talk about piecewise-linear manifolds, or real-analytic mani-
folds. But we will not pursue these directions here.

Definition 28 would mean that, in principle, to make a topological manifold M
into a Ck-manifold, we would have to find not just a Ck-atlas for M, but instead a
Ck-structure on M. The atlases found on all the examples presented so far are cer-
tainly not maximal. However, here is the saving grace of it all: every Ck-atlas A is
contained in a unique Ck-structure Amax—namely, we let Amax be the collection of all
possible charts for M which are Ck-compatible with A. Then Amax is maximal by de-
sign, and hence finite-dimensional real vector spaces, spheres, and real projective
spaces, can all be made into smooth manifolds: just consider the smooth structures
determined by the C∞-atlases presented in Example 57 and Exercises 54 and 55. Open
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subsets of smooth manifolds also become smooth manifolds, with the smooth struc-
ture induced by the atlas built with the charts described in Example 58. In the exercise
that follows, be careful with the distinction between a “maximal element” (relative to
an ordering) and a maximal atlas (in the sense of Definition 28).

The description of Amax given above might seem a bit too vague and perhaps not
formal enough. To make it precise, recall Zorn’s Lemma: if (P,≤) is a non-empty
partially ordered set with the property that every totally ordered subset of P has an
upper bound, then (P,≤) has a maximal element.

Exercise 56 (Existence and uniqueness of Ck-structures)

Let M be a topological manifold, k ∈ {1, 2, . . . , ∞}, and A be a Ck atlas for M.

(a) Consider P = {B : B is a Ck atlas for M and A ⊆ B}, ordered by inclusion.
Show that P 6= ∅ and that

⋃
B∈CB ∈ Pwhenever C⊆ P is totally ordered.

As the union
⋃

B∈CB is clearly an upper bound for C, Zorn’s Lemma kicks in
and gives us a maximal element Amax ∈ P. Show that:

(b) Amax is a Ck-structure for M.

(c) if A′ is another Ck-structure with A ⊆ A′, then Amax = A′.
Hint: the argument is “synthetic” and uses no topology whatsoever.

Whether a topological space is a topological manifold or not has a clear-cut “yes”
or “no” answer: we just need to check whether it is Hausdorff, second-countable, and
locally Euclidean. As for how to turn a topological manifold into a Ck-manifold, things
are more subtle. Although we now know that every Ck-atlas is contained in a unique
Ck-structure, this does not mean that a given topological manifold cannot admit more
than one possible Ck-structure, or even that it admits one at all. Case in point:

Exercise 57 (Uncountably many smooth structures on R)

Consider R with its usual Euclidean topology and, for every r > 0, let ϕr : R→ R

be given by

ϕr(t) =

{
t, if t ≤ 0
rt, if t > 0

Show that:

(a) for each r > 0, the pair (R, ϕr) is a chart for R.

(b) if r, s > 0 are distinct, then ϕr and ϕs are not Ck-compatible for any 1 ≤ k ≤ ∞.

This means that the smooth structures Ar on R, each determined by a chart (R, ϕr),
are all pairwise distinct; note also that A1 is just the standard Euclidean smooth
structure on R. We will see later in Exercise 66 that this is not too bad: all such Ar
are diffeomorphic to each other.
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We will mention some more advanced results in these directions later, but it clearly
becomes necessary to understand when two given Ck-atlases on the same topologi-
cal manifold determine the same Ck-structure. The next definition should not be too
surprising:

Definition 29 (Ck-compatibility of atlases)

Let M be a topological manifold, and k ∈ {1, 2, . . . , ∞}. Two Ck-atlases A1 and A2
for M are called Ck-compatible if every chart in A1 is Ck-compatible with every
chart in A2 or, equivalently, if the union A1 ∪A2 is also a Ck-atlas for M.

Exercise 58

Using Lemma 5, show that Ck-compatibility of atlases is an equivalence relation.

Theorem 8

Let M be a topological manifold, k ∈ {1, 2, . . . , ∞}, and A1 and A2 be two Ck-atlases
for M. Then A1 and A2 determine the same Ck-structure if and only if A1 and A2
are Ck-compatible.

Proof: First of all, note that two comparable Ck-atlases (that is, one of them is con-
tained in the other) are necessarily Ck-compatible. Now, let A′1 and A′2 be the
Ck-structures containing A1 and A2, respectively. We will repeatedly use transitivity
of the relation of Ck-compatibility between atlases.

Assume that A′1 = A′2, and let us denote this Ck-structure simply by A′. Then both A1
and A2 are Ck-compatible with A′, and hence Ck-compatible with each other.

Conversely, assume that A1 and A2 are Ck-compatible. Since A1 is Ck-compatible with
A′1 and A2 is Ck-compatible with A′2, it follows that A′1 and A′2 are Ck-compatible. Now
A′1 ∪ A′2 is a Ck-atlas (in fact, a Ck-structure) containing A1, and so maximality of A′1
implies that A′1 ∪ A′2 ⊆ A′1, leading to A′1 ∪ A′2 = A′1. Similarly, A′1 ∪ A′2 = A′2. We
conclude that A′1 = A′2, as required.

Some texts define a Ck-structure to be an equivalence class for Ck-compatibility of
Ck-atlases. Theorem 8 above says that this approach is equivalent to the one we chose
to present here. More concretely, both notions are reconciled by noting that such an
equivalence class has a canonical representative: the maximal one.

Example 65 (Standard smooth structures on vector spaces)

If V is a finite-dimensional real vector space, the smooth structure on V deter-
mined by the atlas containing the single global linear chart induced by some basis
of V in fact does not depend on the choice of basis, as a direct consequence of
the second half of Example 63 combined with Theorem 8. We call it the standard
smooth structure of V.
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Exercise 59 (Product manifolds)

Let M and N be topological manifolds, with n = dim M and m = dim N, and
Ck-atlases A = {(Uα, ϕα)}α∈A and B = {(Vλ, ψλ)}λ∈Λ. Show that

C = {(Uα ×Vλ, ϕα × ψλ)}(α,λ)∈A×Λ

is a Ck-atlas for the product space M× N. Conclude that M× N is a Ck-manifold
as well, with dim(M× N) = n + m.

Exercise 60 (Stereographic projections)

Write Rn+1 = Rn ×R, and consider the unit sphere Sn = {p ∈ Rn+1 : ‖p‖ = 1}.
Denote the north and south poles of Sn by (0,±1), and define two mappings
St± : Sn r {(0,±1)} → Rn as follows: for p ∈ Sn, (St±(p), 0) is the intersection
between Rn × {0} and the line joining (0,±1) and p. See Figure 37.

Sn

u

p

Rn × {0}

(0, 1)

St−1
+ (u)

St+(p)

Figure 37: The stereographic projection St+.

(a) Show that

St±(p) =
p0

1∓ pn+1
and St−1

± (u) =
(

2u
‖u‖2 + 1

,±‖u‖
2 − 1

‖u‖2 + 1

)
for all p = (p0, pn+1) ∈ Sn r {(0,±1)} and u ∈ Rn.
Hint: Don’t try to invert the formula for St±(p) directly, think of Figure 37.

(b) Check that the transition St+ ◦ St−1
− : Rn r {0} → Rn r {0} is of class C∞.

Hint: The formula for the transition will come out cleaner than you expect.

A similar calculation shows that St− ◦ St−1
+ : Rn r {0} → Rn r {0} is also of class

C∞. Hence ASt = {(Sn r {(0, 1)}, St+), (Sn r {(0,−1)}, St−)} defines a C∞-atlas
for Sn. We call it the stereographic atlas of Sn.

(c) Show that ASt is C∞-compatible with the atlas suggested in Exercise 54.
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Moving forward, we will focus solely on smooth manifolds instead of more general
Ck-manifolds. The cheap reason is that we don’t want to bother with keeping track of
regularity classes of functions and manifolds, or counting how many derivatives each
proof to come requires. The more legitimate reason is the following advanced result,
originally due to Whitney [25]: whenever 1 ≤ k < ` ≤ ∞, every Ck-structure contains
a unique C`-structure (you may also find a modern proof in [10, p. 51], but it requires
some analysis). In other words, starting with a Ck-structure, we may simply throw
away charts until what remains is a smooth structure (of course, arguably the problem
with that is that fewer functions defined on the manifold would be smooth, in the
sense to be discussed in Section 4.1 ahead).

For topological manifolds of dimensions 1, 2, and 3, there always exists a smooth
structure, which is essentially unique (that is, unique up to diffeomorphism): namely,
every 1-dimensional smooth manifold is diffeomorphic to either R or S1—see e.g.
[16, Appendix]—while for n = 2 it is due to Radó [21], and for n = 3 to Moise [18].
When the dimension is n ≥ 4, Stranger ThingsTM may happen: there are topological
manifolds having many non-equivalent smooth structures (the ones not equivalent
to the “standard” ones are often called “exotic”), and there are topological manifolds
which admit no smooth structure whatsoever. In more detail:

• Euclidean space Rn has a smooth structure that is unique up to diffeomorphism
whenever n 6= 4: the case n ≥ 3 is covered by the results just mentioned, and
for n ≥ 5 the first proof seems to be due to Stallings [22]. But R4, on the other
hand, has uncountably many non-diffeomorphic smooth structures, cf. Gompf
[7], Donaldson [3, 4], and Freedman and Taylor [5], etc.

• As for spheres Sn: Kervaire and Milnor have shown that there are 28 distinct
diffeomorphism classes of S7’s [14], and 16 of them (including the standard S7)
are realized by Milnor’s classical construction as S3-bundles over S4 [17]. The
four-dimensional case, of course, is the outlier—either S4 has infinitely many
non-diffeomorphic exotic structures, or none at all [6].

• The first example of a topological manifold which does not admit any smooth
structure at all has dimension 10 and is due to Kervaire [13].

Next, we will see how to do Calculus on smooth manifolds.
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4 Differential calculus on smooth manifolds

4.1 Smooth functions

Now that the definition of a smooth manifold is in place, we may start redevelop-
ing in this new setting some of the well-known concepts from multivariable calculus.
Whenever a smooth manifold M is given, and we refer to a chart (U, ϕ) for M, it will
be always understood (U, ϕ) ∈ A, where A is the smooth structure which turns M into
a smooth manifold; no explicit mention to A will be made.

The first concept we will revisit is the one of smoothness. Since there is already
a concept of smoothness for functions between open subsets of Euclidean spaces, we
will temporarily refer to it as “Euclidean-smoothness”. Then, “smoothness” of a func-
tion between smooth manifolds will be defined in terms of “Euclidean-smoothness”,
but it is important to keep in mind that these concepts are technically different. If this
distinction is not clear to you, many arguments involving smoothness may sound like
“... and this function is smooth because it is smooth,” but there is something actually
happening there.

We begin with real-valued functions.

Definition 30 (Smoothness of real-valued functions on manifolds)

Let M be a smooth manifold of dimension n. A function f : M → R is said to be
smooth if for every chart (U, ϕ) for M, the composition f ◦ ϕ−1 : ϕ(U) ⊆ Rn → R

(also called a local expression for f ) is Euclidean-smooth.

f

R

M

Rn

ϕ

U

ϕ(U)

f ◦ ϕ−1

Figure 38: Definition of smoothness for a real-valued function on a manifold.

With pointwise operations, C∞(M) = { f : M → R : f is smooth} becomes an
algebra over R.

The above definition would require us to check that f ◦ ϕ−1 : ϕ(U) ⊆ Rn → R is
Euclidean-smooth for every single chart in the smooth structure of M—and at this point
we know that there simply might be too many of them. Here is where maximality
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of smooth structures comes to the rescue: it in fact suffices to establish Euclidean-
smoothness of f ◦ ϕ−1 for enough charts to cover M. The reason for this, at the end of
the day, is that Euclidean-smoothness (and hence also smoothness!) is a local notion.
If (U, ϕ) and (V, ψ) are two charts for M with U ∩ V 6= ∅, the transition mapping
ψ ◦ ϕ−1 : ϕ(U ∩V)→ ψ(U ∩V) is a diffeomorphism, and so whenever p ∈ U ∩V we
have that f ◦ ϕ−1 is Euclidean-smooth near ϕ(p) if and only if f ◦ ψ−1 is Euclidean-
smooth near ψ(p), as a consequence of the relation f ◦ ϕ−1 = ( f ◦ ψ−1) ◦ (ψ ◦ ϕ−1) on
ϕ(U ∩V); “near” meaning “in some neighborhood of”. See Figure 39.

R

fU

V
p

ϕ

ψ

ψ ◦ ϕ−1

ϕ(U)
ψ(V)ϕ(p)

ψ(p)

Figure 39: Smoothness of f ◦ ϕ−1 at ϕ(p) is equivalent to the one of f ◦ ψ−1 at ψ(p).

We proceed to the more general case, where the codomain R is replaced with a
second smooth manifold N:

Definition 31 (Smoothness of mappings between manifolds)

Let M and N be smooth manifolds of dimensions n and m, respectively, and
F : M → N be a continuous mapping. Then F is called smooth if for all charts
(U, ϕ) and (V, ψ) for M and N, the local representation

ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V)) ⊆ Rn → Rm

is Euclidean-smooth. Finally, F is called a diffeomorphism if it smooth, bijective,
and the inverse F−1 is also smooth.
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N

V
F

ψ ◦ F ◦ ϕ−1

Rn Rm

M

U

ϕ
ψ

ϕ(U) ψ(V)

Figure 40: Definition of smoothness for a mapping between manifolds.

Remark. This time, the function F must be assumed to be continuous from the be-
ginning, so that F−1(V) (and hence ϕ(U ∩ F−1(V))) is open. If this assumption is not
made, there are examples of smooth functions which are not continuous, but this is
not really something acceptable for us. See [15, Problem 2-1]. And, as before, it is suf-
fices to establish Euclidean-smoothness of local representations just for enough charts
to cover the domain M.

When N = R is equipped with its standard smooth structure, we take the chart
(V, ψ) = (R, IdR) by default, and Definition 31 reduces to Definition 30. If both M and
N are open subsets of Euclidean spaces, then smoothness and Euclidean-smoothness
agree.

Proposition 28 (Composition of smooth mappings is smooth)

If M, N, and P are smooth manifolds, and F : M → N and G : N → P are smooth
mappings, the composition G ◦ F : M→ P is also smooth.

Proof: Let p ∈ M, and choose charts (U, ϕ), (V, ψ), (W, σ) be charts for M, N, and P,
around p, F(p), and G(F(p)), respectively, for which both ψ ◦ F ◦ ϕ−1 and σ ◦ G ◦ ψ−1

are well-defined and Euclidean-smooth on their domains. Then

σ ◦ (G ◦ F) ◦ ϕ−1 = (σ ◦ G ◦ ψ−1) ◦ (ψ ◦ F ◦ ϕ−1)

is a composition of Euclidean-smooth functions where defined, hence Euclidean-smooth
as well.

Next, we discuss some examples.
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Example 66 (Charts become diffeomorphisms by default)

If M is any smooth manifold (say, of dimension n) and (U, ϕ) is any chart for M,
then the chart ϕ : U ⊆ M → ϕ(U) ⊆ Rn itself is a diffeomorphism; here, we
consider the open subsets U and ϕ(U) with their smooth structures induced from
M and Rn, respectively.

Example 67

Let F : RP2 → RP2 be given by F([x : y : z]) = [yz : xz : xy]. First of all, we
argue that F is continuous. Indeed, the lift F̂ : R3 r {0} → R3 r {0} given by
F̂(x, y, z) = (yz, xz, xy) is clearly continuous, making π ◦ F̂ : R3 r {0} → RP2

continuous as well (it is a composition of continuous functions), allowing us to
invoke the characteristic property of the quotient topology of RP2 (see Proposition
5, p. 19):

R3 r {0}

R3 r {0}

RP2 RP2

π

F̂ π◦F̂

π

F

Continuity of F now follows from continuity of F ◦ π = π ◦ F̂. With this in place,
we now claim that F is smooth. To check this, we use the atlas {(Ui, ϕi)}2

i=0 from
Example 64 (p. 74), and compute

(ϕ0 ◦ F ◦ ϕ−1
0 )(u, v) = (ϕ0 ◦ F)([1 : u : v]) = ϕ0([uv : v : u]) =

( v
uv

,
u

uv

)
=

(
1
u

,
1
v

)
.

Being a rational function, it is Euclidean-smooth where defined. We similarly
compute the other local representations, e.g.,

(ϕ0 ◦ F ◦ ϕ−1
1 )(u, v) =

(
u,

u
v

)
and (ϕ0 ◦ F ◦ ϕ−1

2 )(u, v) =
(u

v
, u
)

,

and also ϕ1 ◦ F ◦ ϕ−1
0 , ϕ1 ◦ F ◦ ϕ−1

1 , etc. We will develop very effective shortcuts
for avoiding these calculations later.

Exercise 61

Show, in detail, that the function f : RP2 → R given by

f ([x : y : z]) =
xy + yz + xz
x2 + y2 + z2

is well-defined and smooth.
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Example 68 (Smoothness of the projection onto RPn)

The quotient projection π : Rn+1 r {0} → RPn is smooth. We take the identity
chart on Rn+1 r {0}, and one of the standard charts (Ui, ϕi) for RPn (cf. Exercise
55, p. 76), and compute the local representation ϕi ◦ π : π−1(Ui)→ Rn as

(ϕi ◦ π)(x0, x1, . . . , xn) =

(
x0

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn

xi

)
.

As rational functions are Euclidean-smooth and {(Ui, ϕi)}n
i=0 covers RPn, it fol-

lows that π is smooth.

The situation from Example 67 is a particular case of a very general phenomenon:

Exercise 62

Let P : R3 r {0} → R3 r {0} be a smooth function, and suppose that, for some
d ∈ Z, the function P is homogeneous of degree d: it holds that

P(λx, λy, λz) = λdP(x, y, z), for all λ ∈ R r {0} and (x, y, z) ∈ R3 r {0}.

Show that the induced function P̃ : RP2 → RP2, characterized by the relation
P̃([x : y : z]) = [P(x, y, z)], is well-defined and smooth.

Hint: The conclusion should obviously remain true for homogeneous functions
P : Rn+1 r {0} → Rk+1 r {0}, inducing a smooth mapping P̃ : RPn → RPk.

In Example 33 (p. 41) we have seen that the restricted projection π|Sn : Sn → RPn

is continuous and surjective, and in Example 35 (p. 42) that it induced a homeomor-
phism Sn/Z2

∼= RPn. Recall here that Sn/Z2 denotes the quotient of Sn under the
action of the group Z2, with (−1) · p = −p, cf. Example 18 (p. 24).

Exercise 63

Show that π|Sn : Sn → RPn is smooth.

We will see in the next section how to give the quotient Sn/Z2 a smooth structure, and
the homeomorphism Sn/Z2

∼= RPn will then get upgraded to a diffeomorphism.

Still in the topic of spheres, in the next exercise we have a very nice description of
real-valued functions defined on standard spheres.

Exercise 64 (A characterization of smooth functions on the sphere)

(a) Show that the function ν : Rn+1 r {0} → Sn given by ν(x) = x/‖x‖ is smooth.
Hint: This is obvious if you consider the target of ν to be Rn+1 r {0} and
think about Euclidean-smoothness, but this is not what the exercise is about.
The question is whether ν is smooth as a mapping between manifolds. By the
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way, note that the Euclidean topology of Sn agrees with the quotient topology
induced by ν (that is, ν is a quotient map—can you prove this?).

(b) Show that the inclusion ι : Sn → Rn+1 r {0} is smooth.

(c) Conclude from (a) and (b) that a continuous function f : Sn → R is smooth if
and only if its radial extension f̃ : Rn+1 r {0} → R given by f̃ (x) = f (x/‖x‖)
is Euclidean-smooth.

It will also turn out that if M is any manifold, a function f : M → Sn is smooth if
and only if ι ◦ f : M → Rn+1 r {0} is smooth. This phenomenon is not specific
to the sphere, but instead relies on the fact that Sn is an embedded submanifold of
Rn+1 r {0}. Think of it as a type of characteristic property for embedded sub-
manifolds, analogous to what we had in Proposition 2 (p. 8). More on this later.

We have seen in Example 59 (p. 80) how products of smooth manifolds are again
smooth manifolds. With this in place and the definitions introduced earlier in this
section, it now makes sense to consider smoothness of cartesian projections.

Exercise 65 (Cartesian projections are smooth)

Let M and N be smooth manifolds, and consider their cartesian product M× N,
along with the canonical projections π1 : M × N → M and π2 : M × N → N.

(a) Show that π1 and π2 are smooth.

(b) If P is a third smooth manifold, show that
a function f : P → M × N is smooth if and
only if both compositions π1 ◦ f : P→ M and
π2 ◦ f : P → N (that is, the “components” of
f ) are smooth.

(c) Conclude that (M× N)× P is diffeomorphic
to M× (N × P).

M

P M× N

N

f

π1◦ f

π2◦ f

π1

π2

Moving on, recall from the end of Section 3 that all smooth structures on the real
line are diffeomorphic. One of the usual proofs for this relies on the concept of a
partition of unity, which we will not encounter in these notes until much later. In some
nice cases, the diffeomorphism in question can be computed very explicitly. The next
exercise presents a rather instructive example of this.

Exercise 66 (Uncountably many smooth structures on R redux)

In Exercise 57 (p. 78), we introduced a family {Ar : r > 0} of smooth structures
on the real line R, where each Ar is the smooth structure determined by {(R, ϕr)},
for ϕr : R→ R defined by ϕr(t) = t if t ≤ 0, and ϕr(t) = rt if t > 0.

(a) Given any continuous function f : R → R, compute the local representation
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of f relative to the charts (R, ϕr) and (R, ϕs). In other words, fill in the blanks:

(ϕs ◦ f ◦ ϕ−1
r )(x) =


..., if x ≤ 0 and f (x) ≤ 0,
..., if x ≤ 0 and f (x) > 0,
..., if x > 0 and f (x) ≤ 0,
..., if x > 0 and f (x) > 0.

(b) Find a function f for which ϕs ◦ f ◦ ϕ−1
r = IdR. This implies (very strongly)

that f is a diffeomorphism (R,Ar)→ (R,As).
Hint: Try f of the form f = ϕa for some a > 0. Is there a natural guess for a?

This means that while all the smooth structures Ar on R are pairwise distinct, they
are still all diffeomorphic to each other.

Finally, the last exercise for this section in some sense justifies the central role that
Rn plays in the definition of a smooth manifold. Namely, fix a smooth manifold E of
dimension n. Let’s say that a topological space M is “locally E” if for every p ∈ M
there is an “E-valued chart” around p, that is, an open subset U ⊆ M with p ∈ M and
a homeomorphism ϕ : U → ϕ(U) ⊆ E, where ϕ(U) is open in E. An E-atlas A would
then be a collection of E-valued charts whose domains cover M, and we’ll say that A
is of class Ck if for every (U, ϕ), (V, ψ) ∈ A, either U ∩V = ∅, or U ∩V 6= ∅ and both
transitions ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) and ϕ ◦ ψ−1 : ψ(U ∩ V) → ϕ(U ∩ V) are
functions of class Ck between open subsets of E (this makes sense since E is a smooth
manifold).

Exercise 67

With the above setup and notation, show that if M is Hausdorff and second-
countable, and admits a Ck-atlas of E-valued charts, then M is a Ck-manifold.

In other words, if you tried to come up with a new notion of manifold replacing Rn

with, say Sn (and called it “locally spherical” instead of “locally Euclidean”), you
wouldn’t obtain anything new. To obtain something new, we need to replace Rn

with something which is not a smooth manifold in the sense already being discussed
here. For instance, the study of infinite-dimensional manifolds begins when Rn gets
replaced with a Banach space, that is, a complete5 normed vector space; the major-
ity of the results on multivariable calculus we have encountered in Section 2 holds in
the setting of Banach spaces, and this is what allows for a satisfactory theory to be
developed.

5Completeness here means that every Cauchy sequence converges, just like you have already seen
in real analysis.
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4.2 A digression: smooth quotients

Here, we need the following definition:

Definition 32 (Local diffeomorphism)

Let M and N be smooth manifolds. A mapping F : M → N is called a local dif-
feomorphism if for every p ∈ M there are neighborhoods U ⊆ M and V ⊆ N of p
and f (p), respectively, such that the restriction F|U : U → V is a diffeomorphism.

The statement below is essentially taken from [12, p. 15], and we provide more
details for its proof.

Theorem 9 (Free Z2-quotients of smooth manifolds are smooth)

Let M be a smooth manifold, and τ : M → M be a fixed-point-free involution,
that is, τ ◦ τ = IdM and τ(p) 6= p for every p ∈ M. Then the quotient M/τ of M
under the equivalence relation∼ given by p ∼ τ(p) is a topological manifold, and
it has a unique smooth structure for which the quotient projection π : M → M/τ
is a local diffeomorphism.

Remark. Giving τ as above is the same as giving a free action of the group Z2 on M,
via 1 · p = p and (−1) · p = τ(p). In particular, when M = Sn and τ(p) = −p is the
antipodal mapping, we have that Sn/Z2

∼= RPn (cf. Example 35, p. 42), this time as
manifolds.

Proof: We start by equipping M/τ with the quotient topology induced by the natural
projection6 π : M → M/τ, and noting that π is an open mapping: namely, whenever
U ⊆ M is open, we have that π−1(π(U)) = U ∪ τ(U) is the union of open sets, and
hence open (here we have used that τ is a diffeomorphism), making π(U) an open
subset of M/τ, by definition of quotient topology. See Figure 41.

U

τ(U) Sn

Figure 41: The equality π−1(π(U)) = U ∪ τ(U) for π : Sn → RPn.

We organize the rest of the proof in several claims.

6It is explicitly given by π(p) = {p, τ(p)}, for each p ∈ M.
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Claim 1: M/τ is Hausdorff and second-countable. Let p, q ∈ M be points such that
π(p) 6= π(q) in M/τ. As M itself is Hausdorff, there are open subsets U, V ⊆ M such
that p ∈ U, q ∈ V, and U ∩V = U ∩ τ(V) = ∅, cf. Figure 42.

U1

U2

V1

V2

τ−1(V2)

p

q
τ(q)

U

V

Figure 42: The Hausdorff property of M/τ.

In more detail, we use the Hausdorff property of M to fix disjoint open neighborhoods
U1 and V1 of p and q, as well as disjoint open neighborhoods of p and τ(q). Then we
let U = U1 ∩U2 and V = V1 ∩ τ−1(V2). In any case, π(U) and π(V) are now disjoint
open neighborhoods of π(p) and π(q) in M/τ, making M/τ Hausdorff as required.
As for second-countability of M/τ, it is immediate from Proposition 7 (p. 23).

Claim 2: M/τ is locally Euclidean. Let us say that an open subset U ⊆ M is τ-small
if U ∩ τ(U) = ∅ (for example, U ⊆ Sn in Figure 41 is τ-small). This condition is
exactly what we need to say that the restriction π|U : U → π(U) is injective, and hence
a homeomorphism (continuity of (π|U)−1 follows from π being an open mapping).
Now, we observe that every p ∈ M has a τ-small neighborhood: as M is Hausdorff
there are disjoint open neighborhoods V and W of p and τ(p) in M, and we may
simply set U = V ∩ τ−1(W), cf. Figure 43.

p τ(p)V

W
τ−1(W)

U

τ(U)

Figure 43: Constructing τ-small neighborhoods of arbitrary points.

Such U is indeed τ-small: if x ∈ U ∩ τ(U), then x, τ−1(x) ∈ U, and so x ∈ V and
τ−1(x) ∈ τ−1(W), leading to x ∈ V ∩W—a contradiction. With this in place, if A
denotes the smooth structure of M, the above shows that the collection

Aτ = {(π(U), ϕ ◦ (π|U)−1) : (U, ϕ) ∈ A and U is τ-small} (4.1)
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is an atlas for M/τ.

Claim 3: The atlas Aτ in (4.1) is a C∞-atlas. Indeed, if (U, ϕ), (V, ψ) ∈ A have τ-small
domains, the transitions between (π(U), ϕ ◦ (π|U)−1) and (π(V), ψ ◦ (π|V)−1) in fact
agree with the transitions between (U, ϕ) and (V, ψ), which are smooth by default.

Claim 4: π : M → M/τ is a local diffeomorphism. Just
note that π|U : U → π(U) is a diffeomorphism when-
ever U ⊆ M is τ-small. Namely, π locally looks like
the identity mapping if we choose a chart (U, ϕ) for
M and the induced chart (π(U), ϕ ◦ (π|U)−1), cf. the
commutative diagram displayed on the right.

U π(U)

ϕ(U) ϕ(U)

π|U

ϕ ϕ◦(π|U)−1

Idϕ(U)

Claim 5: The smooth structure on M/τ for which the previous claim holds is unique. Let
A′τ be the unique smooth structure containing Aτ, cf. Exercise 56 (p. 78). Note that
whenever N is another smooth manifold with smooth structure B, then a mapping
F : (M/Γ,A′τ) → (N,B) is smooth if and only if F ◦ π : (M,A) → (N,B) is smooth.
And similarly if we replace A′τ with another smooth structure A′ for which π becomes
a local diffeomorphism:

(M,A) (M,A)

(M/Γ,A′τ) (N,B) (M/Γ,A′) (N,B)

π
F◦π F◦π

π

F F

Taking (N,B) = (M/Γ,A′) and F = IdM/Γ in the first diagram and using smooth-
ness of π : (M,A) → (M/Γ,A′) now implies that IdM/Γ : (M/Γ,A′τ) → (M/Γ,A′) is
smooth. On the other hand, if we set (N,B) = (M/Γ,A′τ) and F = IdM/Γ in the
second diagram, and use smoothness of π : (M,A) → (M/Γ,A′τ), we obtain that
IdM/Γ : (M/Γ,A′) → (M/Γ,A′τ) is smooth. Hence, IdM/Γ is a diffeomorphism be-
tween (M/Γ,A′τ) and (M/Γ,A′). This means that A′ = A′τ.

The generalization from Z2 to any arbitrary finite group is now straightforward.
You can see how it goes in the exercise below:

Exercise 68 (Quotients under free actions of finite groups are smooth)

Let M be a smooth manifold, and Γ be a finite group of diffeomorphisms of M
acting freely on M, that is:

• each τ ∈ Γ is a diffeomorphism τ : M→ M;

• Γ is closed under compositions and taking inverses;

• and τ(p) 6= p for every p ∈ M and τ ∈ Γ r {IdM}.

Let M/Γ denote the quotient of M under the equivalence relation ∼ defined as:
p ∼ q if there is τ ∈ Γ such that q = τ(p). As above, here we will show that M/Γ
is a topological manifold and that it has a unique smooth structure for which the
quotient projection π : M→ M/Γ is a local diffeomorphism.

Page 91



SMOOTH MANIFOLDS IVO TEREK

(a) Equip M/Γ with the quotient topology and show that π : M → M/Γ is an
open mapping, i.e., takes open sets to open sets.
Hint: if U ⊆ M is open, write π−1(π(U)) as an union of open sets.

(b) Use (a) to show that M/Γ is Hausdorff and second-countable.
Hint: if π(p) 6= π(q), then for every τ ∈ Γ there are disjoint open neighbor-
hoods Uτ, Vτ ⊆ M of p and τ(q); let U =

⋂
τ∈Γ Uτ and V =

⋂
τ∈Γ τ−1(Vτ).

What can you say about π(U) and π(V)?

An open subset U ⊆ M is called Γ-small if U ∩ τ(U) = ∅ for each τ ∈ Γr {IdM}.

(c) Show that every point in M has a Γ-small open neighborhood, and use this to
conclude that M/Γ is locally Euclidean.
Hint: given any p ∈ M, for every τ ∈ Γ r {IdM} there are disjoint open
neighborhoods Vτ, Wτ ⊆ M of p and τ(p) (as M is Hausdorff); then consider
the intersection U =

⋂
τ∈Γr{IdM}

(
Vτ ∩ τ−1(Wτ)

)
.

Hence, M/Γ is a topological manifold. Now, show that:

(d) The atlas AΓ constructed in (d) is a C∞-atlas (and hence induces a smooth
structure A′Γ), and that π : M→ M/Γ is a local diffeomorphism.

(e) If A′ is another smooth structure on M/Γ with the property that π is a lo-
cal diffeomorphism, then the identity mapping (M/Γ,A′Γ) → (M/Γ,A′) is a
diffeomorphism. (And hence A′ = A′Γ.)

Exercise 69 (Lens spaces)

Here, we use the result of the previous exercise to explore a concrete situation.

Consider the sphere S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}, and let p, q > 1 be co-
prime integers. Define τ : S3 → S3 by τ(z, w) = (e2πi/pz, e2πiq/pw), and consider
Γ = {IdS3 , τ, τ2, . . . , τp−1}. Show that τ is a diffeomorphism having τp = IdS3 ,
and that the action of Γ ∼= Zp on S3 is free. Conclude that the quotient space
L(p, q) .

= S3/Zp is a smooth manifold.

The quotients L(p, q) are called Lens spaces. A deep result in geometric topology
(the Seifert-Threlfall theorem) says that L(p, q1) is homeomorphic to L(p, q2) if
and only if q1 ≡ ±q±1

2 (mod p). (Recall Moise’s Theorem [18]: two smooth 3-
manifolds are homeomorphic if and only if they are diffeomorphic.)

Of course, all of this can be further generalized for Lie groups instead of finite
groups. The difference here is that the action of a Lie group G on the smooth manifold
M, in addition to be free, must also be proper, that is, the enhanced action-mapping
G×M 3 (g, x) 7→ (x, g · x) ∈ M×M is proper in the general-topology sense: inverse
images of compact sets are compact. In this case, the quotient M/G is a topological
manifold, and it has a unique smooth structure for which π : M → M/G is a surjec-
tive submersion (we will revisit immersions and submersions later). The reason we
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have a submersion as opposed to a local diffeomorphism is that when dim G ≥ 1, the
dimension of the quotient M/G takes a hit: dim(M/G) = dim M− dim G (every fi-
nite group is a discrete 0-dimensional Lie group, explaining why dim M = dim M/Γ
above). See [15, Theorem 21.10] for a proof and more details.

There is one last result—Godement’s Criterion—which goes beyond quotients of
smooth manifolds under “nice” group actions. It considers the situation where M is
a smooth manifold and ∼ is any equivalence relation on M, and gives us necessary
and sufficient conditions for the existence of a smooth structure on the quotient M/∼
making the projection π : M→ M/∼ a surjective submersion; see [9, Lemma 3.7.9 and
Theorem 3.7.10] for the details.

4.3 Tangent vectors and tangent spaces

Curves have tangent lines, and surfaces have tangent planes. Manifolds, being
higher-dimensional generalizations of curves and surfaces, should have tangent spaces.
Understanding how they work is the goal of this section.

Elements of Euclidean space Rn are usually called “points” or “vectors”, inter-
changeably, with not enough emphasis given to the difference: “points” are static, but
“vectors” can be moved around. Now, the difference is crucial. We would like to think
that a tangent vector to Rn at a point p is a vector “starting at p”, cf. Figure 44.

Rn

v

p

Figure 44: The vector v “touches” Rn only at the point p, hence “tangent”.

If Tp(Rn) denotes the tangent space to Rn at p, however we define it, at the end
of the day we should have that Tp(Rn) ∼= Rn. But how to make sense of this for
an arbitrary smooth manifold M? Vectors are no longer necessarily n-tuples of real
numbers, since M is abstract, and not necessarily given as a subset of some RN.

Remark. Every smooth manifold can be embedded into some RN. This is called the
Whitney Embedding Theorem. We will see the definition of embedding later, but
the point is that Whitney tells us that there would be no loss of generality in defining
smooth manifolds as already being inside some RN by default. While it is true that
in this case, tangent spaces to M could be directly defined as certain vector subspaces
of RN, the main issue with this approach is that relying too much on this background
RN, like a crutch, makes other subtler points of the theory more obscure.
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Back to tangent vectors. A first natural idea is to use charts; see Figure 45:

U

M ϕ(U) ⊆ Rn

ϕ

ϕ(p)

p

Figure 45: The first attempt to define a tangent vector to a manifold via charts...

One could say that a tangent vector to M at p is the same thing as a tangent vec-
tor to Rn at ϕ(p). The issue with it is that if (V, ψ) is another chart around p, the
“corresponding” tangent vector to Rn at ψ(p) is, in general, different from the one at
ϕ(p):

U

M

ϕ

ϕ(p)

p
v1

ψ

v2
ψ(p)

D
(
ψ ◦ ϕ−1)(ϕ(p))

V

ϕ(U ∩V) ⊆ ϕ(U)

ψ(U ∩V) ⊆ ψ(V)

Figure 46: ... and the potential issue with it.

Namely, if “v1 ∈ Tϕ(p)(R
n)” and “v2 ∈ Tψ(p)(R

n)” correspond to the “same” tangent
vector we are trying to define, they should be necessarily related via the transition
between the charts, as D(ψ ◦ ϕ−1)(ϕ(p))v1 = v2. This suggests that the definition of
tangent space should somehow involve an equivalence relation, and a quotient (iden-
tifying v1 ∼ v2). This is in fact an approach often used by physicists, but it relies too
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heavily on charts. We will instead develop things in a coordinate-free manner, but you
can explore the details of this physics-based approach on Exercise 73 ahead.

The result below starts paving our way forward:

Lemma 6 (∂/∂v determines v)

Let p ∈ Rn and v, w ∈ Rn, to be thought of as tangent to Rn at p. If we have
that (∂ f /∂v)(p) = (∂ f /∂w)(p) for every smooth real-valued function f defined
on some neighborhood of p, then v = w. In other words, vectors are characterized
by how they act as directional derivatives on smooth functions defined near p.

Proof: Writing v = (v1, . . . , vn) and w = (w1, . . . , wn), it suffices to take f to be the i-th
coordinate function, (x1, . . . , xn) 7→ xi. Then

∂ f
∂v

(p) = vi and
∂ f
∂w

(p) = wi =⇒ vi = wi for all i = 1, . . . , n.

Hence, v = w.

As the above proof shows, assuming that the equality between directional deriva-
tives of p held for all smooth functions near p was overkill: we only really needed
the coordinate projections. On manifolds, we have coordinate systems. With the
goal of adopting a coordinate-free approach, and at the same time inspired by the
above, we turn our attention to the R-algebra (see Definition 34 below) C∞(M) of
smooth functions on a smooth manifold M. In particular, f , g ∈ C∞(M) implies that
f + g, f g ∈ C∞(M). The vector space structure of tangent spaces will ultimately come
from C∞(M).

Definition 33 (Germs of smooth functions)

Let M be a smooth manifold, and fix a point p ∈ M. On the set consisting of
all the pairs (U, f ) where U ⊆ M is an open neighborhood of p and f : U → R

is smooth, we define a relation ∼ by declaring that (U, f ) ∼ (V, g) is there is
an open neighborhood W ⊆ U ∩ V of p such that f |W = g|W . Then, ∼ is an
equivalence relation, an equivalence class [(U, f )] is called a smooth germ at p,
and the quotient set G∞

p (M) is called the algebra of smooth germs at p.

Exercise 70

Convince yourself that∼ in the above definition is indeed an equivalence relation.

When U is a subset of Rn, the germ [(U, f )] clearly contains information about
all partial derivatives of all orders of f at p, but in fact it has more than that: two
functions having the same Taylor series at p do not necessarily have the same germ
at p. Consider in the real line the function f given by f (x) = e−1/x2

if x > 0, and
f (x) = 0 if x ≤ 0, from Exercise 46 (p. 57). All derivatives of f at p = 0 vanish,
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but [(R, f )] is not the zero germ (that is, it does not have the same germ as the zero
function) since f does not identically vanish on any interval around the origin.

In any case, we called G∞
p (M) an algebra, so we should make its operations clear

and verify that they make sense:

(i) [(U, f )] + [(V, g)] = [(U ∩V, f |U∩V + g|U∩V)],

(ii) [(U, f )] · [(V, g)] = [(U ∩V, f |U∩V g|U∩V)],

(iii) λ · [(U, f )] = [(U, λ f )],

(4.2)

for all [(U, f )], [(V, g)] ∈ G∞
p (M) and λ ∈ R. Let us show that addition in G∞

p (M) is
well-defined, i.e., that if we have (U, f ) ∼ (U′, f ′) and (V, g) ∼ (V′, g′), then neces-
sarily (U ∩V, f |U∩V + g|U∩V) ∼ (U′ ∩V′, f ′|U∩V + g′|U∩V). Fix open neighborhoods
U′′ ⊆ U ∩U′′ and V′′ ⊆ V ∩ V′ of p on which f |U′′ = f ′|U′′ and g|V′′ = g′|V′′ , so that
U′′ ∩V′′ ⊆ (U ∩V) ∩ (U′ ∩V′) is also an open neighborhood of p, and

( f |U∩V + g|U∩V)|U′′∩V′′ = ( f |U∩V)|U′′∩V′′ + (g|U∩V)|U′′∩V′′

= f |U′′∩V′′ + g|U′′∩V′′

= f ′|U′′∩V′′ + g′|U′′∩V′′

= ( f ′|U′∩V′)|U′′∩V′′ + (g′|U′∩V′)|U′′∩V′′

= ( f ′|U′∩V′ + g′|U′∩V′)|U′′∩V′′ ,

(4.3)

showing that the definition of [(U, f )] + [(V, g)] does not depend on the choice of
representatives for [(U, f )] and [(V, g)].

Exercise 71

Show, similarly to what was done in (4.3), that scalar-multiplication and the prod-
uct of germs in G∞

p (M) are also well-defined.

As a direct consequence of the pointwise definitions of the operations in C∞(M),
it follows that G∞

p (M) is an R-algebra. Now, while germs are not functions, they still
can be “evaluated” at the point p: we have a homomorphism δp : G∞

p (M) → R of
R-algebras, defined by δp([(U, f )]) = f (p) (it is obviously well-defined).

With this in place, we are ready to outsource the rest of the construction to abstract
algebra. Here are some precise definitions:

Definition 34 (K-algebras and derivations)

Let K be any field.

• A K-algebra is a vector space A over the field K, equipped with a K-bilinear
operation · : A× A→ A.

• A homomorphism of K-algebras is a linear transformation δ : A1 → A2

Page 96



SMOOTH MANIFOLDS IVO TEREK

with the additional property δ(ab) = δ(a)δ(b), for all a, b ∈ A1.

• If A is a K-algebra and δ : A → A is a homomorphism, a δ-derivation of A
is a linear functional v ∈ A∗ such that v(ab) = v(a)δ(b) + δ(a)v(b), for all
a, b ∈ A. We set Der(A, δ) = {v ∈ A∗ : v is a δ-derivation of A}.

The space Der(A, δ) of derivations is always a vector space over K, simply because
it turns out to be a vector subspace of the dual space A∗. Without further ado:

Definition 35 (Tangent space)

Let M be a smooth manifold, and p ∈ M. The tangent space to M at p is defined
to be TpM = Der(G∞

p (M), δp), i.e., it is the space of all v : G∞
p (M)→ R such that

v([ f ] + [g]) = v[ f ] + v[g] and v([ f ][g]) = g(p)v[ f ] + f (p)v[g], (4.4)

for all [ f ], [g] ∈ G∞
p (M). Elements of TpM are then called tangent vectors.

Remark. Note here the first instance of a common abuse of notation: we denote a germ
[(U, f )] simply by [ f ]. It is justified since whenever U′ ⊆ U is an open neighborhood
of p, we have the equality [(U′, f |U′)] = [(U, f )]. This also suggests the following: if
U ⊆ M is an open subset and p ∈ U, there is a natural isomorphism TpU ∼= TpM
(that is, an isomorphism which does not depend on a choice of basis). The reason is
that if f : U → R is a smooth function, the value v[ f ] ∈ R depends only on the values
of f on some open neighborhood of p, not on all of U. Formally, the isomorphism is
the derivative of the inclusion mapping ι : U ↪→ M, but we will discuss derivatives of
smooth mappings in the next section only.

Note that tangent vectors also act on actual smooth functions defined near p, by
first composing the function with the projection onto its germ. More precisely, when-
ever U ⊆ M is an open neighborhood of p and f : U → R is a smooth function, we
may set v( f ) = v[ f ], where [ f ] denotes the germ of f .

By the discussed above, each tangent space TpM is automatically a real vector
space. The natural guess is that their dimension, as vector spaces, equals the dimen-
sion of M as a manifold.

In the next proof, we (partially) start using Einstein’s summation convention: it
states that if the same index appears in a monomial expression once above and once
below, then it is being summed over. The range of summation is then implied, and the
summation sign is omitted. Here are some examples:

• If e1, . . . , en is a basis for a vector space V, and v ∈ V is expressed as a linear
combination of this basis as v = ∑n

i=1 aiei, we would write it simply as v = aiei.

• Linear functionals, getting paired with vectors, should be indexed with upper in-
dices, so that the dual basis would be ϕ1, . . . , ϕn, and ξ ∈ V∗ would be expressed
as a linear combination of this dual basis as ξ = ξi ϕ

i.
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• If ẽ1, . . . , ẽm is a basis for a second vector space Ṽ and T : V → Ṽ is a linear trans-
formation, the matrix of T relative to the given bases is defined via the relations
Tej = ∑m

i=1 aij ẽi, for j = 1, . . . , n. Having the index i appear twice below on the
right side would violate the summation convention, and so we would rewrite
the last expression as Tej = ai

j ẽi.

The real power of Einstein’s convention is not avoiding the summation signs, but in-
stead keeping track of the correct “index balance”. It gives us a built-in error de-
tector when doing index computations. I lost count of how many times I have seen
people (and even textbooks) write things like uivi meaning the sum ∑n

i=1 uivi, and
tried to explain these subtleties to no avail. To try and make my point, we will keep
writing summation signs, but will follow the correct index balance in abstract index
computations. Doing so will require the following change in notation, which might
be upsetting at a first moment: if (U, ϕ) is a chart for a manifold M, we will write
ϕ(p) = (x1(p), . . . , xn(p)) instead of (x1(p), . . . , xn(p)). So, for instance, x2 would
mean the second component function of a chart, and not “x squared”; then (x2)2

would mean the second component squared, and not the fourth power of x, etc. No
serious confusion will arise from this.

Theorem 10

Let M be a smooth manifold, and p ∈ M be any point. Then, dim TpM = dim M.

Proof: We will do this by exhibiting a basis of TpM containing n elements. Namely,
consider a chart (U, ϕ) for M around p, and write its components as ϕ = (x1, . . . , xn).
That is, denoting the Euclidean coordinate functions by ui : Rn → R, we have that
xi = ui ◦ ϕ : U → R. We then define

∂

∂xi

∣∣∣∣
p
∈ TpM by

∂

∂xi

∣∣∣∣
p
[ f ] =

∂( f ◦ ϕ−1)

∂ui (ϕ(p)), (4.5)

where f is a representative of the germ [ f ], defined on some open neighborhood of
p contained in U. The second relation in (4.4) for ∂/∂xi|p is nothing more than the
product rule for the Euclidean partial derivatives ∂/∂ui. Note that

∂

∂xi

∣∣∣∣
p
[xj] =

∂uj

∂ui (ϕ(p)) = δ
j
i =

{
1, if i = j
0, if i 6= j.

(4.6)

A consequence of (4.6) is that{
∂

∂x1

∣∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣∣
p

}
is linearly independent. (4.7)

If a1, . . . , an ∈ R are such that ∑n
i=1 ai∂/∂xi|p = 0, evaluating both sides as [xj] leads to

∑n
i=1 aiδ

j
i = 0, that is, aj = 0. And finally, we claim that

v =
n

∑
i=1

v[xi]
∂

∂xi

∣∣∣∣
p
. (4.8)

Page 98



SMOOTH MANIFOLDS IVO TEREK

To establish (4.8), we must evaluate both sides at an arbitrary germ [ f ] and check that
they produce the same output. First note that v(1) = 0, by writing 1 · 1 = 1 and
applying the product rule. Hence v(c) = 0 for any c ∈ R. Now we apply Hadamard’s
lemma (p. 58) to f ◦ ϕ−1 (reducing U if needed to make it starshaped around ϕ(p)) to
write

f = f (p) +
n

∑
i=1

(xi − xi(p))gi, (4.9)

where gi are smooth functions defined on some open neighborhood of p satisfying
gi(p) = (∂( f ◦ ϕ−1)/∂ui)(ϕ(p)). Now:

v[ f ] = v

[
f (p) +

n

∑
i=1

(xi − xi(p))gi

]
= v[ f (p)] +

n

∑
i=1

v[(xi − xi(p))gi]

= 0 +
n

∑
i=1

(
(xi(p)− xi(p))gi(p) + v[(xi − xi(p)]gi(p)

)
=

n

∑
i=1

v[xi]gi(p)

=
n

∑
i=1

v[xi]
∂( f ◦ ϕ−1)

∂ui (ϕ(p)) =
n

∑
i=1

v[xi]
∂

∂xi

∣∣∣∣
p
[ f ]

=

(
n

∑
i=1

v[xi]
∂

∂xi

∣∣∣∣
p

)
[ f ],

(4.10)

as required.

The proof of Theorem 10 is more important than its statement, which is intuitive
and trivial to remember. It contains:

• (4.5), which is how we locally define partial derivatives induced by a chart, as
derivations. In other words, it only makes sense to take partial derivatives of
a function defined on a manifold once a chart has been fixed, and the result in
general depends on the choice of chart;

• and (4.8), which actually tells us how to write a tangent vector as a linear combi-
nation of a coordinate basis.

Exercise 72 (Transitions between coordinate bases)

Let M be a smooth manifold, p ∈ M be any point, and let (U, ϕ) and (V, ψ) be
two charts for M around p. Writing them as ϕ = (x1, . . . , xn) and ψ = (y1, . . . , yn),
we obtain two bases{

∂

∂x1

∣∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣∣
p

}
and

{
∂

∂y1

∣∣∣∣
p
, . . . ,

∂

∂yn

∣∣∣∣
p

}

of TpM.

(a) Writing ϕ ◦ψ−1 : ψ(U∩V)→ ϕ(U∩V) as (ϕ ◦ψ−1)(y1, . . . , yn) = (x1, . . . , xn),
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show that
∂

∂yj

∣∣∣∣
p
=

n

∑
i=1

∂xi

∂yj (ψ(p))
∂

∂xi

∣∣∣∣
p

for all j = 1, . . . , n. Here, (∂xi/∂yj)(ψ(p)) denotes the Euclidean partial deriva-
tive of the i-th component xi of ϕ ◦ ψ−1 relative to the j-th variable yj, evalu-
ated at the point ψ(p).

(b) In particular, when M = R2 and U = R2 r ([0, ∞) × {0}), we have polar
coordinates (r, θ) : U → (0, ∞) × (0, 2π), characterized by x = r cos θ and
y = r sin θ. Write ∂/∂r and ∂/∂θ as linear combinations of ∂/∂x and ∂/∂y, at
any point in U.

Our discussion, which started with the idea of defining tangent vectors via charts,
now comes full circle:

Exercise 73 (How a physicist usually thinks about TpM)

Let M be a smooth manifold, and fix p ∈ M. If A denotes the smooth structure of
M, let Ap = {(U, ϕ) ∈ A : p ∈ U}. On the set Ap ×Rn, we define a relation ∼ by
saying that ((U, ϕ), v) ∼ ((V, ψ), w) if and only if D(ψ ◦ ϕ−1)(ϕ(p))v = w.

(a) Show that ∼ is an equivalence relation.

Then let (TpM)PHYS. denote the quotient (Ap×Rn)/∼. This time, the vector space
structure is less obvious. Using brackets for equivalence classes, we define

[((U, ϕ), v)] + [((V, ψ), w)] = [((U, ϕ), v + D(ϕ ◦ ψ−1)(ψ(p))w)],

and λ[((U, ϕ), v)] = [((U, ϕ), λv)].

(b) Show that the proposed addition and scalar multiplication in (TpM)PHYS. are
well-defined.

With these operations, (TpM)PHYS. becomes a vector space.

(c) Show that Φ : (TpM)PHYS. → TpM given by

Φ[((U, ϕ), (v1, . . . , vn)] =
n

∑
i=1

vi ∂

∂xi

∣∣∣∣
p

is a well-defined vector space isomorphism.

Note: Physicists like to think about the relation D(ψ ◦ ϕ−1)(ϕ(p))v = w as a
transformation law. Namely, for every chart (U, ϕ) ∈ Ap they assign a collec-
tion {vi}n

i=1 of numbers, and they are subject to the following rule: whenever
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(U, ϕ), (V, ψ) ∈ Ap, the associated {vi}n
i=1 and {wi}n

i=1 are related through

vi =
n

∑
j=1

∂xi

∂yj wj,

where ϕ = (x1, . . . , xn) and similarly for ψ. Tangent vectors to M are treated as el-
ements of Rn, and then every time they want to do something, they have to check
that the results are chart-independent by using this transformation law — other-
wise their constructions and calculations don’t hold at the manifold level. This
gets old really fast, which is why we won’t pursue it when building up the theory
in this class. It’s still good to understand their philosophy so you can communi-
cate with them anyway.

We are now in position to justify, very generally, why Tp(Rn) ∼= Rn in a natural
manner:

Exercise 74 (Tangent spaces to vector spaces)

Let V be a finite-dimensional real vector space, equipped with its standard Eu-
clidean smooth structure. Show that for any point p ∈ V, the linear mapping
Φp : V → TpV given by

Φp(v)[ f ] =
d
dt

∣∣∣∣
t=0

f (p + tv)

is an isomorphism. When V = Rn and ei is the i-th vector in the standard basis,
what is the derivation Φp(ei)? Does the answer surprise you?

We will see some concrete examples of tangent spaces once we have the language
of differentials and total derivatives available on manifolds.

4.4 Derivatives of smooth functions between manifolds

With the definition of smoothness in place, We are now ready to define derivatives
(also known as differentials) of smooth functions between manifolds.

Definition 36 (Total derivatives redux)

Let M and N be smooth manifolds, and p ∈ M be any point.

• If f : M → R is a smooth function, the derivative of f at p is the linear
functional d fp : TpM → R given by d fp(v) = v[ f ], where [ f ] ∈ G∞

p (M) is
the germ of f at p.

• If F : M → N is a smooth mapping, the derivative of F at p is the linear
transformation dFp : TpM → TF(p)N given by dFp(v)[g] = v[g ◦ F], where
[g] ∈ G∞

F(p)(N) and [g ◦ F] is the germ of g ◦ F at p, where g is any represen-

Page 101



SMOOTH MANIFOLDS IVO TEREK

tative of [g]; see Figure 47.

N

F

M

R

g
p

F(p)

g ◦ F

Figure 47: The definition of derivative via germs of smooth functions.

Remark. In the second case, the value dFp(v) must be an element of TF(p)N, which is
a derivation of G∞

F(p)(N), and this is why we define it by declaring what is the value of
dFp(v)[g] for each [g] ∈ G∞

F(p)(N). When N = R has its standard smooth structure and
we use the global identity chart to obtain ∂/∂t|t ∈ TtR, and then identify TtR ∼= R,
both definitions of derivative given above agree.

Example 69 (Differentials in coordinates)

Let M be a smooth manifold, f : M→ R be a smooth function, and (U; x1, . . . , xn)
be a chart for M. We will show that

d fp =
n

∑
i=1

∂ f
∂xi (p)dxi|p, for every p ∈ U, (4.11)

where (∂ f /∂xi)(p) .
= (∂/∂xi)|p[ f ] and dxi|p is the derivative at p of the coordinate

function xi : U → R. Indeed, if v ∈ TpM is arbitrary, we have that dxi|p(v) = v[xi]

for each i = 1, . . . , n (by definition of dxi|p), and so (4.8) leads to

d fp(v) = d fp

(
n

∑
i=1

v[xi]
∂

∂xi

∣∣∣∣
p

)
=

n

∑
i=1

v[xi]d fp

(
∂

∂xi

∣∣∣∣
p

)

=
n

∑
i=1

dxi|p(v)
∂

∂xi

∣∣∣∣
p
[ f ] =

n

∑
i=1

dxi|p(v)
∂ f
∂xi (p)

=

(
n

∑
i=1

∂ f
∂xi (p)dxi|p

)
(v),

(4.12)

as required.
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Exercise 75 (Cotangent spaces)

Let M be a smooth manifold, and p ∈ M be any point. The cotangent space to
M at p is defined to be T∗p M .

= (TpM)∗, the dual space to the tangent space at p.
In other words, T∗p M = {ξ : TpM → R : ξ is linear}. Let (U, ϕ) be a chart for M
around p, and consider its components ϕ = (x1, . . . , xn).

(a) Show that the differentials dxi|p : TpM → R of the coordinate functions
xi : U → R form a basis for T∗p M.

(b) How is the basis {dx1|p, . . . , dxn|p} of T∗p M obtained above related to the co-
ordinate basis {∂/∂x1|p, . . . , ∂/∂xn|p} of TpM?

Cotangent spaces, being dual to tangent spaces, play a central role in differential
geometry and differential topology. For the more algebraically-inclined reader, here’s
another way to think about them:

Exercise 76 (The algebraic approach to cotangent spaces)

Let M be a smooth manifold, p ∈ M, and consider the kernel of δp:

Ip = {[ f ] ∈ G∞
p (M) : f (p) = 0}.

(a) Show that Ip is an ideal of the algebra G∞
p (M) (that is, closed under sums and

absorbs multiplications)

(b) Find a canonical isomorphism (that is, basis-independent) between the cotan-
gent space T∗p M and the quotient Ip/I2

p .

Hint: Find a surjective linear transformation Φ : Ip → T∗p M with ker Φ = I2
p

(Hadamard’s lemma is useful to establish this last relation).

Can you identify what I2
p /I3

p is? What about Ik
p /Ik+1

p ?

In Algebraic Geometry, it is common to first define the cotangent space T∗p M as
the quotient Ip/I2

p , and then the tangent space as the dual TpM = (T∗p M)∗.

Example 70 (Coordinate Jacobians)

Let M and N be smooth manifolds of dimensions n and m, F : M→ N be a smooth
mapping, and (U; x1, . . . , xn) and (V; y1, . . . , ym) be charts for M and N, respec-
tively, with U ∩ F−1(V) 6= ∅. We will show that, for each p ∈ U ∩ F−1(V), the
matrix representation of dFp : TpM→ TF(p)N relative to the associated coordinate
bases {

∂

∂xi

∣∣∣∣
p

}n

i=1

and

{
∂

∂ya

∣∣∣∣
F(p)

}m

a=1
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of TpM and TF(p)N is precisely the Jacobian matrix

[
∂Fa

∂xi (p)
]

a=1,...,m
i=1,...,n

=


∂F1

∂x1 · · · ∂F1

∂xn

... . . . ...
∂Fm

∂x1 · · · ∂Fm

∂xn


∣∣∣∣∣∣∣∣∣

p

∈ Rm×n, (4.13)

where Fa = ya ◦ F : U ∩ F−1(V)→ R, and (∂Fa/∂xi)(p) = (∂/∂xi)|p[Fa] as before.

To find such matrix representation, we must compute dFp(∂/∂xi|p), write the re-
sult as a linear combination of the ∂/∂ya|F(p), and place the coefficients as the
columns of a matrix. By (4.8), we have that

dFp

(
∂

∂xi

∣∣∣∣
p

)
=

m

∑
a=1

dFp

(
∂

∂xi

∣∣∣∣
p

)
[ya]

∂

∂ya

∣∣∣∣
F(p)

,

while at the same time

dFp

(
∂

∂xi

∣∣∣∣
p

)
[ya] =

∂

∂xi

∣∣∣∣
p
[ya ◦ F] =

∂

∂xi

∣∣∣∣
p
[Fa] =

∂Fa

∂xi (p),

as required.

Examples 69 and 70 tell us how to compute derivatives using charts, but it will also
be convenient to have an essentially coordinate-free way to do these calculations.

Definition 37 (Abstract velocity vectors)

Let M be a smooth manifold, p ∈ M be any point, and α : (−ε, ε) → M be any
smooth curve with α(0) = p. The velocity vector α′(0) ∈ TpM is defined as the
derivation α′(0) : G∞

p (M)→ R given by

α′(0)[ f ] =
d
dt

∣∣∣∣
t=0

f (α(t)), (4.14)

for every [ f ] ∈ G∞
p (M).

Remark. Note that f ◦ α : (−ε, ε)→ R is a real-valued function of a single real variable,
so in the right side of (4.14) we have a classical derivative from single-variable Calcu-
lus. More generally, it we don’t evaluate such derivative at t = 0, we may consider
α′(t) ∈ Tα(t)M. Each α′(t) is indeed a derivative due to the product rule for classical
derivatives.

When dealing with functions between open subsets of Euclidean spaces, we could
compute total derivatives as directional derivatives, via the formula

D f (p)v =
d
dt

∣∣∣∣
t=0

f (p + tv).
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M

p
v = α′(0)

α

Figure 48: The curve α : (−ε, ε) → M with
the correct initial conditions.

The problem here is that if p ∈ M is any
point and v ∈ TpM is a tangent vector,
it is not generally true that p + tv ∈ M.
In fact, if M does not live inside any Eu-
clidean space, then the quantity p + tv
is not even well-defined. The solution,
of course, seems to be replacing p + tv
with α(t), once the correct initial condi-
tions α(0) = p and α′(0) = v have been
arranged for. The next result says that we
can indeed do this and proceed without
further issues:

Lemma 7 (All tangent vectors are velocity vectors)

Let M be a smooth manifold, and p ∈ M. For every v ∈ TpM, there is a smooth
curve α : (−ε, ε)→ M with α(0) = p and α′(0) = v.

Remark. The curve α is far from unique.

Proof: Let (U, ϕ = (x1, . . . , xn)) be a chart for M around p, and write the linear com-
bination v = ∑n

i=1 ai∂/∂xi|p, for some coefficients a1, . . . , an ∈ R. As ϕ(U) ⊆ Rn

is open, there is ε > 0 small enough so that the curve α : (−ε, ε) → M given by
α(t) = ϕ−1(ϕ(p) + t(a1, . . . , an)) makes sense. It is clear that α(0) = ϕ−1(ϕ(p)) = p.
As for α′(0), note that

α′(0)[xi] =
d
dt

∣∣∣∣
t=0

xi(α(t)) =
d
dt

∣∣∣∣
t=0

(xi(p) + tai) = ai,

so that

α′(0) =
n

∑
i=1

α′(0)[xi]
∂

∂xi

∣∣∣∣
p
=

n

∑
i=1

ai ∂

∂xi

∣∣∣∣
p
= v

by (4.8), as required.

Remark. The above proof also shows that, with the slight abuse of notation of identi-
fying xi ◦ α with α, if ϕ(α(t)) = (x1(t), . . . , xn(t)), then

α′(t) =
n

∑
i=1

(xi)′(t)
∂

∂xi

∣∣∣∣
α(t)

,

where each (xi)′(t) is a derivative from single-variable calculus.

This description of tangent vectors as velocity vectors also opens the way for us to
understand more concrete examples of tangent spaces:
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Exercise 77 (Tangent spaces to spheres)

Let Sn = {p ∈ Rn+1 : ‖p‖ = 1} be the unit n-sphere. Fix p ∈ Sn. Find a canonical
isomorphism between Tp(Sn) and {v ∈ Rn+1 : 〈v, p〉 = 0}.
Hint: One option is to write v ∈ Tp(Sn) as a derivation α′(0), then map it to the
vector α′(0) ∈ Rn+1. You will need to show that this is well-defined (i.e., doesn’t
depend on the choice of curve), that the vector α′(0) is indeed orthogonal to p,
and that this assignment does define an isomorphism. Or consider the inclusion
ι : Sn → Rn+1 and prove that dιp : Tp(Sn) → Tι(p)(R

n+1) ∼= Rn+1 is injective and
has the “correct” image.

We are ready to compute derivatives of functions and mappings on manifolds
using velocity vectors. If f : M → R is smooth, v ∈ TpM, and a smooth curve
α : (−ε, ε)→ M has α(0) = p and α′(0) = v, we have that

d fp(v) = v[ f ] = α′(0)[ f ] =
d
dt

∣∣∣∣
t=0

f (α(t)). (4.15)

If F : M → N is a smooth mapping, then dFp(v) = (F ◦ α)′(0) ∈ TF(p)N is the velocity
vector at t = 0 of the curve F ◦ α : (−ε, ε)→ N, as a derivation, cf. Figure 49.

M

p
v = α′(0)

α

N

F ◦ α

dFp(v) = (F ◦ α)′(0)

F

F(p)

Figure 49: Computing the differential of a function between manifolds via curves.

Indeed,

dFp(v)[g] = v[g ◦ F] = α′(0)[g ◦ F]

=
d
dt

∣∣∣∣
t=0

(g ◦ F)(α(t)) =
d
dt

∣∣∣∣
t=0

g(((F ◦ α)(t))

= (F ◦ α)′(0)[g],

for every [g] ∈ G∞
F(p)(N), as claimed.
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Proposition 29 (Chain rule redux)

Let M, N and P be smooth manifolds, and F : M → N and G : N → P be smooth
mappings. Then, for every p ∈ M, we have that d(G ◦ F)p(v) = dGF(p)(dFp(v))
for all v ∈ TpM. That is, d(G ◦ F)p = dGF(p) ◦ dFp.

Proof: Let v ∈ TpM and choose a smooth curve α : (−ε, ε) → M with α(0) = p and
α′(0) = v. Then, as F ◦ α : (−ε, ε)→ N has (F ◦ α)(0) = F(p) and (F ◦ α)′(0) = dFp(v),
we may compute

d(G ◦ F)p(v) =
d
dt

∣∣∣∣
t=0

(G ◦ F)(α(t)) =
d
dt

∣∣∣∣
t=0

G((F ◦ α)(t))

= dGF(p)((F ◦ α)′(0)) = dGF(p)(dFp(v)),

as wanted.

Let’s see a couple of very concrete examples:

Example 71 (The differential of the antipodal mapping)

Let Sn be the unit sphere, and τ : Sn → Sn be the antipodal mapping, given by
τ(p) = −p. The differential is a linear transformation dτp : Tp(Sn) → T−p(Sn),
and we have seen in Exercise 77 that Tp(Sn) is isomorphic to the orthogonal hy-
perplane p⊥ ⊆ Rn+1, so that we may consider dτp : p⊥ → p⊥ as a linear operator.
If v ∈ p⊥, we may choose a smooth curve α : (−ε, ε) → Sn with α(0) = p and
α′(0) = v, and compute

dτp(v) =
d
dt

∣∣∣∣
t=0

τ(α(t)) =
d
dt

∣∣∣∣
t=0
− α(t) = −α′(0) = −v.

Even though the tangent spaces Tp(Sn) and T−p(Sn), regarded as subspaces of
Rn+1, pass through the origin, we picture them as attached to p and −p, so that v
and −v should be drawn as starting at p and −p, respectively, cf. Figure 50.

v ∈ Tp(Sn)

−v ∈ T−p(Sn)

Sn

Figure 50: Visualizing the derivative of the antipodal mapping.
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Example 72 (Projectivizations of linear transformations)

Let A : Rn+1 → Rk+1 be an injective linear transformation, and consider the in-
duced mapping Ã : RPn → RPk, given by Ã([p]) = [A(p)]. The injectivity as-
sumption on A ensures that A(p) 6= 0 whenever p 6= 0, so that [A(p)] makes
sense. Being linear, A is homogeneous of degree 1, and so Ã is well-defined and
smooth by the result of Exercise 62.

We will see ahead in Example 73 that the derivative of π : Rn+1 r {0} → RPn

is surjective at each point, so that T[p](RPn) ∼= Rn+1/Rp follows from Exercise
74 and the first isomorphism theorem. The problem is that this isomorphism de-
pends on the choice of representative p ∈ [p], so one must be careful when using
it. Instead, we may argue using the chain rule:

Rn+1 r {0} Rk+1 r {0}

RPn RPk

π

A

π

Ã

=⇒

Rn+1 Rk+1

T[p](RPn) T[A(p)](RPk)

dπp

A

dπA(p)

dÃ[p]

In other words, if L ∈ RPn and w ∈ TL(RPn) are given, one computes dÃL(w)
as follows: fix p ∈ L r {0} (so that [p] = L), and select any v ∈ Rn+1 such that
dπp(v) = w; then dÃL(w) = dπA(p)(A(v)). The result is independent on the
choices of p and v. Morally, the derivative of Ã is just A.

The derivatives of the cartesian projections play a central role when computing
derivatives of functions on product manifolds.

Exercise 78 (Tangent spaces to product manifolds)

Let M and N be smooth manifolds, and consider the product manifold M × N.
Show that for all (p, q) ∈ M× N, we have that T(p,q)(M× N) ∼= TpM× TqN.

Hint: If π : M× N → M and σ : M× N → N are the Cartesian projections, show
that Φ : T(p,q)(M × N) → TpM × TqN given by Φ(v) = (dπ(p,q)(v), dσ(p,q)(v))
works.

Exercise 79 (Fat partial derivatives on product manifolds)

Let M, N, P be smooth manifolds, and consider a smooth mapping F : M× N → P.
Fix a point (p, q) ∈ M× N, and denote by ιp : N → M× N and ιq : M → M× N
the inclusions, given by ιp(y) = (p, y) and ιq(x) = (x, q). With the isomorphism
from Exercise 78 in place, show that the derivative dF(p,q) : TpM× TqN → TF(p,q)P
is given by

dF(p,q)(v, w) = d(F ◦ ιq)p(v) + d(F ◦ ιp)q(w)
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for all (v, w) ∈ TpM× TqN.

Hint: π ◦ ιq = IdM and σ ◦ ιp = IdN. You will have to differentiate F(α(t), β(t)),
where α′(0) = v and β′(0) = w, at t = 0, but this may be tricky. Consider
then the auxiliary “surface” G(t, s) = F(α(t), β(s)) of two real variables, not-
ing that F(α(t), β(t)) = G(t, t), and use that the derivative of G(t, t) at t = 0 is
(∂G/∂t)(0, 0) + (∂G/∂s)(0, 0).

Note: This is the manifold version of

d
dt

∣∣∣∣
t=0

f (x(t), y(t)) = x′(0)
∂ f
∂x

(x(0), y(0)) + y′(0)
∂ f
∂y

(x(0), y(0))

from baby Calculus, where the differentials d(F ◦ ιq)p and d(F ◦ ιp)q play the role
of the partial derivatives, and v and w play the role of x′(0) and y′(0), respectively.
For this reason, one usually writes

(∂1F)(p,q)(v) = d(F ◦ ιq)p(v) and (∂2F)(p,q)(w) = d(F ◦ ιp)q(w),

so that (∂1F)(p,q) : TpM→ TF(p,q)P, and similarly for ∂2F.

As for quotients, here is what we can establish so far:

Exercise 80

We have in Section 4.2 that if M is a smooth manifold and τ : M → M is a fixed-
point-free involution, the quotient M/τ of M under p ∼ τ(p) admits a unique
smooth structure for which π : M→ M/τ is a local diffeomorphism. Show, with-
out the aid of coordinates, that dπp : TpM→ Tπ(p)(M/τ) is an isomorphism.

Hint: Show that if v ∈ ker dπp, then v[ f ] = 0 for every germ [ f ] ∈ G∞
p (M).

Explain why any [ f ] ∈ G∞
p (M) has a representative defined on a τ-small neigh-

borhood of p.

The last question to answer here is how dFp relates to the total derivative DF(p)
from Section 2, in the case where M is an open subset of some Euclidean space.

Exercise 81

Let U ⊆ Rn be open, and F : U ⊆ Rn → Rk be a smooth mapping (here, “smooth”
and “smooth in the Euclidean sense” are the same thing). Show that for each point
p ∈ U, the diagram

Rn Rk

Tp(Rn) TF(p)(R
k)

DF(p)

Φp ΦF(p)

dFp
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commutes, where Φp and ΦF(p) are the isomorphisms introduced in Exercise 74.
This explains why we have different notations for DF(p) and dFp: they are techni-
cally different things, but ultimately the “same”. Therefore, dFp generalizes DF(p)
to manifolds.

4.5 Immersions, submersions, critical points

Theorem 11 (The Inverse Function Theorem redux)

Let M and N be smooth manifolds, and F : M → N be a smooth function. If
p ∈ M is such that the differential dFp : TpM → TF(p)N is an isomorphism, there
are open neighborhoods U ⊆ M and V ⊆ N of p and F(p) for which the restriction
F|U : U → V is a diffeomorphism.

The above is a local statement, and we apply the general philosophy of when deal-
ing with manifolds: any statement which is purely local and true in Rn, will be true
on smooth manifolds. Namely, we take any charts around p and F(p), and apply
the Euclidean version of the Inverse Function Theorem to the local representation of
F relative to such charts. There is also a version of the Implicit Function Theorem for
manifolds, in terms of the partial differentials from Exercise 79. We will use several
consequences of Theorem 11 on what follows. To continue the discussion, note that
dFp being an isomorphism directly implies that dim M = dim N. But what if the di-
mensions of M and N were not the same? We cannot require dFp to be an isomorphism
anymore—the next best thing is requiring it to have full rank.

Definition 38 (Immersions and submersions)

Let M and N be smooth manifolds, p ∈ M be any point, and F : M → N be a
smooth function. We say that:

(i) F is an immersion at p if dFp : TpM→ TF(p)N is injective.

(ii) F is a submersion at p if dFp : TpM→ TF(p)N is surjective.

If we say that F is an immersion or submersion without specifying the point p, we
mean that F is so at all points p ∈ M.

If F above is an immersion at some point, then dim M ≤ dim N by simple linear
algebra. Similarly, if F is a submersion at some point, then dim M ≥ dim N. The
local form of immersions and submersions (first seen in Propositions 26 and 27, p.
66, for Euclidean spaces) remain valid: immersions locally look like inclusions, while
submersions locally look like projections: the only difference is that this time we use
charts to express everything.
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Proposition 30 (Local form of immersions)

Let M and N be smooth manifolds with dim M = n and dim N = n + k, and
F : M → N be an immersion at a point p ∈ M. Then, there are charts (U, ϕ) and
(V, ψ) centered at p and F(p) for which the local representation

ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V)) ⊆ Rn → ψ(V) ⊆ Rn+k = Rn ×Rk

is given by (ψ ◦ F ◦ ϕ−1)(x) = (x, 0).

Proposition 31 (Local form of submersions)

Let M and N be smooth manifolds with dim M = n + k and dim N = n, and
F : M → N be a submersion at a point p ∈ M. Then, there are charts (U, ϕ) and
(V, ψ) centered at p and F(p) for which the local representation

ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V)) ⊆ Rn+k = Rn ×Rk → ψ(V) ⊆ Rn

is given by (ψ ◦ F ◦ ϕ−1)(x, y) = x.

Corollary 7 (Submersions admit smooth local sections)

Let M and N be smooth manifolds, and F : M → N be a surjective submersion.
Then, every q ∈ N has an open neighborhood V ⊆ N and a smooth function
σ : V → M such that F ◦ σ = IdV . In addition, given any p ∈ F−1(q), we can
construct such σ having σ(q) = p.

Proof: As F is surjective, there is p ∈ M such that F(p) = q. Now let (U, ϕ) and
(V, ψ) be charts for M and N centered at p and q, respectively, relative to which F
looks like a standard projection, cf. Proposition 31; define the function σ : V → M by
σ(z) = ϕ−1(ψ(z), 0). Clearly σ is smooth, and

(F ◦ σ)(z) = (F ◦ ϕ−1)(ψ(z), 0) = ψ−1(ψ(z)) = z

for any z ∈ V, as wanted.

Here, “section” is synonymous with “right-inverse”. Corollary 7 may in fact be
used as a characterization of submersions:

Exercise 82

Show that:

(a) σ in Corollary 7 is necessarily an injective immersion.

(b) the converse of Corollary 7 holds: if F is just a smooth surjection which admits
local smooth sections around each point in N, then F is a submersion.
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Corollary 8 (The characteristic property of surjective submersions)

Let M and N be smooth manifolds, and F : M → N
be a surjective submersion. If P is a third manifold
and G : N → P is any function, then G is smooth if
and only if G ◦ F : M→ P is smooth, cf. diagram:

M

N P

F G◦F

G

Proof: If G is smooth, then G ◦ F is a composition of smooth functions, and hence is
smooth as well. Conversely, assume that G ◦ F is smooth. To establish smoothness
of G, we observe that smoothness is a local notion, and so it suffices to argue that
G is smooth in some neighborhood of every point in N. But around every point we
may find an open neighborhood V ⊆ N together with a local smooth right-inverse
σ : V → M; then G|V = (G ◦ F) ◦ σ is the composition of smooth functions, and hence
smooth as well.

The moral of the above proof is that if F were a diffeomorphism, we could simply
write G = (G ◦ F) ◦ F−1 as a composition of smooth functions and be done with ar-
gument. But having smooth local right-inverses is enough (as opposing to having a
smooth global two-sided inverse), and F being a submersion is exactly what we need
to make it work. In summary, surjective submersions are the smooth analogues of
quotient mappings in the setting of topological spaces and continuous functions (i.e.,
in the “topological category”). Let’s see how to use this property in practice.

Example 73

Consider the quotient projection π : Rn+1 r{0} → RPn. We have seen in Example
68 that π is smooth, while it is obviously surjective, but we claim that it is also a
submersion. Consider one of the standard charts (U0, ϕ0) for RPn—recall that

U0 = {[x0 : · · · : xn] ∈ RPn : x0 6= 0} and ϕ0([x0 : · · · : xn]) =

(
x1

x0
, . . . ,

xn

x0

)
.

The local representation ϕ0 ◦ π : (R r {0})×Rn → Rn (we take the global chart
in Rn+1 r {0} to be the identity function, as usual) is given by

(ϕ0 ◦ π)(x0, x1, . . . , xn) =

(
x1

x0
, . . . ,

xn

x0

)
,
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and its Jacobian

D(ϕ0 ◦ π)(x0, x1, . . . , xn) =


−x1/x2

0 1/x0 0 · · · 0

−x2/x2
0 0 1/x0

. . . ...
...

... . . . . . . 0

−xn/x2
0 0 · · · 0 1/x0


has full rank due to the (1/x0)Idn block. This means that π is a submersion at
all points in U0, and a similar argument takes care of the points in the remaining
charts (Ui, ϕi), for i = 1, . . . , n. This concludes the proof that π is a submersion.

Consider now the function F : RPn → RPn given by squaring homogeneous co-
ordinates, F([x0 : · · · : xn]) = [x2

0 : · · · : x2
n]. We are finally able to argue, without

charts, that F is smooth: with the auxilliary function G : Rn+1 r {0} → Rn+1 r {0}
given by G(x0, . . . , xn) = (x2

0, . . . , x2
n), we have the diagram

Rn+1 r {0} Rn+1 r {0}

RPn RPn

G

π π◦G
F◦π

π

F

Clearly G is smooth (as its entries are polynomials), and so F ◦ π = π ◦ G is
also smooth, being the composition of the smooth functions π and G. By the
characteristic property of π as a surjective submersion, F ◦π being smooth implies
that F is smooth, as required.

The characteristic property of surjective submersions can also be used to establish
the smooth analogue of Proposition 6 (p. 22):

Exercise 83 (Uniqueness of quotients)

Let M, N1, and N2 be smooth manifolds, and
π1 : M → N1 and π2 : M→ N2 be surjective sub-
mersions. Show that if π1 and π2 are constant along
each other’s fibers, there is a unique diffeomorphism
F : N1 → N2 such that the diagram commutes:

M

N1 N2

π1 π2

F

Hint: Draw some inspiration from Claim 5 in the proof of Theorem 9 (p. 89).

As our next step in studying Calculus on manifolds, we may think back to one
of the first applications of derivatives: dealing with optimization problems. Doing
so relied heavily on the notion of a critical point and solving an equation of the form
f ′(x) = 0.
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Definition 39 (Critical/regular points/values)

Let M and N be smooth manifolds, and F : M→ N be a smooth function. We say
that:

(i) p ∈ M is a critical point of F if dFp : TpM→ TF(p)N is not surjective.

(ii) p ∈ M is a regular point of F if p is not a critical point of F.

(iii) q ∈ N is a regular value of F if F−1(q) consists only of regular points.

(iv) q ∈ N is a critical value of F if F−1(q) contains a critical point.

Above, note that “points” refer to elements of the domain manifold M, while “val-
ues” refer to elements of the target manifold N.

Remark. In any smooth manifold M, one can define what the notion of a subset
S ⊆ M having measure zero: it means that for any chart (U, ϕ) for M, the image
ϕ(U ∩ S) ⊆ Rn has zero Lebesgue measure—for every ε > 0 there exists a sequence
(Bk)k≥1 of open boxes in Rn such that ϕ(U∩S) ⊆ ⋃k≥1 Bk and ∑k≥1 vol(Bk) < ε, where
the volume of an open box is explicitly defined as vol(∏n

i=1(ai, bi)) = ∏n
i=1(bi − ai).

This definition is “correct” because diffeomorphisms between open subsets of Eu-
clidean spaces send measure zero sets to measure zero sets and, in particular, it im-
plies that checking whether S ⊆ M has measure zero or not requires considering only
enough charts to cover S, not M. If S does not have measure zero, it does not mean
that we can assign a value to the “measure of S”, as that would require equipping
M with an actual measure (say, defined on the Borel σ-algebra of M). In any case,
Sard’s Theorem states that the set of critical values of any smooth function between
manifolds has zero measure (in the above sense). In other words, almost all values are
regular.

Definition 39 may sound counter-intuitive at a first glance, as we could reasonably
expect that p ∈ M is a critical point of F if ker dFp is nontrivial. Consider instead the
case where dim N = 1, where dFp becomes essentially a linear functional, and note the
elementary dichotomy: a linear functional on a vector space is either surjective, or the
zero functional7. Hence, when dim N = 1, p is a critical point if and only if dFp = 0.
And, as a saving grace for such a first expectation, in the case where dim M = dim N,
p is indeed a critical point if and only if ker dFp is nontrivial; diffeomorphisms and
local diffeomorphisms (such as τ : Sn → Sn in Example 71) have no critical points. In
summary, having “surjective” instead of “injective” in item (i) in Definition 39 is what
we need to generalize things correctly.

In any case, this definition of critical point does what it is supposed to do:

7If V is a vector space and ξ ∈ V∗ r {0}, there is v ∈ V such that ξ(v) 6= 0. Then, given any λ ∈ R,
we have that ξ(λv/ξ(v)) = λ, making ξ surjective. Alternatively: Im ξ is a subspace of R, and therefore
can only have dimension 0 or 1. These arguments work if we replace R with any field of scalars K, and
also if the dimension of V is infinite.
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Proposition 32 (Local maxima or minima are critical points)

Let M be a smooth manifold and f : M → R be a smooth function. If p ∈ M is a
local maximum (or local minimum) of f , then d fp = 0.

Proof: Let v ∈ TpM be an arbitrary tangent vector, and use Lemma 7 to fix a smooth
curve α : (−ε, ε)→ M be a such that α(0) = p and α′(0) = v. As p is a local maximum
for f , we have that t = 0 is a local maximum of f ◦ α, and so d fp(v) = ( f ◦ α)′(0) = 0
by the corresponding result from single-variable calculus.

Let’s revisit a more elaborate example:

Example 74

Consider again the smooth mapping F : RPn → RPn given by squaring all homo-
geneous coordinates, F([x0 : · · · : xn]) = [x2

0 : · · · : x2
n]. Let’s determine the set

of all critical points of F. As a general principle, we should try to make an edu-
cated guess of what it is before we jump into the calculations. Recall the auxiliary
smooth “lift” G of F and the commutative diagram

Rn+1 r {0} Rn+1 r {0}

RPn RPn

G

π π

F

As G has Jacobian given by

DG(x0, . . . , xn) =


2x0

2x1
. . .

2xn

 ,

where the blank entries are equal to zero, is singular if and only if xi = 0 for some
index i, we may reasonably guess that

the set of critical points of F consists of all elements
[x0 : · · · : xn] ∈ RPn such that xi = 0 for some index i. (4.16)

This is not immediately obvious from the diagram above, as the differential of
π is not invertible. We first claim that, for every p ∈ Rn+1 r {0}, the equal-
ity ker dπp = Rp holds. Indeed, as dπp : Rn+1 → Tπ(p)(RPn) is surjective and
dim RPn = n, it follows that dim ker dπp = 1, and so it suffices to check that
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Rp ⊆ ker dπp. This, in turn, is simple: if λ ∈ R is arbitrary, we have that

dπp(λp) =
d
dt

∣∣∣∣
t=0

π(p + λtp) =
d
dt

∣∣∣∣
t=0

π((1 + λt)p) =
d
dt

∣∣∣∣
t=0

π(p) = 0.

Now, we differentiate the equality F ◦ π = π ◦ G using the chain rule to obtain

dF[x0:···:xn](dπ(x0,...,xn)(v0, . . . , vn)) = dπ(x2
0,...,x2

n)
(2x0v0, . . . 2xnvn). (4.17)

As π is a submersion, (4.17) completely determines dF[x0:···:xn]. For example, the
derivative dF[1:···:1] equals twice the identity mapping of the tangent space
T[1:...:1](RPn). With this in place and the kernel of dπ at each point being known,
the following conditions are equivalent:

(i) [x0 : · · · : xn] ∈ RPn is a critical point of F.

(ii) there is (v0, . . . , vn) ∈ Rn+1, not proportional to (x0, . . . , xn) ∈ Rn+1 r {0},
such that the image (2x0v0, . . . , 2xnvn) is proportional to (x2

0, . . . , x2
n).

This equivalence is our main tool to prove that (4.16) is in fact true. If [x0 : · · · : xn]
is a critical point of F and (v0, . . . , vn) is chosen as in (ii), we have that

rank

2x0v0 · · · 2xnvn

x2
0 · · · x2

n

 < 2 and rank

v0 · · · vn

x0 · · · xn

 = 2,

which means that 2xivix2
j − 2xjvjx2

i = 0 for all i and j, that is, xixj(xivj− xjvi) = 0,
while xkv` − x`vk 6= 0 for some k and `. Hence, xkx` = 0, and so at least one of xk
and x` must vanish. Conversely, let [x0 : · · · : xn] be such that xi = 0 for some i.
As any permutation of the coordinates in Rn+1 r {0} induces a diffeomorphism
of RPn (why?), we may without loss of generality assume that [x0 : · · · : xn] has
the specific form [1 : 0 : x3 : · · · : xn]. Then we use (4.17) to compute that

dF[1:0:x3:···:xn](dπ(1,0,x3,...,xn)(1, 1, x3, . . . , xn)) = 2dπ(1,0,x2
3,...,x2

n)
((1, 0, x2

3, . . . , x2
n)).

The right-hand side clearly vanishes, while dπ(1,0,x3,...,xn)(1, 1, x3, . . . , xn) 6= 0, as
(1, 0, x3, . . . , xn) and (1, 1, x3, . . . , xn) are not proportional (compare their second
entries). This shows that [1 : 0 : x3 : · · · : xn] is a critical point of F and completes
the proof of (4.16).

Exercise 84

In the above setting, show that dim ker dF[x0:···:xn] = |{i ∈ {0, 1, . . . , n} : xi = 0}|.
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Exercise 85

Consider the mapping F : R4 → R2 defined by

F(x, y, z, w) =
(
x2 + y , x2 + y2 + z2 + w2 + y

)
.

Show that (0, 1) ∈ R2 is a regular value of F, and that F−1(0, 1) is diffeomorphic
to S2 (exhibit the diffeomorphism).

4.6 Submanifolds and embeddings

As we have seen, any n-dimensional smooth manifold M is locally modelled on
Rn. A k-dimensional submanifold S of M, however we define the term “submani-
fold”, should be such that the set-inclusion S ⊆ M is locally modelled on the inclusion
Rk ⊆ Rn, where here we of course identify the subspace Rk with its isomorphic copy
Rk × {0} ⊆ Rk ×Rn−k = Rn. We now make this precise:

Definition 40 (Regular submanifolds)

Let M be a smooth manifold, with n = dim M, and let S ⊆ M be any subset. We
will say that S is k-dimensional regular submanifold of M if around each p ∈ S
there is a chart (U, ϕ) for M centered at p such that ϕ(U∩ S) = ϕ(U)∩ (Rk×{0}).
See Figure 51.

M

S

U

Rk

Rn−k

ϕ

ϕ(U)

ϕ(U ∩ S)

Figure 51: A slice chart for a regular submanifold.

In this setting, (U, ϕ) is called a slice chart for M adapted to S.

Remark. Writing ϕ = (x1, . . . , xn), the slice condition says that S is described by the
n− k equations xk+1 = · · · = xn = 0. The integer n− k is called the codimension of
S in M, and we say that S is a hypersurface8 if its codimension equals 1. Often, slice

8As a general principle, the prefix “hyper” means “codimension 1”. For example, vector subspaces
of a n-dimensional vector space having dimension equal to n− 1 are called hyperplanes. Regular sur-
faces in R3 are hypersurfaces. Curves in surfaces are also technically hypersurfaces, etc.
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charts are defined in an apparently broader way, with ϕ(U ∩ S) = ϕ(U) ∩ (Rk × {c})
for some c ∈ Rn−k, depending on p and ϕ, so that S gets described by the n − k
equations xk+1 = ck+1, . . . , xn = cn. Of course, this makes no difference: composing a
slice chart in this sense with a suitable translation we obtain a slice chart in the sense
of the above definition (that is, with c = 0). When discussing examples later, we may
use this notion of slice chart with general c without further comment.

Example 75 (Vector subspaces are regular submanifolds)

Let V be an n-dimensional vector space, and W ⊆ V be a k-dimensional vector
subspace. We have seen that the standard Euclidean structure of V as a mani-
fold is induced by global linear charts V → Rn arising from bases for V. Con-
sider instead a basis (e1, . . . , ek) of the subspace W, and complete it to a basis
(e1, . . . , ek, ek+1, . . . , en) of V. The corresponding chart ϕ : V → Rn, defined by
writing v ∈ V as a linear combination v = ∑n

i=1 aiei and setting ϕ(v) = (a1, . . . , an),
evidently satisfies that ϕ(W) = Rk × {0}. In other words, (V, ϕ) is a global slice
chart for V adapted to W, making W a k-dimensional regular submanifold of V.

Exercise 86

Let M1 and M2 be smooth manifolds, and S1 ⊆ M1 and S2 ⊆ M2 be regular
submanifolds. Show that S1 × S2 is a regular submanifold of M1 ×M2.

Before we see more examples, there are subtleties which need to be addressed.

Let’s make a quick analogy. When we have some algebraic structure, for example,
a group or a vector space, we have the definition of a subgroup or a vector subspace as
being nonempty subsets closed under all the relevant operations. A crucial point here,
and the reason why these definitions are appropriate when developing the theory, is
that subgroups and vector subspaces are again groups and vector spaces, on their own
right. This means that, if Definition 40 is to be of any good for us, it should imply (in a
somewhat natural way) that S can be made into a smooth manifold as well.

The next concept will play a central role in the discussion:

Definition 41 (Embedding)

Let M and N be smooth manifolds, and F : M → N be a smooth mapping. We
say that F is an embedding if F is an immersion and a homeomorphism onto its
image.

Remark. In the above definition, the image F(M) is equipped with its subspace topol-
ogy induced from N. We have already seen that a continuous bijection from a com-
pact space to a Hausdorff space is automatically a homeomorphism, so we obtain the
following shortcut: if F is an injective immersion and M is compact, then F is auto-
matically an embedding and the image F(M) is closed in N.
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Exercise 87 (Proper injective immersions are embeddings with closed images)

Generalize the remark. Let M and N be smooth manifolds, and F : M → N be
an injective immersion. Show that if F is proper, i.e., F−1(K) ⊆ M is compact
whenever K ⊆ N is compact, then F is an embedding and the image F(M) is
closed in N.

Exercise 88 (Embedding RP2 in R4)

Let F : S2 → R4 be given by F(x, y, z) = (x2 − y2, xy, xz, yz). Show that F induces
a smooth embedding F̃ : RP2 → R4 (with F̃ ◦ π = F, where π : S2 → RP2 is the
natural projection).

Hint: You may freely use the fact that an injective immersion defined on a compact
manifold is an embedding. Can you justify that as well?

Back to the matter at hand:

Theorem 12 (Regular submanifolds are actually manifolds)

Let M be a smooth manifold, with n = dim M, and S ⊆ M be a k-dimensional
regular submanifold. Then S is a topological manifold, and it can be made into a
smooth manifold so that the inclusion ιS : S ↪→ M is an embedding.

Proof: We obviously equip S with its subspace topology induced from M, so that S
is automatically Hausdorff and second-countable. Writing Rn = Rk ×Rn−k, we let
ι : Rk ↪→ Rn and π : Rn → Rk be given by ι(x) = (x, 0) and π(x, y) = x. For any
slice chart (U, ϕ) for M adapted to S, we may define a chart (U ∩ S, ϕS) for S by
letting ϕS : U ∩ S → π(ϕ(U ∩ S)) ⊆ Rk be given by ϕS = π ◦ ϕ|U∩S. Clearly ϕS is
continuous, and the image π(ϕ(U ∩ S)) is open in Rk because ϕ(U ∩ S) is open in
Rk × {0}, and π restricts to a homeomorphism Rk × {0} ∼= Rk. Then, the inverse
function ϕ−1

S : π(ϕ(U ∩ S)) → U ∩ S is explicitly given by ϕ−1
S = (ϕ|U∩S)

−1 ◦ ι, again
a composition of continuous functions. This shows that ϕS is a homeomorphism onto
its image, so that (U ∩ S, ϕS) is indeed a chart for S, and S is locally Euclidean.

Hence, S is a topological manifold. To upgrade S to a smooth manifold, we naturally
consider the collection

AS = {(U ∩ S, ϕS) : (U, ϕ) ∈ A is a slice chart for M adapted to S},
where A is the smooth structure of M. To see that AS is a C∞-atlas for S, it suffices to
note that whenever (U ∩ S, ϕS) and (V ∩ S, ψS) are induced by slice charts (U, ϕ) and
(V, ψ), the transition ψS ◦ ϕ−1

S = π ◦ (ψ ◦ ϕ−1) ◦ ι is a composition of smooth mappings
between open subsets of Euclidean spaces; reversing the roles of (U, ϕ) and (V, ψ), we
conclude that (U ∩ S, ϕS) and (V ∩ S, ϕS) are indeed C∞-compatible.

Finally, consider the inclusion ιS : S ↪→ M. It is trivially a homeomorphism onto its
image, by definition of subspace topology. To see that it is smooth and an immersion,
consider its local representation relative to charts (U ∩ S, ϕS) and (U, ϕ) for S and M,
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respectively: ϕ ◦ ιS ◦ ϕ−1
S : π(ϕ(U ∩ S)) → ϕ(U) is explicitly given by the Euclidean

inclusion, ϕ ◦ ιS ◦ ϕ−1
S = ι|π(ϕ(U∩S)), which is the restriction of an injective and linear

mapping. Hence ιS is an embedding, as required.

With the notation of the result above, we in particular have that the differential
d(ιS)p : TpS → TpM is injective for each p ∈ S. It is common to identify the tangent
space TpS with its image d(ιS)p(TpS). In practice, this just means that we treat TpS as
a vector subspace of TpM.

Example 76

Consider the setting of Example 75, with an n-dimensional vector space V, a
k-dimensional vector subspace W ⊆ V, and the global slice chart ϕ : V → Rn in-
duced by a basis Bof W completed to a basis of V. The induced chart ϕW : W → Rk

in fact equals the linear isomorphism W → Rk provided by the initial basis Bcho-
sen for W. This means that the smooth structure induced on W via the result of
Theorem 12 agrees with the standard Euclidean one.

Here is one example, certainly familiar to the reader from Multivariable Calculus:

Example 77 (Spherical coordinates are a slice chart for R3 adapted to S2)

Consider the unit sphere S2 ⊆ R3. We claim that S2 is a regular surface in R3.
Indeed, whenever p0 ∈ S2 and we let θ0 ∈ [0, 2π) and φ0 ∈ [0, π) be the angles
between the projection of p0 to R2 × {0} and between p0 and (0, 0, 1), we may
consider spherical coordinates

(ρ, θ, φ) : U ⊆ R3 → (0, ∞)× (θ0 − π, θ0 + π)×
(

φ0 −
π

2
, φ0 +

π

2

)
,

characterized as usual by x = ρ cos θ sin φ, y = ρ sin θ sin φ, and z = ρ cos φ, on a
suitable chart domain U—it is roughly an open cone, see Figure 52.

S2

Figure 52: Spherical coordinates are slice charts for the sphere.

As U ∩ S2 is described as ρ = 1, (U; ρ, θ, φ) is a slice chart for R3 adapted to S2.
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Applying Theorem 12 to the situation given in the above example, we obtain a
smooth structure on the sphere S2. The issue here is that, a priori, this smooth struc-
ture has no reason to agree with the smooth structure we have already been working
with. In this case, things do turn out to be ok and the structures in question agree (see
Theorem 15 ahead). However, it is perfectly possible for M and S to be smooth mani-
folds such that S ⊆ M, and yet S fails to be a regular submanifold of M: the charts for
S need not be induced by slice charts for M adapted to S.

See the next two classical non-examples:

Example 78 (An injective immersion which is not an embedding)

Consider the following curve S ⊆ R2:

S

x

y

Figure 53: A curve which is immersed but not embedded in R2.

Such S may be realized as the image of an injective immersion F : R → R2, and
so we may transfer the topology and smooth structure of R to S via F. However,
S with this structure cannot be a submanifold of R2, as the inclusion ιS : S ↪→ R2

fails to be a homeomorphism onto its image—namely, with the image ι(S) = S
being equipped with its subspace topology induced from R2, the inverse function
ι−1|ι(S) : ι(S) → S is not continuous at the point indicated in Figure 53. (Can you
see why?)

Example 79 (The Kronecker flow on T2)

Consider the torus T2, seen as the quotient space R2/Z2, as well as the curve
α : R → T2 given by α(t) = π(t, mt), where m > 0 is some fixed slope and
π : R2 → T2 is the quotient projection. We claim that

α is smooth and an immersion, injective or periodic
according to whether m 6∈ Q or m ∈ Q, respectively. (4.18)

Indeed, α is manifestly smooth (being a composition of the two smooth functions
π and R 3 t 7→ (t, mt) ∈ R) and the velocity vector α′(t) = dπ(t,mt)(1, m) never
vanishes, as dπ(t,mt) : R2 → Tπ(t,mt)T

2 is an isomorphism and (1, m) 6= (0, 0); this
shows that α is an immersion. Finally, whenever t, s ∈ R are such that α(t) = α(s),
there is (k, `) ∈ Z2 such that (t, mt) = (s + k, ms + `), leading to the relation
m(s + k) = ms + `, and hence to mk = `. As a consequence, if m 6∈ Q, we must
have that k = ` = 0, so that α is injective. Then, if m = `/k ∈ Q, we have that
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k 6= 0 and so (t + k, (`/k)(t + k)) = (t + k, (`/k)t + `), leading to α(t + k) = α(t)
for any t ∈ R, and making α periodic. This establishes (4.18).

To visualize the image S = α(R), consider it first in the square [0, 1]2 with its sides
identified, as in Figure 54. Also compare it with its version in the actual torus, in
Figure 55.

S

T2 ∼= [0, 1]2/∼

Figure 54: The curve S in the square.

S
T2

Figure 55: The curve S in the torus.

With (4.18) in mind, we address two cases:

• If m ∈ Q, the curve α induces an embedding α̃ : S1 → T2, and we have that
α̃(S1) = S. As we will see ahead in Theorem 13, this guarantees that S is a
regular submanifold of T2.

• If m 6∈ Q, then α : R → S is a bijection and so S can be made into a smooth
manifold, by simply transferring the topology and smooth structure from R

to S via α—this construction makes α−1 : S → R a global chart for S. How-
ever, with this topology and smooth structure, the inclusion ιS : S ↪→ T2

fails to be a homeomorphism onto its image ι(S) (equipped with the sub-
space topology induced from T2). Namely, Kronecker’s Approximation
Theorema implies that that ι(S) is dense in T2, causing the inverse function
ι(S)→ S to be discontinuous. Of course, we can phrase it more succintly by
simply saying that if S ⊆ T2 has its subspace topology from T2, the curve α
is an injective immersion which is not an embedding.

aIt states that whenever m 6∈ Q, for every x ∈ R and ε > 0 there are integers a, b ∈ Zwith a > 0
such that |am− b− x| < ε.

The main reason for this issue in the above situations is that, in the bad cases,
S simply “had the wrong topology”—the correct one being, of course, the subspace
topology induced from either R2 or T2. This seems like an appropriate moment to
mention an alternative definition of smooth manifold: one starts with merely with
a set M, and a collection A of “charts” (U, ϕ), that is, U ⊆ M is just a subset and
ϕ : U → ϕ(U) ⊆ Rn is a bijection onto its image, assumed to be an open subset of Rn;
it does not make sense to ask whether U is open or not at this stage, since M has no
topology. One then assumes conditions on the “atlas” A:

(i) The chart domains in A cover M.

(ii) Whenever (U, ϕ), (V, ψ) ∈ A are such that U ∩V 6= ∅, the images ϕ(U ∩V) and
ψ(U ∩V) are open in Rn and ψ ◦ ϕ−1 : ϕ(U ∩V)→ ψ(U ∩V) is of class C∞.
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(iii) A is maximal for condition (ii).

Once this is in place, we finally define a topology on M by saying that a subset W ⊆ M
is open if and only if ϕ(U ∩W) is open in Rn for every (U, ϕ) ∈ A. This topology
makes all chart domains open, and all charts become continuous, but it has a crucial
flaw: it is not necessarily Hausdorff of second-countable. These conditions must be
explicitly included in the definition of a smooth manifold as additional assumptions.
The take-away here is that if you start with a set without a topology, but are still able
to find “charts” for it, you can almost treat the topology as an afterthought—you just
need to show that it is Hausdorff and second-countable before moving on. End of
digression.

Proceeding, there is then a general distinction: if F : M→ N is an immersion or em-
bedding, its image is called an immersed submanifold or embedded submanifold of
N. The first case can be somewhat pathological when F is not injective, with its image
admitting “self-intersections” (or even if it is injective, “almost self-intersections” like
in Figure 53). Immersed submanifolds do appear in practice, when dealing with Lie
groups and foliations. Embedded submanifolds, on the other hand, agree with what
we have defined, as the topology induced on F(M) by F and M equals the subspace
topology induced by N:

Theorem 13 (Images of embeddings are regular submanifolds)

Let M and N be smooth manifolds, and F : M → N be an embedding. Then, the
image F(M) is a k-dimensional regular submanifold of N, where k = dim M.

Remark. This result is the reason why the terms “embedded submanifold” and “reg-
ular submanifold” are used interchangeably.

Proof: The strategy consists in applying the local form of immersions (Proposition
30) to build slice charts for N adapted to F(M). Namely, given q ∈ F(M) there is
a unique p ∈ M such that q = F(p), and we may choose charts (U, ϕ) and (V, ψ)
for M and N, centered at p and q, for which F(U) ⊆ V and the local representation
ψ ◦ F ◦ ϕ−1 : ϕ(U) ⊆ Rk → ψ(V) ⊆ Rk ×Rn−k is given by (ψ ◦ F ◦ ϕ−1)(x) = (x, 0);
here, n = dim N. However, we cannot say that (V, ψ) is a slice chart adapted to
F(M): for that, we would need to know that ψ(V ∩ F(M)) = ψ(V) ∩ (Rk × {0}), but
the above local representation only ensures that, in V, only F(U) is characterized by
the vanishing of the last n− k component functions of ψ, and F(U) might be strictly
smaller than V ∩ F(M). Consider the situation from Example 78 in more detail:

U

F(U)

V
F

Figure 56: The “tail” of the image of F, not contained in F(U), reenters V.
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It is here the assumption that F is an embedding (as opposed to just an immersion)
enters. As F is a homeomorphism between M and F(M), when the latter has its
subspace topology induced from N, we may use that F(U) is open in F(N) together
with the definition of subspace topology to obtain an open subset V′ ⊆ N such that
V′ ∩ F(M) = F(U). This does the trick: the restricted chart (V′, ψ|V′) is a slice chart
adapted to F(M), with ψ(V′ ∩ F(M)) = ψ(V′) ∩ (Rk × {0}), as required.

Example 80 (Graphs are embedded submanifolds)

Let M and N be smooth manifolds, with dimensions dim M = n and dim N = m,
and F : M→ N be a smooth function. We claim that the graph

Gr(F) = {(p, q) ∈ M× N : q = F(p)}

is a regular submanifold of M× N. To see why this is true, we build slice charts
for M× N adapted to Gr(F). Let (U, ϕ) and (V, ψ) be charts for M and N around
given points p0 and F(p0), respectively, and define ζ : W → Rn ×Rm by

ζ(p, q) =
(

ϕ(p), ψ(q)− ψ(F(p))
)
,

where W = (U ∩ F−1(V))×V. Then (W, ζ) is a chart for M× N, being written as
the composition Φ ◦ (ϕ|U∩F−1(V) × ψ), where the mapping

Φ : ϕ(U ∩ F−1(V))× ψ(V)→ Rn ×Rm

given by Φ(x, y) = (x, y − (ψ ◦ F ◦ ϕ−1)(x)) is also a homeomorphism onto its
image; in particular, ζ(W) is open in Rn ×Rm. Finally, it is clear that

ζ(W ∩Gr(F)) = ζ(W) ∩ (Rn × {0}),

as wanted.

Alternatively, Gr(F) is the image of the embedding M 3 p 7→ (p, F(p)) ∈ M× N.
This is indeed a homeomorphism onto Gr(F), with continuous inverse given by
Gr(F) 3 (p, F(p)) 7→ p ∈ M. As we will see ahead in Theorem 15, the smooth
structure on Gr(F) induced from M via such embedding agrees with the smooth
structure induced by slice charts via Theorem 12.

The smooth structure induced by slice charts turns out to be the precise smooth
analogue of the subspace topology, in the sense of the next result:
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Theorem 14 (The characteristic property of embeddings)

Let S and M be smooth manifolds, and ι : S → M be an
embedding. If N is a third manifold and F : N → S is any
function, then F is smooth if and only if the composition
ι ◦ F : N → M is smooth, cf. the next diagram.

M

N SF

ι◦F ι

Proof: It suffices to argue that if ι ◦ F is smooth, so is F, with the converse statement
being obvious from Proposition 28. We identify S with its image ι(S), as to treat it as a
regular submanifold of M. Let (V ∩ S, ψS) be a chart for S induced from a slice chart
(V, ψ) for M adapted to S, and let (U, ϕ) be any chart for N. Write n = dim M and
k = dim S. By assumption, the components F1, . . . , Fn : ϕ(U ∩ F−1(V)) → R of the
local representation ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V))→ ψ(V), defined via

(ψ ◦ F ◦ ϕ−1)(x) = (F1(x), . . . , Fk(x), Fk+1(x), . . . , Fn(x)),

are all Euclidean-smooth. But F(ϕ−1(x)) ∈ S implies that Fk+1(x) = · · · = Fn(x) = 0,
making the local representation ψS ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V ∩ S))→ ψS(V ∩ S) explic-
itly given by (ψS ◦ F ◦ ϕ−1)(x) = (F1(x), . . . , Fk(x))—it is also Euclidean-smooth, as
required.

Theorem 14 above combined with the characteristic property of surjective submer-
sions (Corollary 8) provides a huge shortcut for checking whether functions between
manifolds are smooth or not. For example, if F : M → Sn is any function and we wish
to show that it is smooth, we can completely ignore Sn, regard F as valued in Rn+1, and
just check that its n + 1 component functions M → R are individually smooth, which
is a much easier task; of course, we can replace Sn with any embedded submanifold of
Euclidean space here.

Another consequence of Theorem 14 is the extremely comforting uniqueness result:

Theorem 15 (Uniqueness of embedded-submanifold structures)

Let M be a smooth manifold, and S ⊆ M be a regular submanifold. Then, the
topology and smooth structure on S making the inclusion ιS : S ↪→ M an embed-
ding are unique.

Proof: Let AS be the smooth structure on S induced by slice charts via Theorem 12,
and let A′ be any other smooth structure on S for which ιS : S ↪→ M is an embedding.
As done in the proof of Theorem 9 (more precisely, in Claim 5), we will argue that
IdS : (S,AS)→ (S,A′) is a diffeomorphism (and therefore A′ = AS). Whenever (N,B)
is a third smooth manifold, Theorem 14 says that a mapping F : (N,B) → (S,AS) is
smooth if and only if ιS ◦ F : (N,B) → M is smooth; and similarly if we replace AS
with A′.

M M

(N,B) (S,AS) (N,B) (S,A′)F

ιS◦F
ιS

F

ιS◦F
ιS
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Set (N,B) = (S,A′) in the first diagram and let F = IdS, so that smoothness of
ιS : (S,A′) ↪→ M yields the one of IdS : (S,A′)→ (S,AS). Likewise, if (N,B) = (S,AS)
in the second diagram and F = IdS, smoothness of ιS : (S,AS) ↪→ M yields the one of
IdS : (S,AS)→ (S,A′), concluding the argument.

To continue the discussion and move towards our next big result on submanifolds,
we first register one more consequence of the Inverse Function Theorem:

Corollary 9

Let M be an n-dimensional smooth manifold, p ∈ M be any point, and U ⊆ M
be an open neighborhood of p. If f1, . . . , fn : U → R are smooth functions and
F = ( f1, . . . , fn) : U → Rn is such that dFp : TpM → Rn is an isomorphism, then,
reducing U if needed, we have that (U, F) is a chart for M.

There was nothing special about the specific use of spherical coordinates in Exam-
ple 77, or the fact that we were dealing with S2 instead of a more general Sn:

Example 81 (Spheres are submanifolds, redux)

Consider the unit sphere Sn ⊆ Rn+1, and write points in Rn+1 as tuples (x0, . . . , xn).
Let’s show that Sn is a regular submanifold of Rn+1, by exhibiting slice charts
around any point p ∈ Sn. Without loss of generality, assume that p = (p0, . . . , pn)
has pn > 0. To define a slice chart, we replace the last coordinate function xn with
a defining function for Sn: if U = Rn × (0, ∞) ⊆ Rn+1, we let F : U → Rn+1 be
defined by

F(x0, . . . , xn) =
(
x0, x1, . . . , xn−1, x2

0 + · · ·+ x2
n − 1

)
.

Clearly F is smooth, and the Jacobian matrix

DF(p) =


Idn

0
...

0

2p0 · · · 2pn−1 2pn


is nonsingular precisely because det DF(p) = 2pn 6= 0. Corollary 9 now allows
us to assume, reducing U if needed, that F defines a chart for Rn+1. But this is a
slice chart adapted to Sn, since the intersection U ∩ Sn is defined by the vanishing
of the last component of F, i.e., F(U ∩ Sn) = F(U) ∩ (Rn × {0}).

Remark. Strictly speaking, the use of Corollary 9 above was not needed, and we could
have directly checked that F : Rn × (0, ∞) → Rn × (−1, ∞) was already a chart. But
the way we argued here is how we will establish a more general result ahead.

The idea used in Example 81 to build slice charts for Rn+1 adapted to Sn by replac-
ing one of the natural coordinates for Rn+1 with a defining function for Sn, namely,
(x0, . . . , xn) 7→ x2

0 + · · ·+ x2
n − 1, works out abstractly:
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Theorem 16 (The regular level set theorem – baby version)

Let M be a smooth manifold, f : M → R be a smooth function, and c ∈ R be a
regular value of f . Then, whenever f−1(c) 6= ∅, it is an embedded hypersurface
of M, and for every p ∈ f−1(c) we have that Tp( f−1(c)) = ker d fp.

Proof: Let p0 ∈ f−1(c) be arbitrary, and fix a chart (U, ϕ) for M around p0. As c is
a regular value of f , the differential d fp0 : Tp0 M → R is nonzero. This is equivalent
to the Euclidean gradient of the local representation f ◦ ϕ−1 : ϕ(U) ⊆ Rn → R being
nonzero at ϕ(p0). Without loss of generality, if ϕ = (x1, . . . , xn), assume that it is its last
component (∂ f /∂xn)(p0) 6= 0 which survives. Now, define a new smooth mapping
ϕ f : U → Rn by ϕ f (p) = (x1(p), . . . , xn−1(p), f (p)− c), and note that its differential
d(ϕ f )p0 : Tp0 M→ Rn is an isomorphism. Indeed, its matrix representation

D(ϕ f ◦ ϕ−1)(ϕ(p0)) =


Idn−1

0
...

0

∗ · · · ∗ (∂ f /∂xn)(p0)


is nonsingular, as det D(ϕ f ◦ ϕ−1)(ϕ(p0)) = (∂ f /∂xn)(p0) 6= 0. Corollary 9 now tells
us that, reducing U if necessary, (U, ϕ f ) is a chart for M around p0. This is a slice chart
adapted to f−1(c) as f (p) = c if and only if the last component of ϕ f (p) vanishes,
that is, ϕ f (U ∩ f−1(c)) = ϕ f (U) ∩ (Rn−1 × {0}). We conclude from Theorem 12 that
f−1(c) is an embedded hypersurface of M.

It remains to compute, for each p ∈ f−1(c), the tangent space Tp( f−1(c)) (which is
identified with a vector subspace of TpM). We already know that both Tp( f−1(c))
and ker d fp have dimension n − 1, since dim f−1(c) = n − 1 and we may apply the
rank-nullity law to the linear functional d fp : TpM → R. This means that to establish
the equality Tp( f−1(c)) = ker d fp, it suffices to show that Tp( f−1(c)) ⊆ ker d fp. So,
let v ∈ Tp(( f−1(c)), and write it (using Lemma 7) as v = α′(0), for some smooth
curve α : (−ε, ε) → f−1(c) having α(0) = p. As f (α(t)) = c for all t ∈ (−ε, ε), we
may differentiate it at t = 0 to obtain (via formula 4.15 in p. 106) that d fp(v) = 0, as
required.

In concrete examples, when the ambient space is some Euclidean space and we
have identified the correct defining function to use, we may think of its gradient in-
stead of its differential.

Example 82

Consider the set M = {(x, y, z) ∈ R3 : xyz = 1}. To show that M is an em-
bedded surface in R3, we simply consider the smooth function f : R3 → R given
by f (x, y, z) = xyz, so that M = f−1(1), and argue that 1 is a regular value of
f : whenever xyz = 1, none of the components of ∇ f (x, y, z) = (yz, xz, xy) can
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vanish, allowing us to apply Theorem 16.

The tangent space T(x,y,z)M is simply the orthogonal complement of the gradient
∇ f (x, y, z), and so T(x,y,z)M = {(a, b, c) ∈ R3 : yza + xzb + xyc = 0}. Another
way to obtain this equation is to start with xyz = 1, pretend that x, y, and z all
depend on some parameter t, with derivatives a, b, and c, and just differentiate
using the product rule. Having checked that ∇ f (x, y, z) is not the zero vector
ensures that the resulting equation for the tangent plane is indeed the equation
for a plane (instead of degenerating to a line equation, for instance).

With the same argument as above one can also show that any c 6= 0 is a regular
value of f . However, note that c = 0 is not a regular value of f and that the
corresponding set {(x, y, z) ∈ R3 : xyz = 0} is not an embedded surface in R3—it
is instead the union of the three coordinate planes, which is not even a topological
manifold (adapt Example 59, p. 69).

Exercise 89

For each c ∈ R, consider the set Mc = {(x, y, z) ∈ R3 : xey + yez + zex = c}. Show
that Mc is an embedded surface in R3 whenever c ≥ 0, and determine the tangent
plane T(0,0,0)(M0).

Exercise 90

Find the values of c ∈ R for which

Mc = {(x, y, z, w, s) ∈ R5 : sin x + cos y + sin z + cos w + sin s = c}

is a regular hypersurface of R5.

Exercise 91

Find the values of c ∈ R for which

Mc = {[x : y : z] ∈ RP2 : xy + yz + xz = c(x2 + y2 + z2)}

is an embedded curve in RP2.

Hint: Which values of c are regular values of the function from Exercise 61?

Exercise 92 (Lagrange multipliers)

Let M be a smooth manifold, and S ⊆ M be an embedded submanifold, globally
expressed at S = Φ−1(0) for some smooth function Φ = (Φ1, . . . , Φk) : M → Rk

having the origin 0 ∈ Rk as a regular value. Let f : M → R be a smooth function,
and assume that p ∈ S is a point where the restriction f |S : S → R attains its
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maximum or minimum value. Show that there are coefficients λ1, . . . , λk ∈ R

such that d fp = λ1dΦ1
p + · · ·+ λkdΦk

p.

Before moving on, here is one more elaborate example:

Example 83 (The special linear group)

Given an integer n ≥ 1, consider the special linear group

SLn(R) = {A ∈ Rn×n : det A = 1}.

It follows from the identities det(AB) = det A det B and det(A−1) = (det A)−1

that SLn(R) is a group. We now claim it is an embedded hypersurface of Rn×n

as well. Clearly we have that SLn(R) = det−1(1), for the determinant function
det : Rn×n → R. Note that det is smooth, as det A is a polynomial function in
the n2 entries of A. We just need to check that 1 ∈ R is a regular value of det.
In other words, we need to verify that whenever A ∈ SLn(R), the differential
d(det)A : Rn×n → R is not the zero linear functional. Even though having an
explicit formula for d(det)A will be convenient for describing the tangent spaces
to SLn(R) shortly, we don’t really need it to apply Theorem 16: just note that

d(det)A(A) =
d
dt

∣∣∣∣
t=0

det(A + tA)

=
d
dt

∣∣∣∣
t=0

det((1 + t)A) =
d
dt

∣∣∣∣
t=0

(1 + t)n det A = n 6= 0.

More generally, we start computing the differential d(det)Idn : Rn×n → R. If
e1, . . . , en denotes the standard basis of Rn, and H = [hij]

n
i,j=1 ∈ Rn×n is arbitrary,

we note that the i-th column of H is Hei, and treat det as a multilinear function of
the columns of its matrix inputs:

d(det)Idn(H) =
d
dt

∣∣∣∣
t=0

det(e1 + tHe1, . . . , en + tHen)

=
n

∑
i=1

det(e1, . . . , ei−1, Hei, ei+1, . . . , en)

=
n

∑
i=1

hii = tr(H).

For the general case, we differentiate the relation det(AB) = det A det B at the
identity B = Idn and evaluate it at the tangent vector A−1H ∈ Rn×n, using the
chain rule: d(det)A(H) = (det A)tr(A−1H) whenever A ∈ Rn×n is invertible. It
follows that

TASLn(R) = {H ∈ Rn×n : tr(A−1H) = 0}.
In particular, TIdnSLn(R) = {H ∈ Rn×n : tr(H) = 0}.

Page 129



SMOOTH MANIFOLDS IVO TEREK

Exercise 93

Let n, k ≥ 1 be integers, and let M = {A ∈ Rn×n : tr(Ak) = 1}. Show that M is an
embedded hypersurface in Rn×n, and determine each tangent space TAM.

Hint: Use cyclic-invariance of the trace function.

The main shortcoming of Theorem 16 is that it only applies to functions which are
valued in the real line R. But we will not let this stop us:

Theorem 17 (The regular level set theorem – the true statement)

Let M and N be smooth manifolds, F : M→ N be a smooth function, and q ∈ N be
a regular value of F. Then, whenever F−1(q) 6= ∅, it is an embedded submanifold
of M with dim F−1(q) = dim M− dim N, and for every p ∈ F−1(q) we have that
Tp(F−1(q)) = ker dFp.

Proof: Let p0 ∈ F−1(q) be arbitrary, and fix charts (U, ϕ) and (V, ψ) for M and N
around p0 and q. As q is a regular value of F, the differential dFp0 : Tp0 M → TqN is
surjective. This is equivalent to saying that the Jacobian matrix of the local represen-
tation ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ F−1(V)) ⊆ Rn → ψ(V) ⊆ Rm at ϕ(p0) has a nonsingular
m×m submatrix. Without loss of generality, if ϕ = (x1, . . . , xn) and ψ = (y1, . . . , ym),
and we write Fa = ya ◦ F so that

D(ψ ◦ F ◦ ϕ−1)(ϕ(p0)) =


∂F1

∂x1 · · · ∂F1

∂xn−m
∂F1

∂xn−m+1 · · · ∂F1

∂xn

... . . . ...
... . . . ...

∂Fm

∂x1 · · · ∂Fm

∂xn−m
∂Fm

∂xn−m+1 · · · ∂Fm

∂xn


∣∣∣∣∣∣∣∣∣

ϕ(p0),

assume that it is the right block

D2F(p0) =


∂F1

∂xn−m+1 · · · ∂F1

∂xn

... . . . ...
∂Fm

∂xn−m+1 · · · ∂Fm

∂xn


∣∣∣∣∣∣∣∣∣

ϕ(p0)

which is nonsingular. Now, define a smooth map ϕ f : U ∩ F−1(V)→ Rn by

ϕ f (p) = (x1(p), . . . , xn−m(p), Fn−m+1(p)− yn−m+1(q), . . . , Fn(p)− yn(q)),

and note that d(ϕ f )p0 : Tp0 M → Rn is an isomorphism. Indeed, its matrix representa-
tion (given in block form)

D(ϕ f ◦ ϕ−1)(ϕ(p0)) =

Idn−m 0

∗ D2F(p0)


is nonsingular, as det D(ϕ f ◦ ϕ−1)(ϕ(p0)) = det D2F(p0) 6= 0. Corollary 9 now tells
us that, reducing U if necessary, (U ∩ F−1(V), ϕ f ) is a chart for M around p0. This is a
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slice chart adapted to F−1(q) as F(p) = q if and only if the last m components of ϕ f (p)
vanishes, that is, ϕ f (U ∩ F−1(q)) = ϕ f (U ∩ F−1(V)) ∩ (Rn−m × {0}). We conclude
from Theorem 12 that F−1(q) is an embedded (n−m)-dimensional submanifold of M.

The proof that Tp(F−1(q)) = ker dFp for each p ∈ F−1(q) is the same proof given in
Theorem 16: just replace f , c, and d fp : TpM → R with F, q, and dFp : TpM → TF(p)N,
respectively.

Let’s see some more interesting examples.

Example 84 (The orthogonal group)

Given an integer n ≥ 1, consider the orthogonal group:

O(n) = {A ∈ Rn×n : ATA = Idn}.

It is not hard to check that O(n) is a group. Here, we will check that O(n) is
an embedded n(n− 1)/2-dimensional submanifold of Rn×n. The obvious guess
of which function we should apply Theorem 17 to, would be F : Rn×n → Rn×n

given by F(A) = ATA, since O(n) = F−1(Idn). If this were to work, however, the
dimension of O(n) would be zero (namely, the difference between the dimensions
of the domain and target manifolds of F)—and we know that O(n) is more than
a countable and discrete collection of points. We then adjust the target of F, and
consider it as a function F : Rn×n → Symn(R), where

Symn(R) = {B ∈ Rn×n : BT = B} ∼= Rn(n+1)/2

is the vector subspace of all n× n real symmetric matrices. We are allowed to do
this since ATA is symmetric for any A ∈ Rn×n. In any case, now we may show
that Idn is a regular value of F, that is, that the differential dFA : Rn×n → Symn(R)
is surjective for every A ∈ O(n). Indeed, we have that

dFA(H) = HTA + ATH

for every H ∈ Rn×n, so that for any B ∈ Symn(R) we may compute

dFA

(
AB
2

)
=

BAT

2
A + AT AB

2
=

B
2
+

B
2
= B.

Hence, O(n) is an embedded submanifold of Rn×n, and its dimension is equal to
n2 − n(n + 1)/2 = n(n− 1)/2, as claimed.

Finally, we also see that

TAO(n) = {H ∈ Rn×n : HTA + ATH = 0}

and, in particular, TIdnO(n) = {H ∈ Rn×n : HT + H = 0} is the space of all
skew-symmetric matrices.
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Exercise 94 (The unitary group)

Given an integer n ≥ 1, show that the unitary group

U(n) = {A ∈ Cn×n : A† A = Idn}

is an embedded submanifold of Cn×n. What is its dimension? Determine the tan-
gent space TAU(n) and, in particular, TIdnU(n). Here, A† = AT

is the conjugate-
transpose of A.

The fact that in Example 84 above we had to restrict the target of F to Symn(R)
instead of Rn×n to make things work suggests that Theorem 17 still has room for im-
provement. The key word here is “rank”: recall from Linear Algebra that if A ∈ Rm×n

has rank(A) = k, there are invertible matrices P ∈ Rm×m and Q ∈ Rn×n such that

PAQ =

Idk 0

0 0

 ,

where 0 stands for blocks of zeros of the several appropriate sizes. Given a smooth
function F : M → N, the corresponding rank function p 7→ rank(dFp) is integer-
valued and lower-semicontinuous, implying that for every p0 ∈ M there is an open
neighborhood U ⊆ M of p0 such that rank(dFp) ≥ rank(dFp0) for every p ∈ U. If
we think back to the motto “good things happening to dFp also happen to F itself near
p”, the next result—which interpolates between the local forms of immersions and
submersions—should not be surprising:

Theorem 18 (The constant-rank theorem)

Let M and N be smooth manifolds with dim M = n and dim N = m, F : M → N
be a smooth function, and p ∈ M be such that the rank of F is constant and equal
to k in some neighborhood of p. Then, there are charts (U, ϕ) and (V, ψ) centered
at p and F(p) for which the local representation

ψ ◦ F ◦ ϕ−1 : ϕ(U ∩ F−1(V)) ⊆ Rk ×Rn−k → ψ(V) ⊆ Rk ×Rm−k

is given by (ψ ◦ F ◦ ϕ−1)(x, y) = (x, 0).

It leads, using similar ideas to the ones discussed here, to:

Theorem 19 (The constant-rank level set theorem)

Let M and N be smooth manifolds, F : M → N be a smooth function, k ≥ 1 be an
integer, and q ∈ N be such that rank(dFp) = k for all p ∈ F−1(q). Then, whenever
F−1(q) 6= ∅, it is an embedded submanifold of M with dim F−1(q) = dim M− k
(i.e., the codimension is k) and, for every p ∈ F−1(q), the tangent space is given
by Tp(F−1(q)) = ker dFp.
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For proofs of Theorems 18 and 19 see, e.g., [23, Theorems 11.1 and 11.2, p. 116] or
[15, Theorems 4.12 and 5.12]. There is one last question to consider: if F : M→ N is a
smooth function, and we replace the point q ∈ N with a submanifold S ⊆ N, when is
the inverse image F−1(S) a submanifold of M, and what is its dimension? This leads
us to concept of transversality, and you can read more about it in [8], for instance.

4.7 A brief overview of vector fields and flows

Definition 42 (Vector fields)

Let M be a smooth manifold. A vector field is an assignment X, to each point
p ∈ M, of a tangent vector Xp ∈ TpM. We say that X is smooth if, for every chart
(U; x1, . . . , xn) for M, the functions X1, . . . , Xn : U → R defined by the relation

Xp =
n

∑
i=1

Xi(p)
∂

∂xi

∣∣∣∣
p
, for all p ∈ U,

are smooth; note that Xi(p) = dxi|p(Xp) for each i = 1, . . . , n. We denote the space
of all smooth vector fields on M by X(M).

Remark. As usual, note that checking that X is smooth requires checking that the func-
tions Xi are smooth for enough charts to cover M; maximality of the smooth structure
of M then takes care of the remaining charts. In general, a vector field which is not
necessarily smooth is usually referred to as a rough vector field. Otherwise, we will
always assume that vector fields are smooth.

Vector fields are ubiquitous in Calculus, Differential Geometry, and Physics. More-
over, vector fields are the generalization to manifolds of systems of first-order differ-
ential equations on open subsets of Euclidean spaces. To make precise sense of this,
we need one more definition:

Definition 43 (Integral curves)

Let M be a smooth manifold and
X ∈ X(M) be a vector field. A curve
α : I → M (where I ⊆ R is an open in-
terval) is called an integral curve of X if
α′(t) = Xα(t), for every t ∈ I. See Figure
57.

(The vectors belonging to the vector field
in X are indicated in black, while the in-
tegral curves indicated in red “follow”
X.)

Figure 57: Integral curves of a vector
field on a smooth manifold.

Assume, with the setting of the above definition, that the image of α is contained in
the domain of a chart (U; x1, . . . , xn) for M, and that we write the coordinates of α(t)
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as (x1(t), . . . , xn(t)). Then, we have that

α′(t) = Xα(t) ⇐⇒
n

∑
i=1

(xi)′(t)
∂

∂xi

∣∣∣∣
α(t)

=
n

∑
i=1

Xi(α(t))
∂

∂xi

∣∣∣∣
α(t)

⇐⇒


(x1)′(t) = X1(x1(t), . . . , xn(t))

...
(xn)′(t) = Xn(x1(t), . . . , xn(t)).

This already tells us that, in general, finding integral curves of a given vector field
might be a very challenging task. Consider the following concrete example:

Example 85

In M = R2, consider the vector field

X = x
∂

∂x
+ x2 ∂

∂y
.

Using the isomorphisms T(x,y)(R
2) ∼= R2 to write the values of X as ordered pairs,

we have that

X(0,0) = (0, 0), X(2,3) = (2, 4), X(−1,0) = (−1, 1), X(−3,1) = (−3, 9),

etc.; see Figure 58.

Figure 58: Values of a vector field on the
plane.

A curve α : I → R2, written in the
form α(t) = (x(t), y(t)), is an in-
tegral curve of X if and only if the
functions x and y constitute a so-
lution of the system of differential
equations{

x′(t) = x(t),
y′(t) = x(t)2.

In this case, imposing initial condi-
tions x(0) = x0 and y(0) = y0, it is not difficult to explicitly obtain the closed
form

α(t) =

(
x0et,

x2
0

2
(e2t − 1) + y0

)
for the integral curve α. If the components of X get more complicated, so will the
resulting system for x(t) and y(t) be.

To better understand, from both the geometric and dynamical perspectives, what
a vector field X “is doing”, it is convenient to gather all integral curves of X into a
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single mapping. The theory of differential equations ensures that this can be done in a
smooth way.

Theorem 20 (The fundamental theorem of flows)

Let M be a smooth manifold, and X be a vector field on M.

(i) For each p ∈ M, there is a maximally-defineda integral curve αp : Ip → M of
X with initial condition αp(0) = p, where Ip ⊆ R is an open interval with
0 ∈ Ip.

(ii) There is an open subset D⊆ R×M containing {0} ×M for which the map-
ping Φ : D→ M, called the (local) flow of X and defined by Φ(t, p) = αp(t),
is smooth; we also have D∩ (R× {p}) = Ip × {p} for each p ∈ M.

(iii) We have that (t+ s, p) ∈ Dwhenever (s, Φ(t, p)), (t, p) ∈ D, and the relation
Φ(t + s, p) = Φ(s, Φ(t, p)) holds. In addition, Φ(0, p) = p.

For each t ∈ R, we set Ut = {p ∈ M : (t, p) ∈ D} and Φt = Φ(t, ·).

(iv) For each t ∈ R, the mapping Φt : Ut → U−t is a diffeomorphism, with in-
verse explicitly given by (Φt)−1 = Φ−t.

The vector field X is called complete if D= R×M, that is, if the maximal domain
of definition for each of its integral curves is the entire real line R. In this case, Φ
is called the global flow of X.

aThis means that if J ⊆ R is an open interval with Ip ⊆ J and β : J → M is an integral curve of
X such that β|Ip = αp, then J = Ip and β = αp.

For a detailed proof, see [15, Theorem 9.12]. Here, we are interested only in un-
derstanding this result and computing some examples. Smoothness in condition (ii)
really amounts to saying that the dependence of the integral curve αp on the initial
condition p ∈ M is also smooth (this is not trivial). The relation given in (iii) says that
if we start with a point p, let it flow by time t, and then let the result Φ(t, p) flow by
time s, we obtain the same point as we would be letting the initial point p flow by time
t + s to begin with. In particular, Φ(0, p) = p for every p ∈ M. When the vector field X
is complete, these conditions say that Φ is exactly a group action of R (equipped with
addition) on M: t · p = Φ(t, p).

Example 86

The vector field X from Example 85 is complete, and its flow Φ : R×R2 → R2 is
given by

Φ(t, (x, y)) =
(

xet,
x2

2
(e2t − 1) + y

)
,

for every (t, (x, y)) ∈ R×R2.
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Example 87 (Flows of constant fields)

On M = Rn, consider a single vector
v ∈ Rn as a constant vector field on
Rn, with the aid of the usual isomor-
phisms Tp(Rn) ∼= Rn. Given p ∈ Rn,
the solution α to the differential equation
α′(t) = v with initial condition α(0) = p
is clearly given by α(t) = p + tv, and its
maximal interval of definition is Ip = R.
This means that v is complete and its
flow Φ : R × Rn → Rn is given by
Φ(t, p) = p + tv. See Figure 59.

Rn

v

Figure 59: A constant vector field in Rn.

If we replace Rn with an open subset U ⊆ Rn, the constant vector field may or
may not be complete: it depends on whether lines in the direction of v starting at
points in U remain forever in U or not.

The simplest manifold one could consider is, of course, the real line R. But even in
R, things can get complicated, and vector fields need not be complete.

Example 88 (An incomplete vector field in the real line)

In the manifold M = R, consider the vector field X = x2 d
dx . For each point x ∈ R,

we visualize the tangent vector Xx as a horizontal arrow of magnitude x2, always
pointing to the right as x2 ≥ 0. See Figure 60.

0
R

Figure 60: A homogeneous quadratic vector field on the real line.

An integral curve of X is nothing more than a real-valued function t 7→ x(t), such
that x′(t) = x(t)2. This is a nonlinear ordinary differential equation, but we can
solve it explicitly:

x′(t) = x(t)2 =⇒ x′(t)
x(t)2 = 1 =⇒ − 1

x(t)
= t + c =⇒ x(t) = − 1

t + c
.

If an initial condition x(0) = x0 is given, we necessarily have that c = −1/x0. This
means that

x(t) = − 1
t− 1

x0

=
x0

1− tx0
.
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The maximal interval of definition of x(t), how-
ever, is not the entire real line: we have a prob-
lem when 1− tx0 = 0. Renaming x0 back to x,
the flow domain of X is given by

D= {(t, x) ∈ R×R : 1− tx > 0},

and Φ : D→ R is given by

Φ(t, x) =
x

1− tx
.

See the domain D in Figure 61.

x

t

x

+∞

−∞

x

Figure 61: The flow domain for
the vector field X = x2 d

dx on R.

Example 89 (Rotation flow)

Consider in M = R2 the so-called rotation vector
field, given by

X = −y
∂

∂x
+ x

∂

∂y
.

That is, at each point (x, y) ∈ R2, the vector X(x,y)
is obtained by rotating the position vector of (x, y)
by π/2 counterclockwise, and making it start at
(x, y) itself. Intuitively, it should be already some-
what clear that the integral curves of X are circles,
cf. Figure 62.

y

x

Figure 62: Rotation flow
on the plane.

A curve α(t) = (x(t), y(t)) is an integral curve of X if and only if x′(t) = −y(t)
and y′(t) = −x(t). If (x(0), y(0)) = (x0, y0), we have thatx′(t)

y′(t)

 =

0 −1

1 0

x(t)

y(t)

 =⇒

x(t)

y(t)

 =

cos t − sin t

sin t cos t

x0

y0

 ,

so that α(t) = (x0 cos t− y0 sin t, x0 sin t+ y0 cos t). As (x0, y0) is arbitrary and α(t)
is defined for all t ∈ R, we have that X is complete. To write its flow explicitly, we
rename (x0, y0) 7→ (x, y), so that Φ : R×R2 → R2 is given by

Φ(t, (x, y)) = (x cos t− y sin t, x sin t + y cos t).

Geometrically: given (x, y) ∈ R2, the point Φ(t, (x, y)) is obtained by rotating
(x, y) by angle t, counterclockwise.
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Exercise 95

Is the vector field X on R2 given by

X = y
∂

∂x
+ x

∂

∂y

complete? Compute its flow.

Hint: Hyperbolic trigonometric functions are your friends.

Example 90 (Flows of linear vector fields)

Consider the manifold M = Rn, and fix a matrix A ∈ Rn×n. We can regard it as a
linear vector field on Rn, assigning to each p ∈ Rn the vector Ap ∈ Rn ∼= Tp(Rn),
regarded as starting at the point p. The rotation vector field on Example 89 is a
particular case of this. A curve α(t) in Rn is an integral curve of A if and only
if α′(t) = Aα(t). Once an initial condition α(0) = p is given, we know from the
theory of ordinary differential equations that α(t) = etA p, where

etA = ∑
k≥0

(tA)k

k!

is the exponential of tA—the series converges absolutely (relative to any norm on
Rn×n), defines a smooth function, and etA commutes with A. In particular, the
series converges for all t ∈ R, making A a complete vector field, and the flow
Φ : R×Rn → Rn is given by Φ(t, p) = etA p.

Example 91 (The simplest radial flow)

In the manifold M = Rn r {0}, we consider the
radial vector field X given by Xp = p/‖p‖. It is
called radial because for each p, the value Xp is
a multiple of p, cf. Figure 63. Geometrically, it is
not hard to see that the integral curves of X are
the (open) rays starting from the origin. What
is not immediately clear is how these rays are
parametrized. So, we try for integral curves of
the form α(t) = f (t)p, for some positive func-
tion f having f (0) = 1. From the condition
α′(t) = Xα(t), we have that Figure 63: A unit radial

vector field on Rn r {0}.

f ′(t)p =
f (t)p
‖ f (t)p‖ =

p
‖p‖ =⇒ f ′(t) =

1
‖p‖ =⇒ f (t) =

t
‖p‖ + c,
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and so f (0) = 1 implies that c = 1. Hence we may write α(t) = (1+ t/‖p‖)p. The
maximal interval of definition of α, however, is not the entire real line: α cannot
cross the origin, and so the multiple 1 + t/‖p‖ has to stay positive. This means
that the flow domain of X is D = {(t, p) ∈ R× (Rn r {0}) : t > −‖p‖}, and the
flow Φ : D→ Rn r {0} is given by Φ(t, p) = (1 + t/‖p‖)p.

Exercise 96

With the setting of the previous example, compute the flow of the vector field X
given by Xp = p/‖p‖k, where k ≥ 1 is a fixed odd integer, and write its flow
domain D explicitly. Is X complete? What happens differently if k is even?

In general, determining whether a vector field is complete or not without actually
computing its flow can be very difficult. There are a few results in this direction, here
is the most friendly of them:

Proposition 33

Let M be a smooth manifold, and X be a vector field on M whose flow domain D

contains a strip (−ε, ε)×M. Then, D= R×M (i.e., X is complete).

Proof: Let p ∈ M and α : (a, b) → M be a maximally-defined integral curve of X,
with 0 ∈ (a, b) and α(0) = p, and assume by contradiction that b < ∞. Then, if
β : (−ε, ε) → M is an integral curve of X with β(0) = α(b− ε/2) (we do not assume
that β is maximally-defined), consider α̃ : (a, b + ε/2)→ M given by

α̃(t) =

{
α(t), if t ∈ (a, b) ,
β
(
t− b + ε

2

)
, if t ∈

(
b− ε, b + ε

2

)
.

Since α(t) = β(t− b + ε/2) on the intersection (b− ε, b) (they are both integral curves
of X which agree at t = b − ε/2), α̃ is a well-defined, smooth, integral curve of X
starting at t = 0 and with domain strictly larger than the domain of α. This contradicts
the maximality of α, and shows that b = ∞. A similar argument shows that a = −∞,
and so α must be defined on all of R, as required.

Corollary 10

Every compactly-supported vector field on a smooth manifold is complete.

Corollary 11

Every vector field on a compact manifold is complete.
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Example 92 (Vector fields on RPn induced from ones on Sn)

Consider the real projective space RPn, but regarded as the quotient Sn/Z2, where
Z2 = {IdSn , τ} for the antipodal mapping τ : Sn → Sn, cf. the remark after The-
orem 9. When does a vector field X on Sn survive on the quotient RPn? It seems
natural to expect that if such a vector field X̃ ∈ X(RPn) exists, it should satisfy the
relation dπp(Xp) = X̃{p,−p}, for all p ∈ Sn. At the same time, replacing p with −p
leads to dπ−p(X−p) = X̃{p,−p}, meaning that the equality

dπ−p(X−p) = dπp(Xp), for all p ∈ Sn, (4.19)

is a necessary condition for the existence of X̃. In terms of the antipodal mapping,
(4.19) is equivalent to saying that

dτp(Xp) = X−p, for all p ∈ Sn. (4.20)

Indeed, applying dπ−p to both sides of (4.20) and using the chain rule together
with the relation π ◦ τ = π leads to (4.19); conversely, (4.19) together with the
chain rule and relation π ◦ τ = π leads to X−p − dτp(Xp) ∈ ker dπ−p = {0}, so
that (4.20) holds (here we use Exercise 80).

Now, is (4.19)–(4.20) also sufficient for the existence of X̃? Yes! Given any element
{p,−p} ∈ RPn, we define X̃ by X̃{p,−p} = dπp(Xp). Choosing −p instead of p
leads to the same element of T{p,−p}(RPn) due to (4.19), so that X̃ is well-defined.
Smoothness of X̃ follows from the one of X as π is a local diffeomorrphism. (In
fact, π being a surjective submersion is enough, due to Corollary 8.)

The above situation motivates the next definition:

Definition 44 (F-related fields)

Let M and N be smooth manifolds, and F : M → N be a smooth mapping. Two
vector fields X ∈ X(M) and Y ∈ X(N) are said to be F-related if dFp(Xp) = YF(p),
for every p ∈ M.

Exercise 97

Let M be a smooth manifold, and Γ be a finite group of diffeomorphisms acting
freely on M, in the sense of Exercise 68, so that M/Γ becomes a smooth manifold
and π : M→ M/Γ is a local diffeomorphism. Let X ∈ X(M) be a vector field such
that X is γ-related to itself, for every γ ∈ Γ. Show that there is a unique vector
field X̃ ∈ X(M/Γ), automatically smooth, which is π-related to X.
Hint: Revisit Example 92.

The flows of F-related vector fields are also related, in the sense of the next result:
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Proposition 34

Let M and N be smooth manifolds, and F : M → N be a smooth mapping. The
flows ΦX : DX ⊆ R×M→ M and ΦY : DY ⊆ R×N → N of two F-related vector
fields X ∈ X(M) and Y ∈ X(N) are related via

F(ΦX(t, p)) = ΦY(t, F(p)),

for all (t, p) ∈ DX.

Proof: We just need to show that, fixed p ∈ M, the curve t 7→ F(ΦX(t, p)) is an integral
curve of Y, starting at F(p) for t = 0. The latter condition is clear: F(ΦX(0, p)) = F(p),
since ΦX(0, p) = p . As for the former, we compute using the chain rule:

d
dt

F(ΦX(t, p)) = dFΦX(t,p)

(
d
dt

ΦX(t, p)
)
= dFΦX(t,p)

(
XΦX(t,p)

)
= YF(ΦX(t,p)).

We conclude this section with one last concept which plays a central role in the
study of vector fields and flows—you will certainly come across it if you continue
your studies in differential geometry.

Exercise 98 (A crash course on Lie brackets)

Let M be a smooth manifold, and let X, Y ∈ X(M).

(a) Show that for each p ∈ M, the expression

[X, Y]p[ f ] = Xp[Y( f )]− Yp[X( f )],

where [Y( f )] denotes the germ at p of the function x 7→ Yx[ f ], defines an
element of Der(G∞

p (M), δp) = TpM; the resulting vector field [X, Y] is called
the Lie bracket of X and Y.

Note: the assignment [ f ] 7→ Xp[Y( f )] alone (i.e., composition of vector fields)
does not define a tangent vector — it contains “second derivatives”. This
is why the skew-symmetrization happens, so they cancel. It is similar to a
“commutator” of matrices, and it has [Y, X] = −[X, Y].

(b) Show that whenever (U, (x1, . . . , xn)) is a chart for M and we write

X =
n

∑
i=1

Xi ∂

∂xi and Y =
n

∑
i=1

Yi ∂

∂xi ,

the Lie bracket is given by

[X, Y] =
n

∑
i,j=1

(
X j ∂Yi

∂xj −Y j ∂Xi

∂xj

)
∂

∂xi .
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(c) Show that [ f X, gY] = f g[X, Y] + f X[g]Y− gY[ f ]X for all f , g ∈ C∞(M).

Note: The Lie bracket is not bilinear over C∞(M) (i.e., it is not a tensor), just
over the scalar field R — it instead picks up an error term which is a linear
combination of X and Y. You can even use (c) together with the fact that
coordinate vectors commute to prove (b) out of order if you want.

(d) In M = R3, given two smooth functions f , g : R2 → R, compute the Lie
bracket of

X =
∂

∂x
+ f (x, y)

∂

∂z
and Y =

∂

∂y
+ g(x, y)

∂

∂z
.

What is the condition necessary and sufficient for [X, Y ] = 0? What does it
mean, geometrically?

(e) Let N be a second smooth manifold, with vector fields X̃, Ỹ ∈ X(N), and
F : M→ N be a smooth mapping. Show that if X and Y are F-related to X̃ and
Ỹ, respectively, then [X, Y] is F-related to [X̃, Ỹ].

We move on to the final part of the course, whose goal is to establish Stokes’s The-
orem: the ultimate generalization of the Fundamental Theorem of Calculus.
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5 Integration on manifolds and Stokes’s theorem

5.1 Some exterior algebra

In vector calculus, we deal mostly with two types of objects: scalar fields (that is,
real-valued functions) and vector fields. There are multiple ways we can multiply
them:

• the product of two scalar fields is a scalar field: ( f g)(p) = f (p)g(p).

• the product of a scalar field and a vector field is a vector field: ( f F)(p) = f (p)F(p).

• the dot product of two vector fields is a scalar field: (F ·G)(p) = F(p) ·G(p).

• the cross product of two vector fields is a vector field: (F×G)(p) = F(p)×G(p).

In a similar manner, there are three main differential operators to consider:

• the gradient of a scalar field is a vector field: ∇ f (p) = ( fx, fy, fz)|p.

• the divergence of a vector field is a function: (∇ · F)(p) = ((F1)x + (F2)y + (F3)z)|p.

• the curl of a vector field is a vector field:

(∇× F)(p) = ((F3)y − (F2)z, (F1)z − (F3)x, (F2)x − (F1)y)|p.

We want to develop a formalism which allows us to treat all these products and differ-
ential operators at the same time. In other words, we want to consider scalar and vec-
tor fields as particular examples of a larger class of objects, for which a general product
∧ and differential operator d exist, and reduce to the ones described above when re-
stricted to scalar and vector fields. The remaining part of vector calculus, however,
deals with line and surface integrals. While everything can be made formal with Rie-
mann sums, here is the gist of it for surface integrals: if M ⊆ R3 is a regular surface,
the area of M is computed by adding the areas dA of infinitesimal parallelograms in
each tangent plane to M, cf. Figure 64 below.

M

dA

TpM

p

x

y

z

Figure 64: Infinitesimal areas of parallelograms in the tangent planes to M.
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Note that if A(v, w) denotes the area of the parallelogram spanned by two vectors v, w,
then we have the relations

A(λv, w) = λA(v, w) and A(v1 + v2, w) = A(v1, w) + A(v2, w), (5.1)

and another similar one in relative to the w-argument; see Figure 65.

+ =

w

v1

v1 + v2

w

v1

v1 + v2

w

v1

v1 + v2v2v2v2

Figure 65: The linear relation A(v1 + v2, w) = A(v1, w) + A(v2, w).

In higher dimensional manifolds, we still want to add up infinitesimal volumes
of parallelepipeds on each tangent space. The problem is that, abstractly, there is no
device in an abstract vector space which can be used to compute volumes. Still, if we
had one, it would have to be multilinear, just like our area function A above is. Here,
we apply for the first time a general philosophy:

When trying to understand some concept about smooth mani-
folds, which does not involve derivatives and concerns mainly
tangent vectors, we forget about the topology and return to
linear algebra: once we finally make sense of whatever it is
in a single abstract vector space, we return to manifolds and
apply our understanding to all tangent spaces simultaneously.

(5.2)

For this reason, we start with the following definition:

Definition 45 (Covariant tensors)

Let V be a real vector space. A (covariant) k-tensor on V is a multilinear mapping
T : V×k = V × · · · × V → R, that is, whenever any k − 1 of its arguments are
fixed, we obtain a linear functional. In other words, given v1, . . . , vk ∈ V, for
each i = 1, . . . , n we have that T(v1, . . . , vi−1, _ , vi+1, . . . , vk) : V → R is a linear
functional. The set of all k-tensors in V will be denoted by Tk(V); it is clearly a
vector space with pointwise operations.

Remark. When k = 0, we set T0(V) = R. Next, T1(V) = V∗. Then, T2(V) is the
space of all bilinear forms V ×V → R. And so on.

To exhibit a basis for Tk(V) when V is finite-dimensional, and to ultimately arrive
at the product ∧mentioned earlier, we need an additional operation between tensors.
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Definition 46 (Tensor product between covariant tensors)

Let V be a real vector space, and fix tensors T ∈ Tk(V) and S ∈ T`(V). The tensor
product between T and S is the element T ⊗ S ∈ Tk+`(V) defined by

(T ⊗ S)(v1, . . . , vk+`) = T(v1, . . . , vk)S(vk+1, . . . , v`),

for all v1, . . . , vk+` ∈ V; note that T ⊗ S is multilinear since both T and S are.

The above definition is natural: T eats k vectors and S eats ` vectors, so how can
T ⊗ S eat k + ` vectors? We feed the first k to T, and the last ` to S, in order. For ex-
ample, if f , g ∈ V∗, we have that f ⊗ g ∈ T2(V) is given by ( f ⊗ g)(v, w) = f (v)g(w).
Here are some properties of the tensor product operation:

Exercise 99 (Properties of ⊗)

Let V be a real vector space. Show that:

(a) ⊗ : Tk(V)×T`(V)→ Tk+`(V) is bilinear, that is, whenever T, T1, T2 ∈ Tk(V)
and S, S1, S2 ∈ T`(V), and λ ∈ R, we have that

(T1 + λT2)⊗ S = T1 ⊗ S + λT2 ⊗ S,
T ⊗ (S1 + λS2) = T ⊗ S1 + λT ⊗ S2.

(b) ⊗ is associative, that is, (T ⊗ S)⊗ R = T ⊗ (S⊗ R) for all tensors T ∈ Tk(V),
S ∈ T`(V), and R ∈ Tr(V).

(c) in general, T ⊗ S 6= S⊗ T.

As a consequence of associativity, parentheses are no longer needed when taking
tensor products of several elements at once. For example, if f 1, . . . , f k ∈ V∗, we have
that f 1 ⊗ · · · ⊗ f k ∈ Tk(V) is given by

( f 1 ⊗ · · · ⊗ f k)(v1, . . . , vk) = f 1(v1) · · · f k(vk)

for all v1, . . . , vk ∈ V. This is exactly what we need to build a basis for Tk(V) from a
basis of V when V is finite-dimensional:

Proposition 35 (A basis for Tk(V))

Let V be a real vector space, and (e1, . . . , en) be a basis for V. Then, if (ϕ1, . . . , ϕn)
is its dual basis in V∗, we have that

{ϕi1 ⊗ · · · ⊗ ϕik : i1, . . . , ik = 1, . . . , n} (5.3)

is a basis for Tk(V). In particular, dim Tk(V) = nk.
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Proof: The argument is morally the same one used in the case where k = 1, that is,
when showing that the dual basis is indeed a basis. One observes that if ∑n

i=1 ai ϕ
i = 0,

evaluating both sides at ej yields aj = 0 (establishing linear independence of ϕ1, . . . , ϕn),
and that v = ∑n

i=1 ϕi(v)ei for every v ∈ V implies that f = ∑n
i=1 f (ei)ϕi for every

f ∈ V∗ (so that ϕ1, . . . , ϕn spans V∗).

With that said, we first show that (5.3) is linearly independent. Given nk real coeffi-
cients ai1···ik ∈ R, assume that

n

∑
i1...ik=1

ai1...ik ϕi1 ⊗ · · · ⊗ ϕik = 0.

Evaluating it at the k-tuple (ej1 , . . . , ejk), we obtain that

0 =
n

∑
i1,...,ik=1

ai1...ik(ϕi1 ⊗ · · · ⊗ ϕik)(ej1 , . . . , ejk) =
n

∑
i1,...,ik=1

ai1...ik ϕi1(ej1) · · · ϕ
ik(ejk)

=
n

∑
i1,...,ik=1

ai1...ik δi1
j1
· · · δik

jk
= aj1...jk .

As the indices j1, . . . , jk = 1, . . . , n are also arbitrary, this yields the desired conclusion.

It remains to show that (5.3) spans Tk(V). So, let T ∈ Tk(V), and v1, . . . , vk ∈ V be
arbitrary. We simply compute, using multilinearity of T:

T(v1, . . . , vk) = T

(
n

∑
i1=1

ϕi1(v1)ei1 , · · · ,
n

∑
ik=1

ϕik(vk)eik

)

=
n

∑
i1,...,ik=1

ϕi1(v1) · · · ϕik(vk)T(ei1 , . . . , eik)

(∗)
=

n

∑
i1...,ik=1

Ti1...ik ϕi1(v1) · · · ϕik(vk)

=
n

∑
i1,...,ik=1

Ti1...ik(ϕi1 ⊗ · · · ⊗ ϕik)(v1, . . . , vk),

where in (∗) we define Ti1...ik = T(ei1 , . . . , eik)—the nk components of the tensor T
relative to the basis e1, . . . , en of V. This shows that

T =
n

∑
i1,...,ik=1

Ti1...ik ϕi1 ⊗ · · · ⊗ ϕik , (5.4)

concluding the proof.

Formula (5.4) in the above proof is particularly important: it actually tells us how to
write a given tensor as a linear combination of the tensor products of basis covectors.
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Example 93

If T ∈ T2(R3) is given by T((x1, y1, z1), (x2, y2, z2)) = 2x1y2 − x1y3 + 5x2y2 and
we let (e1, e2, e3) denote the standard basis of R3, and (ϕ1, ϕ2, ϕ3) be its dual ba-
sis, then we compute T(e1, e2) = 2, T(e1, e3) = −1, and T(e2, e2) = 5, while we
have T(ei, ej) = 0 for all choices of i and j not previously listed. These are the
coefficients needed to write T as a linear combination of {ϕi ⊗ ϕj : i, j = 1, 2, 3}.
Namely, we have T = 2ϕ1 ⊗ ϕ2 − ϕ1 ⊗ ϕ3 + 5ϕ2 ⊗ ϕ2.

Exercise 100

If T ∈ T2(R2) is given by T((x1, y1), (x2, y2)) = 3x1y1 + 5x2y1 − 2x1y2 − 3x2y2,
write T as a linear combination of {ϕi ⊗ ϕj : i, j = 1, 2}, where (ϕ1, ϕ2) is the dual
basis of the standard basis of R2.

Consider again the discussion on areas used to motivate Definition 45. In addition
to the properties given in (5.1), there is a third one which should be taken into ac-
count: sensitivity to orientation, A(w, v) = −A(v, w). In terms of higher-dimensional
volumes, thinking that a positively-oriented basis of Rn should give rise to a paral-
lelepiped having positive volume, and a negatively-oriented basis gives a negative
volume, the natural conclusion is that switching the order of two vectors switchs the
sign of the resulting oriented volume, since this process makes a positively-oriented
basis negatively oriented, and vice-versa.

To formulate a more elegant definition from the above, note that if V is a real vector
space, for each integer k ≥ 1 we have an action of the permutation group9 Sk on
Tk(V): given σ ∈ Sk and T ∈ Tk(V), the element σT ∈ Tk(V) is defined by

(σT)(v1, . . . , vk) = T(vσ(1), . . . , vσ(k)),

for all v1, . . . , vk ∈ V. As the group Sk is generated by transpositions (i.e., permuta-
tions switching only two elements), the following definition captures what we need:

Definition 47 (Alternating tensors)

Let V be a real vector space. A tensor T ∈ Tk(V) is called alternating if, for every
σ ∈ Sk, we have that σT = (sgn σ)T. Explicitly, this means that

T(vσ(1), . . . , vσ(k)) = (sgn σ)T(v1, . . . , vk)

for all v1, . . . , vk ∈ V. We set Ak(V) = {T ∈ Tk(V) : T is alternating}.

9That is, the set of all bijections {1, . . . , k} → {1, . . . , k}, with composition of functions as its group
operation. More generally, for any set X, we have the group S(X) of all bijections X → X. When |X| = k,
fixing a bijection ϕ : X → {1, . . . , k} yields an isomorphism Φ : S(X) → Sk, given by Φ(α) = ϕαϕ−1. If
ψ : X → {1, . . . , k} is another bijection, inducing Ψ : S(X) → Sk, the “transition” Φ ◦ Ψ−1 : Sk → Sk is
simply conjugation by the element ϕ ◦ ψ−1 ∈ Sk. Think that X and S(X) are abstract (like manifolds)
while {1, . . . , k} and Sk are concrete models (like Rn), while ϕ and ψ are like “charts”.
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Above, the sign sgn σ ∈ {+1,−1} of an element σ ∈ Sk is usually defined as
the number of transpositions used in some factorization of σ as a product of trans-
positions; the factorization is not unique in general, but the parity of the number of
transpositions used is well-defined. Alternatively, you can think of σ ∈ Sk as a linear
transformation σ : Rk → Rk, given by σ(x1, . . . , xk) = (xσ(1), . . . , xσ(k)), and then sgn σ

is just the determinant det σ. It is also helpful to think of it as sgn σ = (−1)m, where m
is whichever number of transpositions you manage to use to shuffle (xσ(1), . . . , xσ(k))

back to the original arrangement (x1, . . . , xk). For example, if σ ∈ S4 is given by
(σ(1), σ(2), σ(3), σ(4)) = (3, 4, 2, 1), we have that

(3, 4, 2, 1) 1−→ (1, 4, 2, 3) 2−→ (1, 2, 3, 4),

so sgn σ = (−1)2 = +1. One of the main properties of sgn is that it defines a homo-
morphism Sk → {+1,−1}, that is, sgn(στ) = (sgn σ)(sgn τ) for every σ, τ ∈ Sk

The tensor product of alternating tensors in not alternating as well, in general.
Fortunately, there is a process to convert any k-tensor into an alternating k-tensor:

Definition 48 (The alternator operator)

Let V be a real vector space. The alternator of a tensor T ∈ Tk(V) is the tensor
Alt(T) defined by Alt(T) = ∑σ∈Sk

(sgn σ)σT

We will see ahead in Proposition 36 that Alt(T) is indeed an alternating tensor, i.e.,
Alt(T) ∈ Ak(V). But first, an example to build intuition:

Example 94 (Low-dimensional alternators)

For k = 1, every T ∈ T1(V) is alternating by default, as Alt(T) = T.

For k = 2, Alt : T2(V)→ A2(V) is given by Alt(T)(v1, v2) = T(v1, v2)− T(v2, v1).

For k = 3, we compute Alt : T3(V) → A3(V)
with the aid of the table on the right, listing
sgn σ for all σ ∈ S3:

Alt(T)(v1, v2, v3) = + T(v1, v2, v3)− T(v1, v3, v2)

− T(v2, v1, v3) + T(v2, v3, v1)

+ T(v3, v1, v2)− T(v3, v2, v1).

For k = 4, we have 4! = 24 terms, and we’ll
hardly have any use for the resulting explicit
formula for Alt(T)(v1, v2, v3, v4).

sgn σ σ(1) σ(2) σ(3)

+ 1 2 3

- 1 3 2

- 2 1 3

+ 2 3 1

+ 3 1 2

- 3 2 1

Proposition 36 (Alt(T) is alternating)

For any T ∈ Tk(V), we indeed have that Alt(T) ∈ Ak(V).
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Proof: Let τ ∈ Sk be arbitrary, and compute

τAlt(T) = τ

(
∑

σ∈Sk

(sgn σ) σT

)
= ∑

σ∈Sk

(sgn σ) τ(σT)

= ∑
σ∈Sk

(sgn σ) (τσ)T = (sgn τ) ∑
σ∈Sk

(sgn τσ)(τσ)T

(∗)
= (sgn τ)Alt(T),

as required. In (∗) we use a general principle: as Sk 3 σ 7→ τσ ∈ Sk is a bijection,
we have that ∑σ∈Sk

F(τσ) = ∑σ∈Sk
F(σ) for any function F : Sk → R; as σ ranges over

Sk, so does the product τσ, and without repetitions. Think of it as relabeling dummy
indices, or as doing a change of variables.

The operator Alt has another relevant property, which is worth registering:

Proposition 37 (Alt is almost a projection)

Let V be a real vector space. Then, if T ∈ Tk(V) is any tensor, we have that
Alt(Alt(T)) = k!Alt(T). In particular, Alt(T) = k!T when T is already alternating.

Remark. If not for the factor of k!, the mapping Alt : Tk(V) → Tk(V) would be a
projection10 onto the subspace Ak(V) of Tk(V). In fact, many people define the Alt
operator as Alt(T) = 1

k! ∑σ∈Sk
(sgn σ) σT, as to actually make it a projection. There

are competing conventions in the literature and you must pay close attention to them
everytime you consult a new source. For example, we are following the convention
adopted in [23], while [15] has the normalizing factor of 1

k! .

Proof: The argument again consists of a direct computation:

Alt(Alt(T)) = ∑
σ∈Sk

(sgn σ) σAlt(T) = ∑
σ∈Sk

(sgn σ) σ

(
∑

τ∈Sk

(sgn τ)τT

)
= ∑

σ∈Sk

∑
τ∈Sk

(sgn σ)(sgn τ)σ(τT) = ∑
σ∈Sk

∑
τ∈Sk

(sgn στ)(στ)T

(∗)
= ∑

σ∈Sk

Alt(T) = k!Alt(T).

In (∗), we use the same general principle mentioned in the previous proof to say that
∑τ∈Sk

(sgn στ)(στ)T = Alt(T): this time σ is fixed and the product στ ranges over Sk
as τ ranges over Sk, without repetitions.

One last (rather technical) property that will need later is given next:

10If Z is a vector space and P : Z → Z is a linear operator, P is called a projection operator onto
some subspace W ⊆ Z if P ◦ P = P and Im(P) = W. It then follows that V = ker P ⊕ Im P, with
v = (v− Pv) + Pv for every v ∈ V. Conversely, if a direct sum decomposition Z = W ⊕W ′ is given,
the direct-sum projection Z →W is a projection operator in the above sense.
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Lemma 8 (“Pre-associativity” of Alt)

Let V be a real vector space, and consider tensors T ∈ Tk(V) and S ∈ T`(V). Then
Alt(Alt(T)⊗ S) = k!Alt(T ⊗ S) and, similarly, Alt(T ⊗Alt(S)) = `!Alt(T ⊗ S).

Proof: We establish just the first claimed relation, as the second one is dealt with sim-
ilarly. Given τ ∈ Sk, we consider τ̂ ∈ Sk+` defined by

τ̂(j) =

{
τ(j), if j ∈ {1, . . . , k}
j, if j ∈ {k + 1, . . . k + `}.

Clearly Sk 3 τ 7→ τ̂ ∈ Sk+` is an injective homomorphism, with sgn τ̂ = sgn τ for
every τ ∈ Sk, and such that τ̂(_⊗ _) = (τ_)⊗ _. With this in place, we compute

Alt(Alt(T)⊗ S) = ∑
σ∈Sk+`

(sgn σ) σ(Alt(T)⊗ S)

= ∑
σ∈Sk+`

(sgn σ) σ

((
∑

τ∈Sk

(sgn τ) (τT)

)
⊗ S

)
= ∑

σ∈Sk+`

∑
τ∈Sk

(sgn σ)(sgn τ) σ((τT)⊗ S)

= ∑
σ∈Sk+`

∑
τ∈Sk

(sgn σ)(sgn τ̂) (στ̂)(T ⊗ S)

= ∑
τ∈Sk

∑
σ∈Sk+`

(sgn (στ̂)) (στ̂)(T ⊗ S)

(∗)
= ∑

τ∈Sk

Alt(T ⊗ S) = k!Alt(T ⊗ S),

(5.5)

as required; the step in (∗) being hopefully clear by now.

Exercise 101

Mimic (5.5) to show that Alt(T ⊗Alt(S)) = `!Alt(T ⊗ S).

We may now modify the product ⊗ to obtain the desired product ∧:

Definition 49 (Exterior product)

Let V be a real vector space. The exterior product of ω ∈ Ak(V) and η ∈ A`(V) is
the element ω ∧ η ∈ Ak+`(V) defined by

ω ∧ η =
1

k!`!
Alt(ω⊗ η).

The presence of Alt ensures that ω ∧ η is alternating.
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Remark. There are again different conventions on how the ∧ operation is defined. If
one defined Alt with the normalization factor of 1

k! mentioned in the previous remark,
defining

ω ∧ η =
(k + `)!

k!`!
Alt(ω⊗ η)

makes the resulting tensor ω ∧ η agree with the one in Definition 49. In [15], the con-
sistency is maintained, but there are other texts which are not too careful with that. In
any case, the factor k!`! in the denominator simply accounts for repetitions (as you can
see in Example 96 below).

Example 95 (Exterior products of linear functionals)

Let V be a vector space. If f , g ∈ V∗, then f ∧ g ∈ A2(V) is given by

( f ∧ g)(v, w) =
1

1!1!
Alt( f ⊗ g)(v, w)

= ( f ⊗ g)(v, w)− ( f ⊗ g)(w, v)
= f (v)g(w)− f (w)g(v),

for all v, w ∈ V. When V = R2 and e1, e2 is the dual basis of the standard basis of
R2, we have that e1 ∧ e2 = A = det is the “area function” on the plane. Also note
that g ∧ f = − f ∧ g.

Example 96 (Exterior products of linear functionals and skew-symmetric forms)

Let V be a real vector space, f ∈ V∗, and ω ∈ A2(V). Using the result from
Example 94, we may compute

Alt( f ⊗ω)(v1, v2, v3) = + f (v1)ω(v2, v3)− f (v1)ω(v3, v2)

− f (v2)ω(v1, v3) + f (v2)ω(v3, v1)

+ f (v3)ω(v1, v2)− f (v3)ω(v2, v1).

Since ω is skew-symmetric, we may rewrite the above as

Alt( f ⊗ω)(v1, v2, v3) = 2( f (v1)ω(v2, v3) + f (v2)ω(v3, v1) + f (v3)ω(v1, v2)).

Dividing out the factor of 2, we conclude that

( f ∧ω)(v1, v2, v3) = f (v1)ω(v2, v3) + f (v2)ω(v3, v1) + f (v3)ω(v1, v2), (5.6)

for every v1, v2, v3 ∈ V.
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Exercise 102

In the same setting as Example 96 above, show that ω ∧ f = f ∧ω.

Exercise 103

In Example 96, we presented the result as in (5.6) because then all terms present
the cyclic order 1-2-3. This makes (5.6) easy to remember, but it is particular to
the case where ω ∈ A2(V) (which, incidentally, is one of the most frequently
encountered in practice). Another option is to write all the arguments of ω in
order, starting from the smaller index to the largest, skipping the one taken care
of by f :

( f ∧ω)(v1, v2, v3) = f (v1)ω(v2, v3)− f (v2)ω(v1, v3) + f (v3)ω(v1, v2).

The signs alternate, and this is how we generalize it all from k = 2 to arbitrary k.

Let V be a real vector space, and k ≥ 1 be any integer. Show that whenever f ∈ V∗

and ω ∈ Ak(V) are given, the exterior product f ∧ω ∈ Ak+1(V) is given by

( f ∧ω)(v1, . . . , vk+1) =
k+1

∑
i=1

(−1)i+1 f (vi)ω(v1, . . . , v̂i, . . . , vk+1)

for every v1, . . . , vk+1 ∈ V, where v̂i means that the argument vi is being omitted.
For example, ω(v1, . . . , v̂3, . . . , vk+1) means ω(v1, v2, v4, . . . , vk+1).

Hint: One option is to use induction. Alternatively, you can directly argue that for
each fixed i = 1, . . . , k + 1 there are k! terms of the form f (vi)ω(. . . , v̂i, . . .) in the
expression for Alt( f ⊗ω)(v1, . . . , vk+1), and all of them agree (up to a sign which
may be adjusted by permuting the arguments) as ω is alternating.

We have seen in Exercise 99 that ⊗ is not commutative. As for ∧, we had that
it was skew-symmetric when operating on linear functionals, but symmetric when
acting on a linear function and an alternating 2-tensor. This suggests that whether ∧
is a commutative or anti-commutative product depends on the “degree” of the objects
on which it acts. Here are the main properties of the exterior product:

Proposition 38 (Properties of ∧)

Let V be a real vector space.

(a) ∧ : Ak(V)×A`(V)→ Ak+`(V) is bilinear, that is, whenever ω, ω1, ω2 ∈ Ak(V)
and η, η1, η2 ∈ A`(V), and λ ∈ R, we have that

(ω1 + λω2) ∧ η = ω1 ∧ η + λω2 ∧ η,
ω ∧ (η1 + λη2) = ω ∧ η1 + λω ∧ η2.
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(b) ∧ is associative, that is, (ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ) for all alternating tensors
ω ∈ Ak(V), η ∈ A`(V), and ζ ∈ Ar(V).

(c) ∧ is graded-commutative, that is, ω ∧ η = (−1)k`η ∧ω whenever ω ∈ Ak(V)
and η ∈ A`(V).

Proof: Property (a) is an immediate consequence of ∧ being (up to the normalization
factor) the composition of the bilinear mapping ⊗ : Ak(V) × A`(V) → Tk+`(V) (cf.
Exercise 99) and the linear mapping Alt : Tk+`(V)→ Ak+`(V).

For property (b), we use Lemma 8: on one hand, we have that

(ω ∧ η) ∧ ζ =
1

(k + `)!r!
Alt((ω ∧ η)⊗ ζ)

=
1

(k + `)!r!
Alt
((

1
k!`!

Alt(ω⊗ η)

)
⊗ ζ

)
=

1
k!`!r!

1
(k + `)!

Alt(Alt(ω⊗ η)⊗ ζ)

=
1

k!`!r!
1

(k + `)!
(k + `)!Alt((ω⊗ η)⊗ ζ)

=
1

k!`!r!
Alt((ω⊗ η)⊗ ζ).

A similar calculation shows that

ω ∧ (η ⊗ ζ) =
1

k!`!r!
Alt(ω⊗ (η ⊗ ζ)),

so that (ω ∧ η) ∧ ζ = ω ∧ (η ∧ ζ) follows from (ω⊗ η)⊗ ζ = ω⊗ (η ⊗ ζ).

Finally, consider (c). The particular permutation α ∈ Sk+` given by

α(j) =

{
j + `, if j ∈ {1, . . . , k},
j− k, if j ∈ {k + 1, . . . , k + `}

has sgn α = (−1)k` and satisfies that α(ω ⊗ η) = η ⊗ ω. Applying Alt on both sides
of this last relation, the conclusion immediately follows. Here, of course, we use the
following general fact: Alt(σT) = (sgn σ)Alt(T), valid for any tensor T ∈ Tk(V) and
permutation σ ∈ Sk.

Exercise 104

Establish the general fact stated at the end of the above proof.

Associativity of the exterior product has a few important consequences:
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Corollary 12

Let V be a real vector space, an integer r ≥ 2, and consider alternating tensors
ωj ∈ Akj(V), for j = 1, . . . , r. Then the relation

ω1 ∧ · · · ∧ωr =
1

k1! · · · kr!
Alt(ω1 ⊗ · · · ⊗ωr)

holds. In particular, f 1 ∧ · · · ∧ f r = Alt( f 1 ⊗ · · · ⊗ f r) for any f 1, . . . , f r ∈ V∗.

Proof: The argument is by induction on r. When r = 1 there is nothing to do, and
when r = 2 it is just the definition of the exterior product. Assume that r ≥ 3 and that
the conclusion holds for products of r− 1 alternating tensors. Writing ω1 ∧ · · · ∧ωr as
ω1 ∧ (ω2 ∧ · · · ∧ωr), we may compute:

ω1 ∧ · · · ∧ωr =
1

k1!(k2 + · · ·+ kr)!
Alt(ω1 ⊗ (ω2 ∧ · · · ∧ωr))

=
1

k1!(k2 + · · ·+ kr)!
Alt
(

ω1 ⊗
(

1
k2! · · · kr!

Alt(ω2 ⊗ · · · ⊗ωr)

))
=

1
k1! · · · kr!

1
(k2 + · · ·+ kr)!

Alt(ω1 ⊗Alt(ω2 ⊗ · · · ⊗ωr))

(†)
=

1
k1! · · · kr!

1
(k2 + · · ·+ kr)!

(k2 + · · ·+ kr)! Alt(ω1 ⊗ω2 ⊗ · · · ⊗ωr)

(‡)
=

1
k1! · · · kr!

Alt(ω1 ⊗ · · · ⊗ωr),

as required. In (†) we use Lemma 8, and in (‡) we use associativity of the tensor
product operation.

Corollary 13 (“Repeats kill”)

If V is a real vector space and k ≥ 1 is an odd integer, then ω ∧ ω = 0 for every
ω ∈ Ak(V).

Proof: We use that ∧ is graded commutative and that, for odd k, (−1)k = −1. Thus
ω ∧ω = −ω ∧ω implies that ω ∧ω = 0.

Probably the most frequent application of Corollary 13 is when we have a product
ω = f 1 ∧ · · · ∧ f k of f 1, . . . , f k ∈ V∗: if there are two distinct indices i and j such that
f i = f j, then ω = 0.

Exercise 105

Exhibit some ω ∈ A2(R4) such that ω ∧ω 6= 0.
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Corollary 14

Let V be a real vector space, and f 1, . . . , f k ∈ V∗ be given. Then the exterior
product f 1 ∧ · · · ∧ f k ∈ Ak(V) is given by

( f 1 ∧ · · · ∧ f k)(v1, . . . , vk) = det[ f i(vj)]
k
i,j=1,

for all v1, . . . , vk ∈ V.

Proof: We once again argue by induction on k. When k = 1 there is nothing to do;
when k = 2 this is what we have seen in Example 95. Assume that k ≥ 3 and that the
desired conclusion holds for the product of k − 1 linear functionals. By Exercise 103
and writing f 1 ∧ · · · ∧ f k = f 1 ∧ ( f 2 ∧ · · · ∧ f k), we have that

( f 1 ∧ · · · ∧ f k)(v1, . . . , vk) =
k

∑
i=1

(−1)i+1 f 1(vi)( f 2 ∧ · · · ∧ f k)(v1, . . . , v̂i, . . . , vk)

=
k

∑
i=1

(−1)i+1 f 1(vi)det


f 2(v1) · · · f̂ 2(vi) · · · f 2(vk)

... . . . ... . . . ...

f k(v1) · · · f̂ k(vi)
... f k(vk)


= det[ f i(vj)]

k
i,j=1,

as required. The expression after the second equality is simply the row-expansion of
det[ f i(vj)]

k
i,j=1 through its first row.

Corollary 14 illustrates a general trend: exterior products and determinants go
hand-in-hand.

Example 97 (Determinants as sums over permutation groups)

The determinant of a matrix A = [aij]
n
i,j=1 can also be expressed as a sum over the

permutation group Sn:

det A = ∑
σ∈ Sn

(sgn σ)a1σ(1) · · · anσ(n). (5.7)

Equation (5.7) is often taken as the definition of determinant—there are several
different equivalences. For instance, one can directly prove that there is a unique
ω ∈ An(Rn) such that ω(e1, . . . , en) = 1, where e1, . . . , en is the standard basis
of Rn, and then baptize ω as “determinant”. If one identifies A ∈ Rn×n with
(Ae1, . . . , Aen) ∈ Rn × · · · ×Rn, the equality det A = ω(Ae1, . . . , Aen) we have
implicitly used in Example 83 (p. 129) is in fact a theorem.
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Proposition 39

Let V be a real vector space, ω ∈ Ak(V), and A = [ai
j]

k
i,j=1 be a matrix. Then, we

have that

ω(ṽ1, . . . , ṽk) = (det A)ω(v1, . . . , vk), where ṽj =
k

∑
i=1

ai
jvi for j = 1, . . . , k,

for every v1, . . . , vk ∈ V.

Proof: We use multilinearity of ω to write

ω(ṽ1, . . . , ṽk) = ω

(
k

∑
i1=1

ai1
1 vi1 , . . . ,

k

∑
i1=1

aik
k vik

)
=

n

∑
i1,...,ik=1

ai1
1 · · · a

ik
k ω(vi1 , . . . , vik).

Now, for each k-tuple (i1, . . . , ik) as above, consider the permutation σ ∈ Sk defined
by σ(j) = ij for every j = 1, . . . , k. As every element of Sk is obviously of this form
for some k-tuple (i1, . . . , ik), we may rewrite the last summation as a sum over Sk and
apply the alternating property of ω:

ω(ṽ1, . . . , ṽk) = ∑
σ∈ Sk

aσ(1)
1 · · · aσ(k)

k ω(vσ(1), . . . , vσ(k))

= ∑
σ∈ Sk

aσ(1)
1 · · · aσ(k)

k (sgn σ)ω(v1, . . . , vk)

=

(
∑

σ∈ Sk

(sgn σ)aσ(1)
1 · · · aσ(k)

k

)
ω(v1, . . . , vk)

= (det AT)ω(v1, . . . , vk)

= (det A)ω(v1, . . . , vk),

as claimed.

Exercise 106

“Dualize” Proposition 39: show that if V is a real vector space and A = [ai
j]

k
i,j=1 is

a matrix, then

f̃ 1 ∧ · · · ∧ f̃ k = (det A) f 1 ∧ · · · ∧ f k, for f̃ i =
k

∑
j=1

ai
j f i for i = 1, . . . , k,

for every f 1, . . . , f k ∈ V∗.
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Proposition 40 (A basis for Ak(V))

Let V be a real vector space, and (e1, . . . , en) be a basis for V. Then, if (ϕ1, . . . , ϕn)
is its dual basis in V∗, we have that

{ϕi1 ∧ · · · ∧ ϕik : 1 ≤ i1 < · · · < ik ≤ n} (5.8)

is a basis for Ak(V). In particular, dim Ak(V) = (n
k).

Proof: We start by verifying that (5.8) is linearly independent. So, consider (n
k) coeffi-

cients ai1···ik ∈ R, always with 1 ≤ i1 < · · · < ik ≤ n, such that

∑
1≤i1<...<ik≤n

ai1···ik ϕi1 ∧ · · · ∧ ϕik = 0. (5.9)

Once we have shown that

(ϕi1 ∧ · · · ∧ ϕik)(ej1 , . . . , ejk) =

{
1, if ir = jr for every r = 1, . . . , k,
0, else,

(5.10)

whenever 1 ≤ j1 < · · · < jk ≤ n, i.e., that (ϕi1 ∧ · · · ∧ ϕik)(ej1 , . . . , ejk) = δi1
j1
· · · δik

jk
,

we obtain that aj1···jk = 0 by evaluating both sides of (5.9) at (ej1 , . . . , ejk), just as in
the proof of Proposition 35. The reasons why (5.10) holds, at the end of the day, are
Corollary 14 and induction: if j1 < i1 the first column of [ϕir(ejs)]

k
r,s=1 vanishes, while

if j1 > i1 it is its first row that vanishes, and in either case det[ϕir(ejs)]
k
r,s=1 = 0. If such

determinant is to be nonzero we must have that j1 = i1, and now we may proceed
inductively.

Finally, to establish that (5.8) spans Ak(V), we may use Proposition 35 as a shortcut: if
ω ∈ Ak(V), then in particular ω ∈ Tk(V), and so it can be written as

ω =
n

∑
i1,...,ik=1

ωi1...ik ϕi1 ⊗ · · · ⊗ ϕik , (5.11)

where ωi1...ik = ω(ei1 , . . . , eik) are the components of ω relative to the basis (e1, . . . , en).
Applying Alt to both sides of (5.11), and using Proposition 37 together with Corollary
12, it follows that

k!ω =
n

∑
i1,...,ik=1

ωi1...ik ϕi1 ∧ · · · ∧ ϕik . (5.12)

For each k-tuple (i1, . . . , ik) there are k! components of ω containing the indices i1, . . . , ik,
but they are all equal to each other up to a sign, since ω is alternating. Hence, rear-
ranging common terms as to have the summation be over only increasing k-tuples of
indices, we have that

k!ω = ∑
1≤i1<...<ik≤n

k!ωi1...ik ϕi1 ∧ · · · ∧ ϕik ,
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and so
ω = ∑

1≤i1<...<ik≤n
ωi1...ik ϕi1 ∧ · · · ∧ ϕik , (5.13)

as required.

Remark. Note how the same coefficients are used in both basis-expansions (5.11) and
(5.13). But if you write ω as a linear combination of the k-fold products ϕi1 ∧ · · · ∧ ϕik

without restricting yourself to increasing k-tuples of indices, you must pay the price
of k!, cf. (5.12).

Corollary 15

Let V be a real vector space, and assume that n = dim V. Then, whenever
ϕ1, . . . , ϕn ∈ V∗ are linearly independent, R 3 λ 7→ λ ϕ1 ∧ · · · ∧ ϕn ∈ An(V)
is an isomorphism.

The next two exercises contain two of the main results about “∧-divisibility”.

Exercise 107

Let V be a finite-dimensional vector space, ω ∈ Ak(V), and ϕ ∈ V∗ r {0}. Show
that if ω ∧ ϕ = 0, there is η ∈ Ak−1(V) such that ω = η ∧ ϕ.

Hint: Complete ϕ to a basis of V∗ and use (5.13) to determine η explicitly.

Exercise 108 (Cartan’s Lemma)

Let V be a finite-dimensional real vector space, and ϕ1, . . . , ϕk ∈ V∗ be linearly
independent. Show that, for any α1, . . . , αk ∈ V∗ such that

α1 ∧ ϕ1 + · · ·+ αk ∧ ϕk = 0,

there is a symmetric matrix [hij]
k
i,j=1 such that αi = ∑k

j=1 hij ϕ
j for all i = 1, . . . , k.

Note: This result does not assume that k = dim V. It has a generalization: if we
instead assume that αi ∈ Ap(V) for each i, then we have hij ∈ Ap−1(V) instead of
hij ∈ R, still with hij = hji, and αi = ∑k

j=1 hij ∧ ϕj. See [1, Lemma 1].

5.2 Differential forms and the exterior derivative

Now, we return to smooth manifolds. We have seen in Exercise 75 that when-
ever M is a smooth manifold and (U; x1, . . . , xn) is a chart for U, the differentials
dx1|p, . . . , dxn|p form the basis of T∗p M dual to the coordinate basis of TpM induced
by the chart, for all p ∈ U. We may now consider “fields of alternating k-tensors”:
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Definition 50 (Differential forms)

Let M be a smooth manifold, n = dim M, and k ≥ 0 be an integer. A differential
form of degree k (or, a differential k-form) on M is an assignment ω, to each point
p ∈ M, of an element ωp ∈ Ak(TpM). The integer k is called the degree of ω. We
say that ω is smooth if, for every chart (U; x1, . . . , xn) for M, the (n

k) functions
ωi1...ik : U → R defined by the relation

ωp = ∑
1≤i1<···<ik≤n

ωi1...ik(p)dxi1 |p ∧ · · · ∧ dxik |p, for all p ∈ U,

are smooth; note that

ωi1···ik(p) = ωp

(
∂

∂xi1

∣∣∣∣
p
, · · · ,

∂

∂xik

∣∣∣∣
p

)

for each increasing k-tuple 1 ≤ i1 < · · · < ik ≤ n. We let Ωk(M) denote the space
of all smooth differential forms of degree k on M.

Remark. As done for vector fields, we will always assume that differential forms are
smooth, unless otherwise stated.

In other words, a differential form ω ∈ Ωk(M) is something that takes as in-
put a point p ∈ M and k tangent vectors v1, . . . , vk ∈ TpM, and outputs a number
ωp(v1, . . . , vk) ∈ R, which depends on the vectors in a multilinear and alternating
fashion. For k = 0, we have that Ω0(M) = C∞(M).

Example 98

Whenever M is a smooth manifold, and f : M→ R is a smooth function, we have
that d f ∈ Ω1(M). This is because d fp ∈ (TpM)∗ = T1(TpM) = A1(TpM) for each
p ∈ M—linear functionals are alternating by default.

Example 99

Let U ⊆ R3 be an open subset. We have global coordinates x, y, z on U, and
therefore dx, dy, dz ∈ Ω1(U).

• Any element of Ω1(U) is of the form ω1 = f dx + g dy + h dz.

• Any element of Ω2(U) is of the form ω2 = f dy∧dz+ g dz∧dx + h dx∧dy.

• Any element of Ω3(U) is of the form ω3 = f dx ∧ dy ∧ dz.

Above, f , g, h : U → R are real functions.

Concretely, consider ω = xy2dx ∧ dz ∈ Ω2(R3). Say we want to compute the
value ω(1,2,3)((1, 1, 1), (2, 1, 3)). The coefficients in front of the “basic” 2-form are

Page 159



SMOOTH MANIFOLDS IVO TEREK

evaluated with the point p = (1, 2, 3), while the exterior products receive the tan-
gent vector arguments. As common practice, we write simply dx, dy, and dz for
what should technically be written as dx(1,2,3), dy(1,2,3), and dz(1,2,3), respectively.
This way, we have that

ω(1,2,3)((1, 1, 1), (2, 1, 3)) = 1 · 22 (dx ∧ dz)((1, 1, 1), (2, 1, 3))

= 4 det

dx(1, 1, 1) dx(2, 1, 3)

dz(1, 1, 1) dz(2, 1, 3)

 = 4 det

1 2

1 3

 = 4.

Of course, we have the identifications

(1, 1, 1) =
∂

∂x

∣∣∣∣
(1,2,3)

+
∂

∂y

∣∣∣∣
(1,2,3)

+
∂

∂z

∣∣∣∣
(1,2,3)

,

and a similar one for (2, 1, 3), in place.

Exercise 109

In each item, evaluate the given differential form at the given point and tangent
vectors:

(a) ω = yz dx + xz dy + xy dz ∈ Ω1(R3), at (3, 2, 1) ∈ T(1,1,2)(R
3).

(b) η = xyz dx ∧ dy + yz2 dy ∧ dz ∈ Ω2(R3), at (2, 0, 1), (3, 3, 1) ∈ T(0,1,1)(R
3).

(c) ζ = sin
(
xey + arctan( 3

√
z)
)

dx ∧ dy ∧ dz ∈ Ω3(R3), at
(1, 2, 4), (3, 2, 2), (1, 0, 1) ∈ T(3,0,0)(R

3).

On manifolds, we are now able to take derivatives of differential forms. We will
first do so in open subsets of Rn, and then transplant it onto smooth manifolds.

Definition 51 (Exterior derivative in Rn)

Let U ⊆ Rn be an open subset. The exterior derivative is d : Ωk(U) → Ωk+1(U),
defined as follows: if ω ∈ Ωk(U) is written as

ω = ∑
1≤i1<···<ik≤n

ωi1...ikdxi1 ∧ · · · ∧ dxik ,

then dω ∈ Ωk+1(U) is given by

dω = ∑
1≤i1<···<ik≤n

dωi1...ik ∧ dxi1 ∧ · · · ∧ dxik ,

where dωi1...ik is the differential of the component function ωi1...ik : U → R.
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Remark. Technically, the exterior derivative is not a single operator, but instead a col-
lection of operators d : Ωk(U)→ Ωk+1(U), one for each k. We denote all of them with
the same letter d.

Example 100

Consider in R3 the differential form ω = xy2 dx ∧ dz from Example 98. Using
Corollary 13, we have that

dω = d(xy2) ∧ dx ∧ dz = (y2 dx + 2xy dy) ∧ dx ∧ dz

= y2 dx ∧ dx ∧ dz + 2xy dy ∧ dx ∧ dz = −2xy dx ∧ dy ∧ dz.

Exercise 110

Compute the exterior derivatives of the differential forms given in Exercise 109:

(a) ω = yz dx + xz dy + xy dz ∈ Ω1(R3).

(b) η = xyz dx ∧ dy + yz2 dy ∧ dz ∈ Ω2(R3).

(c) ζ = sin
(
xey + arctan( 3

√
z)
)

dx ∧ dy ∧ dz ∈ Ω3(R3).

We register next the main properties of the exterior derivative:

Proposition 41 (Properties of d)

Let U ⊆ Rn be open, and k, ` ≥ 0 be integers. Then:

(i) On Ω0(U) = C∞(U), the exterior derivative d agrees with the differential.

(ii) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη, for all ω ∈ Ωk(U) and η ∈ Ω`(U).

(iii) d2 = 0.

Proof: Item (i) is a consequence of the expression d f = ∑n
i=1(∂ f /∂xi)dxi, seen in

Example 69. For items (ii) and (iii), the obvious linearity of d allows us to simply
consider monomials ω = f dxi1 ∧ · · · ∧ dxik and η = g dxj1 ∧ · · · ∧ dxj` , where the
k-tuple (i1, . . . , ik) and the `-tuple (j1, . . . , j`) are fixed.

To prove (ii), first note that ω ∧ η = f g dxi1 ∧ · · · ∧dxik ∧dxj1 ∧ · · · ∧dxj` . The product
rule for differentials now yields d( f g) = g d f + f dg. We address the two resulting
terms separately:

g d f ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj` = (d f ∧ dxi1 ∧ · · · ∧ dxik) ∧ (g dxj1 ∧ · · · ∧ dxj`),

f dg ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj` = (−1)k( f dxi1 ∧ · · · ∧ dxik) ∧ (dg ∧ dxj1 ∧ · · · ∧ dxj`).

The first one equals dω ∧ η, while the second one equals (−1)kω ∧ dη. Adding them
up yields (ii).
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Finally, (iii) consists of a direct computation:

d2ω = d(dω)

= d
(

d f ∧ dxi1 ∧ · · · ∧ dxik
)

= d

(
n

∑
j=1

∂ f
∂xj dxj ∧ dxi1 ∧ · · · ∧ dxik

)

=
n

∑
j=1

d
(

∂ f
∂xj

)
∧ dxj ∧ dxi1 ∧ · · · ∧ dxik

=
n

∑
i,j=1

∂2 f
∂xi∂xj dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik .

The terms in this last summation having i = j all vanish due to Corollary 13, and so
we may break it all into two summations:

d2ω = ∑
1≤i<j≤n

∂2 f
∂xi∂xj dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik

+ ∑
1≤j<i≤n

∂2 f
∂xi∂xj dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik .

They cancel each other because dxi ∧dxj = −dxj∧dxi and second-order mixed partial
derivatives commute in Euclidean space.

We may now show that ∧ and d do generalize all products from vector calculus, as
well as the gradient, divergence, and curl operators:

Theorem 21 (Vector calculus redux)

Let U ⊆ R3 be an open subset, and consider the identifications α : X(U)→ Ω1(U)
and β : X(U)→ Ω2(U) given by

αX = P dx + Q dy + R dz and βX = P dy ∧ dz + Q dz ∧ dx + R dx ∧ dy,

whenever X ∈ X(U) is written as

X = P
∂

∂x
+ Q

∂

∂y
+ R

∂

∂z
,

for suitable smooth functions P, Q, R : U → R. Similarly, we consider a third
identification γ : C∞(U) → Ω3(U) given by γ f = f dx ∧ dy ∧ dz. Then we have
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that the diagrams

X(U)×X(U) X(U)

Ω1(U)×Ω1(U) Ω2(U)

α×α

×

β

∧

and

X(U)×X(U) C∞(U)

Ω1(U)×Ω2(U) Ω3(U)

〈·,·〉

α×β γ

∧

as well as

C0(U) X(U) X(U) C∞(U)

Ω0(U) Ω1(U) Ω2(U) Ω3(U)

∇ curl

α

div

β γ

d d d

commute. Explicitly, all of the relations (i) αX ∧ αY = βX×Y, (ii) αX ∧ βY = γ〈X,Y〉,
(iii) α∇ f = d f , (iv) d(αX) = βcurl X, and (v) d(βX) = γdiv X hold, for all X, Y ∈ X(U)
and f ∈ C∞(U).

In particular, the property d2 = 0 corresponds to the well-known facts from vector
calculus: div ◦ curl = 0 and curl ◦ ∇ = 0.

Proof: Write the components of Y as A, B, C. Then

αX ∧ αY = (P dx + Q dy + R dz) ∧ (A dx + B dy + C dz)
= PA dx ∧ dx + PB dx ∧ dy + PC dx ∧ dz
+ QA dy ∧ dx + QB dy ∧ dy + QC dy ∧ dz
+ RA dz ∧ dx + RB dz ∧ dy + RC dz ∧ dz

= (QC− RB)dy ∧ dz + (RA− PC)dz ∧ dx + (PB−QA)dx ∧ dy.

But QC− RB, RA− PC, and PB−QA are precisely the components of the cross prod-
uct X× Y. So, by definition of β, we conclude that αX ∧ αY = βX×Y, proving (i). Rela-
tion (ii) is obtained in a similar manner. Then, (iii) is clear. As for (iv), using subscript
notation for partial derivatives, we compute

d(αX) = d(P dx + Q dy + R dz)
= dP ∧ dx + dQ ∧ dy + dR ∧ dz
= (Px dx + Py dy + Pz dz) ∧ dx
+ (Qx dx + Qy dy + Qz dz) ∧ dy
+ (Rx dx + Ry dy + Rz dz) ∧ dz

= Py dy ∧ dx + Pz dz ∧ dx + Qx dx ∧ dy
+ Qz dz ∧ dy + Rx dx ∧ dz + Ry dy ∧ dz

= (Ry −Qz)dy ∧ dz + (Pz − Rx)dz ∧ dx + (Qx − Py)dx ∧ dy
= βcurl X.
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Finally,
d(βX) = d(P dy ∧ dz + Q dz ∧ dx + R dx ∧ dy)

= dP ∧ dy ∧ dz + dQ ∧ dz ∧ dx + dR ∧ dx ∧ dy
= (Px dx + Py dy + Pz dz) ∧ dy ∧ dz
+ (Qx dx + Qy dy + Qz dz) ∧ dz ∧ dx
+ (Rx dx + Ry dy + Rz dz) ∧ dx ∧ dy

= Px dx ∧ dy ∧ dz + Qy dy ∧ dz ∧ dx + Rz dz ∧ dx ∧ dy
= (Px + Qy + Rz)dx ∧ dy ∧ dz
= γdiv X

establishes (v).
The properties of the exterior derivative seen in Proposition 41 actually character-

ize it completely – this is a crucial step in moving d from open subsets of Rn back to
smooth manifolds:

Proposition 42 (“Uniqueness” of the exterior derivative in Rn)

Let U ⊆ Rn be an open subset, and assume that we have a collection of linear
mappings D : Ωk(U) → Ωk+1(U), satisfying properties (i)–(iii) in Proposition 41.
Then, we necessarily have that D = d.

Proof: First, note that D(dxi) = D(Dxi) = D2xi = 0, in view of (i) and (iii). By
induction and (ii), it follows that D(dxi1 ∧ · · · ∧ dxik) = 0 for any k-tuple of indices
(i1, . . . , ik). Now, as both d and D are linear, it suffices to show that they agree on
“monomials” f dxi1 ∧ · · · ∧ dxik . And indeed, using (ii) and (i) again it follows that

D( f dxi1 ∧ · · · ∧ dxik) = D f ∧ dxi1 ∧ · · · ∧ dxik

= d f ∧ dxi1 ∧ · · · ∧ dxik = d( f dxi1 ∧ · · · ∧ dxik),

as wanted. Hence D = d.

Theorem 22 (Definition of exterior derivative in smooth manifolds)

Let M be a smooth manifold. The exterior derivative is d : Ωk(M)→ Ωk+1(M) is
defined as follows: if ω ∈ Ωk(M) and p ∈ M, we let (U; x1, . . . , xn) be a chart for
M centered at p, write

ω = ∑
1≤i1<···<ik≤n

ωi1...ik dxi1 ∧ · · · ∧ dxik

for suitable component functions ωi1...ik : U → R, and set

(dω)p = ∑
1≤i1<···<ik≤n

d(ωi1...ik)p ∧ dxi1 |p ∧ · · · ∧ dxik |p.

The resulting element (dω)p ∈ Ak+1(TpM) does not depend on the choice of chart
(U; x1, . . . , xn) centered at p, and properties (i)–(iii) in Proposition 41 still hold.
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Proof: With the notation as above, if (Ũ, ϕ̃ = (x̃1, . . . , x̃n)) is a second chart centered
at p and we write

ω = ∑
1≤i1<···<ik≤n

ω̃i1...ik dx̃i1 ∧ · · · ∧ dx̃ik ,

consider the open neighborhood W = ϕ(U) ∩ ϕ̃(Ũ) of ϕ(p) = ϕ̃(p) = 0 in Rn. The
restrictions to W of the unique exterior derivative operators in ϕ(U) and ϕ̃(Ũ) neces-
sarily agree, by Proposition 42. This means that if we provisorily denote by u1, . . . , un

the Euclidean coordinate functions, we have that

d

(
∑

1≤i1<···<ik≤n
(ωi1...ik ◦ ϕ−1)dui1 ∧ · · · ∧ duik

)
=

= d

(
∑

1≤i1<···<ik≤n
(ω̃i1...ik ◦ ϕ̃−1)dui1 ∧ · · · ∧ duik

)

in W. Evaluating it at 0 and moving the result back to Ak+1(TpM), using the two
isomorphisms Ak+1(Rn) ∼= Ak+1(TpM) induced by both charts, it follows that

∑
1≤i1<···<ik≤n

d(ωi1...ik)p ∧ dxi1 |p ∧ · · · ∧ dxik |p =

= ∑
1≤i1<···<ik≤n

d(ω̃i1...ik)p ∧ dx̃i1 |p ∧ · · · ∧ dx̃ik |p.

Once this is in place, properties (i)–(iii) immediately follow from their corresponding
versions in (iii).

Remark. It is now also possible to show that the uniqueness established in Proposition
42 remains valid if we replace U with M. Proposition 41 remains valid for manifolds.

Example 101 (Area forms on regular surfaces in R3)

Let M ⊆ R3 be a regular surface, and assume that there exists a smooth unit
normal vector field N along M, that is, for each point p ∈ M we assign a vector
N(p) ∈ R3 such that ‖N(p)‖ = 1 and 〈N(p), v〉 = 0 for every v ∈ TpM; here,
〈·, ·〉 is the standard inner product in R3. We may define ω ∈ Ω2(M) by setting
ωp(v, w) = 〈N(p), v× w〉. In other words, ωp(v, w) is the (oriented) area of the
parallelogram in TpM spanned by v and w, cf. Figure 64.

Generalizing the above for a regular hypersurface M ⊆ Rn, we instead define
ω ∈ Ωn−1(M) by ωp(v1, . . . , vn−1) = det(N(p), v1, . . . , vn−1). In either case, we
have that dω = 0 for dimensional reasons.

There are ways of computing exterior derivatives on manifolds without relying on
coordinate systems. Here is the simplest case:
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Proposition 43 (The exterior derivative of a 1-form)

Let M be a smooth manifold, and ω ∈ Ω1(M). Then

dω(X, Y) = X(ω(Y))− Y(ω(X))−ω([X, Y]),

for all vector fields X, Y ∈ X(M).
Here, X(ω(Y)) is the function given by p 7→ Xp[ω(Y)], where [ω(Y)] denotes the
germ at p of the function p 7→ ωp(Yp), while the Lie bracket [X, Y] is as in Exercise
98 (p. 141).

Proof: Let (U; x1, . . . , xn) be a chart on M, and write

ω =
n

∑
i=1

ωi dxi, X =
n

∑
i=1

Xi ∂

∂xi , and Y =
n

∑
i=1

Yi ∂

∂xi ,

where all indicated component functions are smooth. On one hand, we have that

dω(X, Y) =
n

∑
i,j=1

∂ωi

∂xj dxj ∧ dxi(X, Y) =
n

∑
i,j=1

∂ωi

∂xj (X jYi − XiY j).

On the other hand,

X(ω(Y)) =
n

∑
j=1

X j ∂

∂xj

(
n

∑
i=1

ωiYi

)
=

n

∑
i,j=1

∂ωi

∂xj X jYi +
n

∑
i,j=1

ωiX j ∂Yi

∂xj ,

and similarly for Y(ω(X)). Putting all of it together, we have that

X(ω(Y))− Y(ω(X)) = dω(X, Y) +
n

∑
i=1

ωi

(
X j ∂Yi

∂xj −Y j ∂Xi

∂xj

)
.

By item (b) of Exercise 98, the last term above is exactly ω([X, Y]). As the chosen chart
(U; x1, . . . , xn) was arbitrary, we are done.

Remark. The generalization of Proposition 43 is called Palais’s formula: given any
ω ∈ Ωk(M), the exterior derivative dω ∈ Ωk+1(M) is given by

dω(X0, X1, . . . , Xk) =
k

∑
i=0

(−1)k+1Xi(ω(X0, . . . , X̂i, . . . , Xk)

+ ∑
0≤i<j≤k

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk),

for all X0, X1, . . . , Xk ∈ X(M), where hats indicate omission (as in Exercise 103, p. 152).
See [15, Proposition 14.32] for a proof (or try it yourself, if you’re feeling daring).
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Example 102 (Gluing differential forms on chart overlaps for RP1)

Consider the projective line RP1. Its standard atlas consists of the two charts
ϕ0 : U0 → R and ϕ1 : U1 → R given by

ϕ0([x : y]) =
y
x

and ϕ1([x : y]) =
x
y

,

where U0 = {[x : y] ∈ RP1 : x 6= 0} and U1 = {[x : y] ∈ RP1 : y 6= 0}.
Denoting the coordinates in the images of ϕ0 and ϕ1 by t and s, respectively, we
have that t = y/x and s = x/y, so that ϕ0 ◦ ϕ−1

1 : R r {0} → R r {0} is given by
s 7→ t = 1/s. Say that ω ∈ Ω1(RPn) is expressed relative to such charts as

ω = f (t)dt and ω = g(s)ds,

respectively. What must be the relation between the coefficient functions f and g
on the overlap R r {0}? As t = 1/s leads to dt = −ds/s2, we must have that

g(s)ds = f (t)dt = f
(

1
s

)(
−ds

s2

)
= − 1

s2 f
(

1
s

)
ds =⇒ g(s) = − 1

s2 f
(

1
s

)
.

Conversely, this condition is also sufficient for one to “glue” the 1-forms f (t)dt
and g(s)ds on R r {0} into a 1-form ω on RP1. Namely, if [x : y] ∈ RP1 and
v ∈ T[x:y](RP1), one proceeds as follows: write

v = a
∂

∂t

∣∣∣
[x:y]

or v = b
∂

∂s

∣∣∣
[x:y]

with a, b ∈ R, according to whether [x : y] ∈ U0 or [x : y] ∈ U1, and set ω[x:y](v)
to be equal to a f (y/x) or bg(x/y), respectively. If [x : y] ∈ U0 ∩U1, the condition
relating f and g implies that the definition is consistent, as a = −by2/x2 in view
of Exercise 72 (p. 99), and so

a f
(y

x

)
= −b

y2

x2 f
(y

x

)
= b

(
− 1
(y/x)2 f

(y
x

))
= bg

(
x
y

)
,

as required. (You could alternatively use the previous relation dt = −ds/s2 with
a = dt(v), b = ds(v), and s = x/y.)
A similar reasoning works for RPn with n > 1 too, but the algebra gets consider-
ably more cumbersome. A more efficient way to study differential forms on RPn

is to regard it as the quotient Sn/Z2 and see which forms on Sn survive in the
quotient. We will not pursue this now, and instead see a brief overview of how
this works in a more general context (Theorem 29 in page 197 ahead).

In the above example, we related the two differential forms f (t)dt and g(s)ds on
Rr {0} to one another, using the transition function ϕ0 ◦ ϕ−1

1 . However, a subtle point
here is that we were dealing with two different copies of R r {0}. In general, given a
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smooth mapping F : M→ N and some ω ∈ Ωk(N), is it possible to define a k-form on
M instead, using F and ω? A moment of thought will tell that there is only one natural
way to do it: we first push tangent vectors to M onto tangent vectors to N using dF,
and then evaluate ω at the images.

Definition 52 (Pullbacks of differential forms)

Let M and N be smooth manifolds, and F : M → N be a smooth mapping. For
each ω ∈ Ωk(N), we define the pullback of ω under F to be F∗ω ∈ Ωk(M) given
by

(F∗ω)p(v1, . . . , vn) = ωF(p)(dFp(v1), . . . , dFp(vk)),

for all p ∈ M and v1, . . . , vk ∈ TpM.

For instance, the condition relating f and g in Example 102 is equivalent to say-
ing that g(s)ds equals the pullback of f (t)dt under ϕ0 ◦ ϕ−1

1 . Here’s a very concrete
example so you can get a feel for how pullbacks work:

Example 103

Let F : R2 → R3 be given by F(u, v) = (u2 − v2, uv, u + v + 1), and consider

ω = y dx + z dy + x dz

in R3. How to compute the pullback F∗ω in practice? Following the prescription
given by F, we set

x = u2 − v2, y = uv, z = u + v + 1,

and differentiate to obtain

dx = 2u du− 2v dv, dy = v du + u dv, dz = du + dv.

Now, plug everything into ω:

F∗ω = uv(2u du− 2v dv) + (u + v + 1)(v du + u dv) + (u2 − v2)(du + dv)

= (2u2v + (u + v + 1)v + u2 − v2)du + (−2uv2 + (u + v + 1)u + u2 − v2)dv

= (2u2v + uv + v + u2)du + (−2uv2 + 2u2 + uv + u− v2)dv.

Check your understanding so far:

Exercise 111

Compute the pullbacks F∗ω in the following cases:

(a) ω = f (u, v)du + g(u, v)dv ∈ Ω1(R2),

with F : R3 → R2 given by F(x, y, z) = (x, y).
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(b) ω = dx ∧ dy ∈ Ω2(R2),

with F : (0, ∞)× (0, 2π)→ R2 given by F(r, θ) = (r cos θ, r sin θ).

(c) ω = dx ∧ dy ∧ dz ∈ Ω3(R3),

with F : R2 → R3 given by F(u, v) = (u, v, u2 + v2).

We register next some general properties of pullbacks.

Proposition 44 (Algebraic properties of pullbacks)

Let M, N and P be smooth manifolds, F : M → N and G : N → P be a smooth
mappings, and k, ` ≥ 0 be integers. Then:

(i) F∗(ω + η) = F∗ω + F∗η for all ω, η ∈ Ωk(N).

(ii) F∗( f ω) = ( f ◦ F)F∗ω for all ω ∈ Ωk(N) and f ∈ C∞(N)

(iii) Id∗Mα = α for every α ∈ Ωk(M),

(iv) F∗G∗ζ = (G ◦ F)∗ζ for every ζ ∈ Ωk(P).

(v) F∗(ω ∧ η) = F∗ω ∧ F∗η for every ω ∈ Ωk(N) and η ∈ Ω`(N).

Proof: Properties (i) and (ii) are clear from the definition of pullback, while (iii) easily
follows from the relation d(IdM)p = IdTp M. We now justify (iv) for k = 1, with the
general case being an exercise in notation:

(F∗G∗ζ)p(v) = (G∗ζ)F(p)(dFp(v)) = ζG(F(p))(dGF(p)(dFp(v)))

= ζ(G◦F)(p)(d(G ◦ F)p(v)) = ((G ◦ F)∗ζ)p(v)

Finally, we observe that both sides of (v) are bilinear in the variables ω and η, meaning
that we may simply establish it with ⊗ instead of11 ∧. As done for (iv), we show how
it is done in the case where k = ` = 1:

(F∗(ω⊗ η))p(v, w) = (ω⊗ η)F(p)(dFp(v), dFp(w)) = ωF(p)(dFp(v))ηF(p)(dFp(w))

= (F∗ω)p(v)(F∗η)p(w) = (F∗ω⊗ F∗η)p(v, w).

Exercise 112

Verify items (iv) and (v) of the above result for general k and `.

With these properties in place, we can establish another very important property
of surjective submersions.

11One could argue that, with how things are written here, the pullback F∗(ω⊗ η) is not defined since
ω ⊗ η might fail to be alternating even if both ω and η are. This indeed is a correct observation, but
the definition of pullback in fact makes sense for arbitrary covariant tensor fields Θ on M, that is, we
smoothly assign to each p ∈ M an element Θp ∈ Tk(Tp M).
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Proposition 45 (The pullback operation of a surjective submersion is injective)

Let M and N be smooth manifolds, and F : M → N be a surjective submersion.
Then F∗ : Ωk(N) → Ωk(M) is injective for each k ≥ 0, that is, if ω, η ∈ Ωk(N) are
such that F∗ω = F∗η, then ω = η.

Proof: Let q ∈ N be arbitrary, and use Corollary 7 (p. 111) to fix an open neighborhood
U ⊆ N of q and a local section σ : U → M of F. As F ◦ σ = IdU, we may use items
(iii) and (iv) of Proposition 44 above: applying σ∗ to both sides of the initial equality
F∗ω = F∗η and evaluating the result at q yields ωq = ηq. As the point q was arbitrary,
the argument is concluded.

What Proposition 44 does not tell us is how pullbacks relate to exterior derivatives.
This needs a separate statement:

Proposition 46

Let M and N be smooth manifolds, and F : M → N be any smooth mapping.
Then, for any ω ∈ Ωk(N), we have that F∗(dω) = d(F∗ω). That is, pullbacks and
exterior derivatives commute.

Proof: As both sides of the proposed relation are additive in the variable ω (but obvi-
ously not C∞(M)-linear), we may simply work with arbitrary chart (U; x1, . . . , xn) and
(V; y1, . . . , ym) for M and N, and assume that ω = f dya1 ∧ · · · ∧ dyak is a monomial.
When k = 0, the conclusion is clear.

We write, as before, Fa = ya ◦ F for the components of F. On one hand, we have
that

dω =
m

∑
b=1

∂ f
∂yb dyb ∧ dya1 ∧ · · · ∧ dyak

so that, by item (v) of Proposition 44, we have

F∗(dω) =
m

∑
b=1

(
∂ f
∂yb ◦ F

)
dFb ∧ dFa1 ∧ · · · ∧ dFak

=
m

∑
b=1

(
∂ f
∂yb ◦ F

)( n

∑
j=1

∂Fb

∂xj dxj

)
∧
(

n

∑
i1=1

∂Fa1

∂xi1
dxi1

)
∧ · · · ∧

(
n

∑
ik=1

∂Fak

∂xik
dxik

)

=
m

∑
b=1

n

∑
i1,...,ik,j=1

(
∂ f
∂yb ◦ F

)
∂Fb

∂xj
∂Fa1

∂xi1
· · · ∂Fak

∂xik
dxj ∧ dxi1 ∧ · · · ∧ dxik .

(5.14)

On the other hand, again by item (v) of Proposition 44, we have that

F∗ω = ( f ◦ F)dFa1 ∧ · · · ∧ dFak ,

and hence

d(F∗ω) = d( f ◦ F) ∧ dFa1 ∧ · · · ∧ dFak

+
k

∑
r=1

( f ◦ F)dFa1 ∧ · · · ∧ d(dFar) ∧ · · · ∧ dFak ,
(5.15)
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as a consequence of item (ii) of Proposition 41. Now, the second sum in (5.15) vanishes
by item (iii) of Proposition 41, and substituting

∂

∂xj ( f ◦ F) =
(

∂ f
∂yb ◦ F

)
∂Fb

∂xj

into (5.15) finally yields

d(F∗ω) =
m

∑
b=1

n

∑
i1,...,ik,j=1

(
∂ f
∂yb ◦ F

)
∂Fb

∂xj
∂Fa1

∂xi1
· · · ∂Fak

∂xik
dxj ∧ dxi1 ∧ · · · ∧ dxik

which agrees with (5.14), as required.

We are on our way to generalizing the Fundamental Theorem of Calculus:∫ b

a
f (x)dx = F(b)− F(a),

where f : [a, b] → R is a continuous function, and F is an antiderivative of f . The
integrand f (x)dx will certainly get replaced with a differential form, but what about
the integral? Before we develop some integration theory for manifolds, there is one
issue we must address: the formula above involves the values of F at the points x = a
and x = b, and so they must be included in the interval over which the integration
is happening. In other words, even though singletons have measure zero, we should
formally regard the integration as being carried over the closed interval [a, b] instead
of the open interval (a, b). Well, [a, b] does not have any natural smooth structure (and
it is not a submanifold of the real line R either). The workaround is to extend our
definition of manifold.

5.3 Manifolds with boundary

Topological manifolds are locally modeled in Euclidean space Rn. If we want to
include things such as a half-sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1 and z ≥ 0} in
our theory, it becomes natural to consider manifolds “with boundary”. The standard
way to do this is by introducing

the closed half-space of dimension n, that is, Hn = Rn−1× [0, ∞), (5.16)

cf. Figure 66. It is equipped with its sub-
space topology induced from Rn. In Dif-
ferential Geometry, the open half-space
Rn−1 × (0, ∞) is usually denoted by Hn,
with H having the same blackboard font
as R in Rn. Thus we changed the font
from H to H in order to avoid any con-
fusion. We can now mirror Definitions 24
and 25 (p. 68).

Hn

Rn−1 × {0}

(0, ∞)

Figure 66: The closed half-space Hn.
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Definition 53 (Topological manifold with boundary)

A n-dimensional topological manifold with boundary is a topological space M
which is Hausdorff, second-countable, and locally Hn: for every p ∈ M there is
an open neighborhood U ⊆ M of p and a homeomorphism ϕ : U → ϕ(U) ⊆ Hn,
where ϕ(U) is open in Hn. Denoting the topological interior and boundary of Hn

by H̊n and ∂Hn, the pair (U, ϕ) is called an interior-chart if ϕ(U) ⊆ H̊n, and a
boundary-chart if ϕ(U) ∩ ∂Hn 6= ∅. The integer n is called the dimension of M.

Example 104

The closed half-space Hn itself is a topological manifold with boundary: the iden-
tity function IdHn : Hn → Hn serves as a global boundary-chart.

Example 105

The closed half-sphere M = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1 and z ≥ 0} men-
tioned above is a topological manifold with boundary: we can get away with four
boundary-charts, naturally obtained by restricting the ones in Exercise 54 (p. 74).

∂M

M

Figure 67: Half-spheres are topological manifolds with boundary.

Example 106

The closed disk

D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}

is a topological manifold with boundary: the
identity chart on the open disk takes care of all
points other than in the circle, whereas modified
polar coordinates (x, y) 7→ (θ, 1− r) (on the ap-
propriate domain) are boundary-charts around
points in S1.

∂D2 = S1

Figure 68: The closed unit
disk as a manifold with
boundary.
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There are two issues to address with this definition: how to make sense of smooth-
ness between chart-transitions, and how to consistently sort out points of M into inte-
rior points or boundary points.

We first elaborate on the second issue: if p ∈ M, the most natural thing to do is to
say that p is an interior point of M if there is an interior-chart (U, ϕ) for M around p,
and that p is a boundary point of M if there is a boundary-chart (U, ϕ) for M around
p for which ϕ(p) ∈ ∂Hn. It is not at all obvious, although it turns out to be true, that
p cannot simultaneously be an interior point and a boundary point. The proof of this
fact for smooth manifolds with boundary, to be defined ahead, turns out to be more
reasonable—at the topological level, homological tools enter the playground. In any
case:

Definition 54 (Interior and boundary)

Let M be a topological manifold with boundary. The interior and boundary of
M are defined as the subsets Int(M) = {p ∈ M : p is an interior point of M} and
∂M = {p ∈ M : p is a boundary point of M}, respectively.

Example 107

If a topological manifold with boundary M is a subspace of a larger topological
space X, the “manifold-boundary” of M in the sense of Definition 54 above does
not need to agree with the topological boundary of M as a subset of X.

Consider for instance the half-sphere M from Example 105. The topological bound-
ary of M as a subset of R3 is just M itself, but its manifold-boundary is the circle
S1 × {0}. In a similar manner, the topological interior of M is empty, while its
manifold-interior equals S2 ∩ H̊2 = M r (S1 × {0}) 6= ∅.

As for the first issue: the boundary ∂Hn is not an open subset of Rn, so what does it
mean for a function defined on ∂Hn (or, more generally, on a subset of it) to be smooth?

Definition 55

Let S ⊆ Rn be any set, and f : S → R be any function. We say that f is smooth
on S if, for every p ∈ S, there is an open neighborhood U ⊆ Rn of p and a smooth
function F : U → R such that F|U∩S = f |U∩S.

If the subset S in the above definition is already open in Rn, this new definition of
smoothness agrees with the classical definition of Euclidean-smoothness, which is a
local notion.

With this in place, we may put down the definition we need to proceed:
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Definition 56 (Smooth manifolds with boundary)

Let M be a topological manifold with boundary. Two charts (U, ϕ) and (V, ψ) are
called C∞-compatible if either U ∩V = ∅, or U ∩V 6= ∅ and

ψ ◦ ϕ−1 : ϕ(U ∩V)→ ψ(U ∩V) and ϕ ◦ ψ−1 : ψ(U ∩V)→ ϕ(U ∩V)

are smooth functions between open subsets of Hn, in the sense of Definition 55.
A smooth manifold with boundary is a topological manifold with boundary M
equipped with a maximal atlas of C∞-compatible charts.

As before, any C∞-atlas is contained in a maximal one.

Theorem 23

Let M be a smooth manifold with boundary, and n = dim M. The boundary of
∂M can be made into a smooth manifold without boundary, with dim ∂M = n− 1.

Proof: For every boundary-chart (U, ϕ) for M, let ϕ∂M : U ∩ ∂M→ ϕ(U)∩ ∂Hn be the
restriction of ϕ to U ∩ ∂M. Note that the intersection ϕ(U) ∩ ∂Hn is an open subset of
∂Hn = Rn−1 × {0} ∼= Rn−1. If (V, ψ) is a second boundary-chart for M, the transition
ψ∂M ◦ ϕ−1

∂M : ϕ(U ∩V) ∩ ∂Hn → ψ(U ∩V) ∩ ∂Hn is a smooth mapping between open
subsets of Rn−1, being a suitable restriction of ψ ◦ ϕ−1.

Virtually everything we have seen so far for smooth manifolds also works out for
smooth manifolds with boundary. Namely, the definition of smooth functions and
smooth mappings (Definitions 30 and 31, pp. 82–83) makes sense and, consequently,
so does the definition of germs of smooth functions (Definition 33, p. 95). This allows
us to define tangent spaces as being the spaces of derivations of germs (Definition 35,
p. 97), and also derivatives of smooth mappings between manifolds (Definition 36,
p. 101).

Here is one example:

Example 108

Consider the half-plane H2. For each p ∈ H2, we will have that Tp(H2) ∼= R2,
because dim H2 = 2, this will not change. If p ∈ Int(H2), then Tp(H2) can be seen
as the space of all vectors in R2 starting at the point p. If p ∈ ∂H2 instead, the
same applies, and tangent vectors are still allowed to point outside of H2, that is,
even if its endpoint does not correspond to a point in H2.
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H2
R× {0}

(0, ∞)

H2
R× {0}

(0, ∞)

p

p

Figure 69: The tangent space Tp(H2) for p ∈ Int(H2) and p ∈ ∂H2.

The tangent space Tp(∂H2) for p ∈ ∂H2, being 1-dimensional, is the subspace of
Tp(H2) consisting of the vectors which are horizontal.

The above example suggests that the characterization of tangent spaces in terms
of velocity vectors of curves (cf. Lemma 7, p. 105) will need a slight modification.
Namely, if p ∈ ∂M and α : (−ε, ε)→ M has α(0) = p, we will have that α(t) ∈ M either
for all t ∈ [0, ε), or for all t ∈ (−ε, 0], but α must leave M if α′(0) ∈ TpM r Tp(∂M).

The difference TpM r Tp(∂M) has two connected components, but in this setting
we are actually able to distinguish them. Namely, let (U; x1, . . . , xn) be a boundary-
chart centered at p. As U ∩ ∂M is described as x1 = · · · = xn−1 = 0, it follows that{

∂

∂x1

∣∣∣∣
p
, . . . ,

∂

∂xn−1

∣∣∣∣
p

}
is a basis of the tangent space Tp(∂M).

This means that

v =
n

∑
i=1

ai ∂

∂xn

∣∣∣∣
p
∈ Tp(∂M) ⇐⇒ an = 0,

meaning that the connected components of TpM r Tp(∂M) consist of all the v ∈ TpM
for which an > 0, or for which an < 0, respectively. See Figure 70.

M
∂M

M
∂M

Figure 70: Inward- and outward-pointing vectors tangent to ∂M.

Before we turn this into a formal definition and declare that v is inward-pointing if
an > 0 and outward-pointing if an < 0, we must verify that this condition is indepen-
dent on the choice of boundary-chart. Namely, assume that (V; y1, . . . , yn) is another
boundary-chart centered at p, and write

v =
n

∑
i=1

bi ∂

∂yi

∣∣∣∣
p
.
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Exercise 72 (p. 99) tells us that

bn =
n

∑
i=1

ai ∂yn

∂xi (p),

where yi = yi(x1, . . . , xn) are the components of the transition mapping between
the boundary-charts. As yn(x1, . . . , xn−1, 0) = 0 for all x1, . . . , xn−1, it follows that
(∂yn/∂xi)(p) = 0 for each i = 1, . . . , n − 1, and hence bn = an(∂yn/∂xn)(p). At the
same time, yn(0, . . . , 0, xn) ≥ yn(0, . . . , 0, 0) for all xn ≥ 0 sufficiently small, with equal-
ity if and only if xn = 0, so that (∂yn/∂xn)(p) > 0. We conclude that an and bn have
the same sign.

Definition 57

Let M be a smooth manifold with boundary, and p ∈ ∂M be any point. A tangent
vector v ∈ TpM r Tp(∂M) is called inward-pointing (resp., outward-pointing) if
for some (and hence every) boundary-chart (U; x1, . . . , xn) around p, we have that
dxn|p(v) > 0 (resp., dxn|p(v) < 0).

Exercise 113

Let M be a smooth manifold with boundary, p ∈ ∂M, and v ∈ TpM r Tp(∂M).
Revisit the proof of Lemma 7 (p. 105) and take inspiration from Figure 70 to show
that:

(a) v is inward-pointing if and only if there is a smooth curve α : [0, ε) → M with
α(0) = p and α′(0) = v.

(b) v is outward-pointing if and only if there is a smooth curve α : (−ε, 0] → M
with α(0) = p and α′(0) = v.

There is another elegant way of rephrasing all of this: a boundary-definining func-
tion is a smooth function f : M → [0, ∞) such that f−1(0) = ∂M and d fp 6= 0 for
every p ∈ ∂M. For example, whenever (U; x1, . . . , xn) is a boundary-chart, xn is a
local boundary-defining function, but it is possible to prove that there is always a
global defining-function. Then v ∈ TpMr Tp(∂M) is inward-pointing (resp. outward-
pointing) if and only if d fp(v) > 0 (resp., d fp(v) < 0).

5.4 Orientability

From this point onwards, all manifolds are allowed to have boundary.

Here, we start by recalling the notion of orientability for finite-dimensional real
vector spaces. Namely, whenever V is such a vector space and we write n = dim V, it
holds that for any two ordered bases B = (e1, . . . , en) and B̃ = (ẽ1, . . . , ẽn) there is a
transition matrix A = [ai

j]
n
i,j=1 such that ẽj = ∑n

i=1 ai
jei, for each j = 1, . . . , n. The matrix

A is necessarily nonsingular, and so we define an equivalence relation ∼ on the set of
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all bases for V by declaring that B∼ B̃ if det A > 0. There are exactly two equivalence
classes for ∼, which are called orientations for V. Once one of them has been chosen,
the bases belonging to it are called positive—all others are called negative.

The vector space Rn has a canonical orientation, determined by its standard basis.
The determinant function (seen, like always, as an alternating multilinear function of
its columns), helps us sort out all bases (v1, . . . , vn) for Rn into positive ones and neg-
ative ones, according to whether det(v1, . . . , vn) is positive or negative, respectively.
Parallelepipeds spanned by positive bases have positive “oriented volume”, and this
is something the theory of integration on manifolds has to take into account.

With the above being said, our immediate next objective is to consider orientations
for all the tangent spaces TpM of whatever manifold M is under consideration. This
is not to be done haphazardly, but instead “smoothly” (or, at least “continuously”).
Unfortunately, it is not always possible to do so. We will have good reason to restrict
our attention to the manifolds where a consistent choice of orientations for the tangent
spaces can be made.

Definition 58 (Orientability of manifolds)

Let M be a smooth manifold, with n = dim M. We say that M is orientable if
there exists a nowhere-vanishing top-degree differential form µ ∈ Ωn(M), i.e., if
for every p ∈ M, the element µp ∈ An(TpM) is not the zero tensor. In this context,
such µ is called a volume form (or, sometimes, an orientation form) and the pair
(M, µ) is an oriented manifold.

The volume form µ in Definition 58 above plays the role of the determinant function
in Rn: for each p ∈ M, a basis (v1, . . . , vn) of TpM is declared by µ to be positive if
µp(v1, . . . , vn) > 0, and negative if µp(v1, . . . , vn) < 0. The fact that µp 6= 0 implies
that µp(v1, . . . , vn) = 0 can only happen when v1, . . . , vn are linearly dependent. The
name “volume form” is also justified—µ is a device that allows us to compute oriented
volumes of parallelepipeds in the tangent spaces to M (that is, infinitesimally). A
chart (U; x1, . . . , xn) is then called positively-oriented if, for each p ∈ U, the basis
∂/∂x1|p, . . . , ∂/∂xn|p of TpM is positive in the above sense, and an atlas for M is said
to be positively-oriented if all of its charts are positively-oriented.

Exercise 114 (Transitions between positive charts have positive Jacobian)

With the above setting, show that if two positively-oriented charts (U, ϕ) and
(V, ψ) have U ∩ V, then ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) satisfies the condition
that det D(ψ ◦ ϕ−1)(x) > 0 for every x ∈ ϕ(U ∩V).

Example 109

The standard volume form for the manifold M = Rn, in terms of its global coor-
dinates x1, . . . , xn, is µ = dx1 ∧ · · · ∧ dxn. That is, for each p ∈ M we have that
µp = det, under the isomorphism Tp(Rn) ∼= Rn.
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Exercise 115

Show that the product of two orientable smooth manifolds is again orientable.

The result below allows us to obtain many more examples of orientable manifolds:

Proposition 47 (Orientability of transversely-framed submanifolds)

Let M be an orientable smooth manifold, and S ⊆ M be an embedded k-dimensi-
onal submanifold. Assume that there are n− k vector fields X1, . . . , Xn−k tangent
to M defined along Sa and such that

TpM = TpS⊕R(X1)p ⊕ · · · ⊕R(Xn−k)p, for all p ∈ S. (5.17)

Then, S is orientable as well.
aA vector field Y tangent to M along S assigns to each p ∈ S a tangent vector Yp ∈ Tp M which

is not necessarily in TpS, and Y is not necessarily defined outside of S either.

Proof: From a volume form µ ∈ Ωn(M), we define a volume form µS ∈ Ωk(S) as
follows: for each point p ∈ S and vectors v1, . . . , vk ∈ TpS, we set

(µS)p(v1, . . . , vk) = µp((X1)p, . . . , (Xn−k)p, v1, . . . , vk).

Smoothness of µS follows from the one of µ and of the vector fields X1, . . . , Xn−k.
Then we necessarily have that (µS)p 6= 0: if v1, . . . , vk form a basis for TpS, then
(µS)p(v1, . . . , vk) 6= 0 because (X1)p, . . . , (Xn−k)p, v1, . . . , vk is a basis for TpM (due to
(5.17)) and µp 6= 0.

Example 110

Let F : U ⊆ Rn → Rn−k be a smooth function, and c ∈ Rn−k be a regular value of
F, so that F−1(c) is an embedded k-dimensional submanifold of Rn. Then, writing
F = (F1, . . . , Fn−k), we have that

Rn = ker dFp ⊕R∇F1(p)⊕ · · ·R∇Fn−k(p) (5.18)

for each p ∈ F−1(c), where ∇Fi(p) denotes the Euclidean gradient of the com-
ponent Fi, for each i = 1, . . . , n − k. Indeed, ∇F1(p), . . . ,∇Fn−k(p) are linearly
independent as c is a regular value of F, and hence form a basis for the orthog-
onal complement of ker dFp (computed with the standard inner product of Rn).
Proposition 47 now says that F−1(c) is orientable.

In particular, spheres are orientable (Example 81, p. 126)

Remark. In the example above, the open subset U ⊆ Rn can be replaced with any
orientable smooth manifold M. To make the same argument work, one must choose a
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Riemannian metric g on M, that is, a smooth choice of inner products gp in each tan-
gent space TpM. Replacing the gradients of each Fi with the vectors corresponding to
dFi

p ∈ T∗p M under the isomorphisms TpM→ T∗p M provided by g, a relation analogous
to (5.18) holds.

Example 111

If M and N are smooth manifolds, with M orientable, and F : M→ N is a smooth
function, the graph Gr(F) = {(p, q) ∈ M × N : q = F(p)} is orientable. In-
deed, it is diffeomorphic to M itself under M 3 p 7→ (p, F(p)) ∈ Gr(F), which is
orientable.

If an orientable smooth manifold M has a nonempty boundary ∂M, then ∂M in-
herits an orientation from M in a rather natural way. For now, we take for granted the
existence of an outward-pointing vector field X tangent to M along ∂M (see Proposi-
tion 50 ahead).

Proposition 48

If M is an orientable smooth manifold with boundary, µ ∈ Ωn(M) is a volume
form, and X is an outward-pointing vector field tangent to M along ∂M, then
µ∂M = µ(X, ·, · · · , ·) defines a volume form on ∂M.

Proof: We directly apply Proposition 47 with S = ∂M, noting that the decomposition
TpM = Tp(∂M)⊕RXp holds for every p ∈ ∂M.

Above, using an inward-pointing vector field along the boundary works equally
well for inducing an orientation in ∂M—it will be the opposite orientation to the one
provided by Proposition 48. It is a matter of convention, and we stick to the one that
uses the orientation induced by an outward-pointing vector field.

It will also be important to understand when a given smooth mapping preserves
orientation or not. If (M, µ) and (N, ν) are oriented n-dimensional manifolds and
F : M → N is a smooth mapping, then F∗ν ∈ Ωn(M), and therefore F∗ν must be a
function multiple of µ. We write F∗ν = J(F)µ, where J(F) : M → R is called the Jaco-
bian of F relative to µ and ν. The name “Jacobian” should not be surprising: choosing
coordinates (U; x1, . . . , xn) and (V; y1, . . . , yn) on M and N for which the volume forms
are expressed as µ = dx1 ∧ · · · ∧ dxn and ν = dy1 ∧ · · · ∧ dyn—this is always possi-
ble12—a direct adaptation of Proposition 39 (p. 156) gives us that

J(F) = det
[

∂Fa

∂xj

]
a,j=1,...,n

,

where Fa = ya ◦ F as usual. As a consequence of the Inverse Function Theorem, F is a
local diffeomorphism if and only if J(F) is nowhere-vanishing. In this case, assuming

12Let (U; x̂1, x2 . . . , xn) be any chart, and write µ = φ dx̂1 ∧ dx2 · · · ∧ dxn for some suitable nowhere-
vanishing function φ. If x1 is any function such that ∂x1/∂x̂1 = φ, then µ = dx1 ∧ dx2 ∧ · · · ∧ dxn as
required.
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that M is connected, J(F) must be either positive everywhere or negative everywhere.
We are led to the definition below:

Definition 59

Let (M, µ) and (N, ν) be oriented manifolds, and F : M → N be a local diffeo-
morphism. We say that F is orientation-preserving if J(F) > 0, and orientation-
reversing if J(F) < 0.

For mappings between open subsets of Rn, there are no secrets: compute the Jaco-
bian matrix, and take its determinant. Outside of Rn, things may get more subtle.

Exercise 116

Consider the unit sphere Sn, equipped with its standard orientation induced from
closed unit ball in Rn+1. Is the antipodal mapping τ : Sn → Sn orientation-preser-
ving or not? Does your answer depend on the parity of n?

In Exercise 115, we have seen that the product of two orientable manifolds is ori-
entable. And what about quotients?

Proposition 49

Let M be an oriented smooth manifold, and Γ be a finite group of diffeomorphisms
of M acting freely on M, cf. Exercise 68 (p. 91). Denote by π : M→ M/Γ the quo-
tient projection. Then M/Γ is orientable if and only if each γ ∈ Γ is orientation-
preserving, in which case π also becomes orientation-preserving.

We proceed.

5.5 From integration in Rn to integration on manifolds

In this section, we assume familiarity with Riemann integration in Rn, and refer to
[24, Chapter 3] or [23, Section 23.1] for more details. A bounded function is Riemann-
integrable if and only if its set of discontinuities is of measure zero. In particular,
compactly-supported continuous functions are always integrable.

We first generalize the notion of support. Namely, given a smooth manifold M
and a differential form ω ∈ Ωk(M), the support of ω is defined to be the subset
supp ω = {p ∈ M : ωp 6= 0} of M; here, the bar denotes closure. Then ω is said to
be compactly-supported if its support is a compact subset of M, and we finally set
Ωk

c(M) = {ω ∈ Ωk(M) : ω is compactly-supported}. The support of a smooth func-
tion is included in this discussion, with k = 0. To integrate differential forms, we start
with open subsets of Rn.
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Definition 60 (Integral of n-forms on Rn)

If U ⊆ Rn is an open subset and ω ∈ Ωn
c (U) is a differential n-form, written as

ω = f dx1 ∧ · · · ∧ dxn, we define the integral of ω over U as∫
U

ω =
∫

U
f (x1, . . . , xn)dx1 · · ·dxn,

where in the right side we have a classical Riemann integral.

Note here that while we essentially replace f (x1, . . . , xn)dx1 ∧ · · · ∧ dxn with the
expression f (x1, . . . , xn)dx1 · · ·dxn before integrating, the order of the differentials
dx1, . . . , dxn matters. For instance, if ω = f dy ∧ dx ∈ Ω2

c(R
2), we have that∫

R2
ω =

∫
R2
− f (x, y)dx dy,

as ω = − f dx ∧ dy, where in the right side we have a classical Riemann integral.

In addition, the change-of-variables formula for multivariate integrals may be
phrased with the language of derivatives as linear transformations: if U, V ⊆ Rn are
open subsets, f : V → R is continuous and compactly-supported, and T : U → V is a
diffeomorphism, then ∫

V
f (y)dy =

∫
U

f (T(x))|det DT(x)|dx (5.19)

holds, where dy and dx are shorthands for dy1 · · ·dyn and dx1 · · ·dxn, of course. At
the same time, we have that T∗(dx1 ∧ · · · ∧dxn) = det DT dx1 ∧ · · · ∧dxn (by Proposi-
tion 39), without the absolute-value signs. If we naively follow the usual idea of using
charts to “transplant” the above notion of integration onto manifolds, we might run
into consistency problems involving signs. Exercise 114 says that if we assume that M
is orientable, fix an orientation, and work only with positively-oriented charts, things
will be well-defined. Case in point:

Definition 61 (Integral of n-forms on chart domains)

Let M be an oriented n-dimensional smooth manifold, and ω ∈ Ωn(M). If (U, ϕ)
is a positively-oriented chart for M, the integral of ω over U is defined to be∫

U
ω =

∫
ϕ(U)

(ϕ−1)∗ω,

where the integral on the right side is taken in the sense of Definition 60.

By Exercise 114 and formula (5.19), it follows that∫
ϕ(U)

(ϕ−1)∗ω =
∫

ψ(U)
(ψ−1)∗ω
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whenever (U, ψ) is another positively-oriented chart with the same domain U (we
simply take T = ψ ◦ ϕ−1). This makes

∫
U ω independent on the choice of chart.

Generalizing this to the entire manifold M, which in general cannot be covered by
a single chart, requires a different tool.

Definition 62 (Partition of unity)

Let X be a topological space, and {Uα}α∈A be an open cover of X. A partition of
unity subordinate to {Uα}α∈A is a collection {ρα}α∈A ⊆ C0(X) of non-negative
functions such that:

(i) 0 ≤ ρα ≤ 1 for all α ∈ A;

(ii) supp ρα ⊆ Uα for all α ∈ A;

(iii) {supp ρα}α∈A is locally finite and ∑α∈A ρα(x) = 1 for all x ∈ X.

The collection of supports being locally finite means that every x ∈ X has an open
neighborhood which intersects only finitely many supports, and this condition en-
sures that ∑α∈A ρα(x) is always a finite sum—there are no convergence issues to worry
about here.

Partitions of unity do not necessarily exist on arbitrary topological spaces. Here, we
are only interested in smooth manifolds. The second-countability condition included
in the definition of a topological manifold is finally used with full strength13:

Theorem 24

Let M be a smooth manifold, and {Uα}α∈A be an open cover of M. Then, there is
a smooth partition of unity subordinate to {Uα}α∈A.

See [15, Theorem 2.23] for a proof. We are now in position to justify why an
outward-pointing vector field always exists along ∂M:

Proposition 50

Let M be a smooth manifold with boundary. Then, there exists an outward-
pointing vector field X along ∂M.

Proof: Let {(Uα, ϕα)}α∈A be an atlas of boundary-charts, covering ∂M, and let {ρα}α∈A
be a partition of unity subordinate to {Uα}α∈A. Assume that for each chart (Uα, ϕα),
the coordinate vector field ∂/∂xn

α is outward-pointing along Uα ∩ ∂M. Then

X = ∑
α∈A

ρα
∂

∂xn
α

13Under the guise of paracompactness: a topological space X is called paracompact if every open cover
has a locally finite open refinement. That is, if whenever {Uα}α∈A is an open cover of X, there is another
open cover {Vβ}β∈B with the two properties (i) for every β ∈ B there is α ∈ A such that Vβ ⊆ Uα, and
(ii) every p ∈ X has an open neighborhood W for which {β ∈ B : Vβ ∩W 6= ∅} is finite.
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defines an outward-pointing vector field along ∂M (the sum is always finite, and
positive-coefficients linear combinations of outward-pointing vectors are again out-
ward-pointing).

Back to the matter at hand, using again the idea that partitions of unity allow us
to “patch” locally defined objects into global ones, we may now define integrals of
differential forms over the entire manifold M:

Definition 63 (Integrals of differential forms over oriented manifolds)

Let M be an oriented smooth manifold, with n = dim M, and ω ∈ Ωn
c (M). We

define the integral of ω over M as∫
M

ω = ∑
α∈A

∫
Uα

ραω, (5.20)

where {(Uα, ϕα)}α∈A is a positively-oriented atlas for M, {ρα}α∈A is a partition of
unity subordinate to the open cover {Uα}α∈A, and the integral of each ραω over
Uα is as in Definition 61.

Of course, to validate Definition 63, we must show that the choices of oriented
atlas {(Uα, ϕα)}α∈A and partition of unity {ρα}α∈A are immaterial. So, assume that
{(Vβ, ψβ)}β∈B and {χβ}β∈B are different choices, and compute

∑
α∈A

∫
Uα

ραω
(1)
= ∑

α∈A

∫
Uα

ρα

(
∑
β∈B

χβω

)
(2)
= ∑

α∈A
∑
β∈B

∫
Uα

ραχβω

(3)
= ∑

α∈A
∑
β∈B

∫
Uα∩Vβ

ραχβω
(4)
= ∑

β∈B

∫
Vβ

χβω,
(5.21)

where each step is explained as follows:

(1) ∑β∈B χβ = 1 and ω = 1ω;

(2) linearity of integrals;

(3)
∫

Uα
ραχβω =

∫
Uα∩Vβ

ραχβω, as supp(ραχβ) ⊆ Uα ∩Vβ;

(4) “symmetry” (that is, we apply the previous steps in the reverse order and switch-
ing the roles of Uα and ρα with Vβ and χβ.

In practice, computing these integrals basically amounts to finding a parameteriza-
tion F (that is, the inverse of a chart) which covers all of M (except perhaps for a set of
measure zero), computing the pullback F∗ω, and integrating the resulting expression
over the domain of F (which is an open subset of some Euclidean space)—this latter
integral becoming a classical Riemann integral, cf. Definition 60. Here is an example
of how this works:
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Example 112

Consider ω ∈ Ω2(S2) given by

ω =



dy ∧ dz
x

, if x 6= 0

dz ∧ dx
y

, if y 6= 0

dx ∧ dy
z

, if z 6= 0

First, note that ω is indeed well-defined, as differentiating x2 + y2 + z2 = 1 leads
to x dx + y dy + z dz = 0, and hence x dx ∧ dy + z dz ∧ dy = 0 finally implies that
(dx ∧ dy)/z = (dy ∧ dz)/x when x, z 6= 0; similar calculations shows that ω is
well-defined on all other possible overlaps.

Next, we compute the integral
∫

S2 ω. For this, we consider F : [0, π]× [0, 2π]→ S2

given by F(ϕ, θ) = (sin ϕ cos θ, sin ϕ sin θ, cos ϕ), so that

F∗x = sin ϕ cos θ, F∗y = sin ϕ sin θ, and F∗z = cos ϕ.

Using Proposition 46, it follows that

F∗(dx) = cos ϕ cos θ dϕ− sin ϕ sin θ dθ

F∗(dy) = cos ϕ sin θ dϕ + sin ϕ cos θ dθ

F∗(dz) = − sin ϕ dϕ.
(5.22)

With this in place, we may show that

F∗
(

dy ∧ dz
x

)
= F∗

(
dz ∧ dx

y

)
= F∗

(
dx ∧ dy

z

)
= sin ϕ dϕ ∧ dθ, (5.23)

whenever all expressions make sense. In other words, F∗ω = sin ϕ dϕ ∧ dθ in all
cases, and so ∫

S2
ω =

∫ 2π

0

∫ π

0
sin ϕ dϕ dθ = 4π.

This is valid because, up to a set of measure zero, F defines a chart for S2.

Exercise 117

Using (5.22), verify (5.23) in detail.

Try mimicking what was done above, in a different surface, to get a feeling for it.
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Exercise 118

Consider a piece of paraboloid, M = {(x, y, z) ∈ R3 : z = x2 + y2 and 0 < z < 1}.

(a) Show that ω ∈ Ω2(M) given by

ω =


dx ∧ dz

y
, if y 6= 0,

dz ∧ dy
x

, if x 6= 0,

is well-defined.

(b) Compute
∫

M
ω.

Hint: Use a parameterization F : (0, 1)× (0, 2π)→ M.

5.6 The Stokes formula and applications

Theorem 25 (Stokes)

Let M be an oriented smooth manifold, and let n = dim M. Then, we have that∫
M

dω =
∫

∂M
ω (5.24)

for every ω ∈ Ωn
c (M).

Remark. When M has no boundary, the right side of (5.24) is understood to vanish.

Proof: The proof consists of two main steps: reducing (5.24) to the case where M = Rn

or M = Hn, and then showing that (5.24) holds for M = Rn and M = Hn.

So, assume that the theorem is valid in Rn and Hn, and choose a positively-oriented
atlas {(Uα, ϕα)}α∈A such that each image ϕ(Uα) is diffeomorphic to either Rn or Hn

(this is a direct adaptation of Exercise 53, p. 71). In particular, the theorem is valid for
each Uα. Now, choosing a partition of unity {ρα}α∈A subordinate to the open cover
{Uα}α∈A, and noting that ∂M ∩Uα = ∂Uα, we compute:∫

∂M
ω

(1)
=
∫

∂M
∑

α∈A
ραω

(2)
= ∑

α∈A

∫
∂M

ραω
(3)
= ∑

α∈A

∫
∂M∩Uα

ραω

(4)
= ∑

α∈A

∫
∂Uα

ραω
(5)
= ∑

α∈A

∫
Uα

d(ραω)
(6)
= ∑

α∈A

∫
M

d(ραω)

(2)
=
∫

M
∑

α∈A
d(ραω)

(7)
=
∫

M
d

(
∑

α∈A
ραω

)
(1)
=
∫

M
dω,

(5.25)

where each equality is explained as follows:
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(1) ∑α∈A ρα = 1 and ω = 1ω;

(2) linearity of integrals;

(3) supp(ραω|∂M) ⊆ ∂M ∩Uα;

(4) the previously mentioned equality ∂M ∩Uα = ∂Uα;

(5) the Stokes formula in Uα;

(6) supp d(ραω) ⊆ Uα;

(7) linearity of the exterior derivative.

This concludes the first step.

Now, to illustrate the main ideas involved in the rest of the calculation, we prove the
theorem for M = H2. Write ω = f dx + g dy, and assume that the supports of f
and g are contained in the interior of the rectangle [−a, a]× [0, a], for some a > 0. As
dω = (gx − fy)dx ∧ dy, we have that∫

H2
dω =

∫ +∞

0

∫ +∞

−∞
(gx − fy)dx dy

=
∫ +∞

0

∫ +∞

−∞
gx dx dy−

∫ +∞

−∞

∫ +∞

0
fy dy dx

=
∫ a

0

(∫ a

−a
gx dx

)
dy−

∫ a

−a

(∫ a

0
fy dy

)
dx

=
∫ a

0
g(a, y)− g(−a, y)dy−

∫ a

−a
f (x, a)− f (x, 0)dx.

(5.26)

From our support assumption, we have that g(a, y) = g(−a, y) = f (x, a) = 0. If we
were dealing with R2 instead of H2, considering the full rectangle [−a, a]× [−a, a], we
would have f (x,−a) instead of f (x, 0), with f (x,−a) = 0 as well, establishing (5.24)
for R2. But as we consider H2, this last term survives and we obtain∫

H2
dω =

∫ a

−a
f (x, 0)dx.

On the other hand, we have that y = 0 along ∂H2, so that ω restricted to ∂H2 reads
simply as ω = f (x, 0)dx. We now observe that −∂/∂y is an outward vector field to
H2 along ∂H2, so that the orientation form induced on ∂H2 by dx ∧ dy ∈ Ω2(H2) is
simply (dx ∧ dy)(−∂/∂y, ·) = dx. For this reason, we have that∫

∂H2
ω =

∫ ∞

−∞
f (x, 0)dx =

∫ a

−a
f (x, 0)dx.

This concludes the proof.
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Exercise 119

Give a direct proof of Stokes’s theorem for M = Hn, mimicking (5.26).

Stokes’s Theorem is the ultimate generalization of the Fundamental Theorem of
Calculus. To explain how this happens, recall the result and notation of Theorem 21.

Example 113 (The fundamental theorem of line integrals)

Given a vector field F : U ⊆ Rn → Rn which is conservative, that is, for which
there is a smooth function ϕ : U → R such that F = ∇ϕ, it holds that∫

C
〈F, T〉ds = ϕ(q)− ϕ(p)

for any points p, q ∈ U and curve C ⊆ U starting at p and ending at q, where
T is the (positively-oriented) unit tangent vector along C, and ds is the arclength
element of C. Classically, the left side is computed as∫

C
〈F, T〉ds =

∫ b

a
〈F(r(t)), r′(t)〉dt,

with the result being independent on the choice of parametrization r : [a, b]→ C
with r(a) = p and r(b) = q. In our setting, the manifold being considered is C,
with manifold-boundary ∂C = {p, q}. The orientation in C (from p to q) induces
the orientation in ∂C which assigns +1 to q and −1 to p. A volume-form for C is
nothing more than ds itself, expressed as ds = ‖r′(t)‖dt in terms of a parameteri-
zation r, while T(t) = r′(t)/‖r′(t)‖, with both−T(a) and T(b) outward-pointing,
so that ds(−T(a)) = −1 and ds(T(b)) = +1. Finally, the 1-form 〈F, T〉ds on C is
nothing more than dϕ, with∫

C
dϕ =

∫
∂C

ϕ = ϕ(q)− ϕ(p)

in view of Stokes’s theorem.

Example 114 (The Green-Stokes theorem)

Let Σ ⊆ R3 be a regular surface, with smooth boundary C = ∂Σ and area form
dΣ ∈ Ω2(M) (this notation is used classically, even though dΣ is by no means an
exact form). The Green-Stokes theorem states that∮

C
〈F, T〉ds =

x

Σ

〈curl F, N〉dΣ

for every vector field F defined on some open neighborhood U ⊆ R3 of Σ, where
the orientation of C is taken to be induced by the one of Σ, and T and ds are as in
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Example 113 above. If Σ is a planar region R ⊆ R2 and F = (P, Q), this formula
reads simply as ∮

C
P dx + Q dy =

x

R

(
∂Q
∂x
− ∂P

∂y

)
dx dy.

In any case, this is again a consequence of Stokes’s theorem, as 〈F, T〉ds = αF
leads to d(〈F, T〉ds) = dαF = βcurl F = 〈curl F, N〉dΣ.

Example 115 (Gauss’s divergence theorem)

Let V ⊆ R3 be a compact region in space enclosed by a closed surface Σ = ∂V,
and let F be a vector field defined on some open neighborhood U ⊆ R3 of V. Then
Gauss’s divergence theorem states that

{

Σ

〈F, N〉dΣ =
y

V

div F dx dy dz,

where N and dΣ are as in Example 114, and the orientation of Σ is taken to be the
one induced by the one of V. Indeed, as

d(〈F, N〉dΣ) = dβF = γdiv F = div F dx ∧ dy ∧ dz,

we may simply apply Stokes’s theorem again.

5.7 A teeny bit of de Rham cohomology

Some of the fundamental ideas in Mathematics revolve around the concept of an
“invariant”. Namely, given a class of objects to be considered (vector spaces, groups,
topological spaces, manifolds, etc.), we assign to each object a simpler object or quan-
tity (often a single number), in such a way that equivalent (isomorphic, homeomor-
phic, diffeomorphic) objects have the same associated quantity—hence the name “in-
variant”. This means that objects having distinct invariants cannot be equivalent.

For example, to each finite-dimensional vector space we assign a non-negative
integer—its dimension—and isomorphic spaces have the same dimension. Therefore,
finite-dimensional vector spaces having different dimensions cannot be isomorphic.
In this case, the dimension turns out to be a “complete” invariant: the converse holds
and two finite-dimensional vector spaces having the same dimension must be isomor-
phic.

Finding useful invariants (let alone complete ones) is, in general, a very difficult
task. The idea behind de Rham cohomology is to associate to each smooth manifold
a finite sequence of vector spaces. And these vector spaces will ultimately arise from
differential forms.
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Definition 64 (Closed and exact forms)

Let M be a smooth manifold, and k ≥ 0 be any integer. Then ω ∈ Ωk(M) is called:

• closed, if dω = 0;

• exact, if ω = dη for some η ∈ Ωk−1(M).

We denote by Zk(M) and Bk(M) the subspaces of Ωk(M) consisting of all closed
and exact k-forms, respectively.

As there are no differential forms of degree−1, we take B0(M) to be the zero vector
space. At the other extreme, if n = dim M, every n-form is closed for dimensional
reasons, so that Zn(M) = Ωn(M). Similarly, if k > n, then Zk(M) = Ωk(M) = {0}.
The property d2 = 0 directly yields the inclusions Bk(M) ⊆ Zk(M), for each degree
k = 0, . . . , n. This allows us to write the following definition:

Definition 65 (de Rham cohomology)

Let M be a smooth manifold, and k ≥ 0 be any integer. The k-th de Rham coho-
mology space of M is defined to be the quotient space Hk

dR(M) = Zk(M)/Bk(M).
The equivalence class of an element ω ∈ Zk(M) in Hk

dR(M) is denoted by [ω].

Remark. The vector spaces Hk
dR(M) are often called the de Rham cohomology groups

of M. The reason for this is that there are more general notions of “cohomology”,
which make sense for arbitrary topological spaces, but such “cohomology spaces” are
not really vector spaces, only groups. The fact that Hk

dR(M) in particular has a vector
space structure is somewhat special.

The definition of quotient vector spaces immediately tells us what each Hk
dR(M) is

measuring: how badly closed k-forms fail to be exact. Or, alternatively, if we consider
ω = dη as an equation to be solved for η, the de Rham cohomology controls whether
solutions exist or not, and how non-unique they can be. What makes it all interesting
is that these obstructions to exactness must be of global nature, and relating to the
topology of M. Locally, everything is trivial:

Theorem 26 (Poincaré Lemma)

Let M be a smooth manifold, k ≥ 1 be an integer, and ω ∈ Ωk(M) be closed. Then,
for every p ∈ M there is an open neighborhood U ⊆ M of p and η ∈ Ωk−1(U)
such that ω = dη on U.

See [24, Theorem 4.11] for a proof. The zeroth cohomology is easy to understand,
but it doesn’t really tell us anything new.
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Proposition 51

Let M be a smooth manifold. Then H0
dR(M) ∼= Rm, where m ≥ 1 is the number of

connected components of M.

Proof: Since B0(M) = {0}, we have that H0
dR(M) = Z0(M) is the space of closed

0-forms. But a 0-form is simply a smooth function f : M → R, and closedness means
that d f = 0. This implies that f is locally constant, and the conclusion follows: send-
ing [ f ] ∈ H0

dR(M) to the vector in Rm consisting of the constant values of f on the m
connected components of M defines an isomorphism (once an ordering of the compo-
nents is fixed, of course).

Example 116 (The cohomology of the real line)

Consider the real line M = R. By Proposition 51, H0
dR(M) ∼= R. It then remains

to determine H1
dR(R), but we claim that H1

dR(R) = {0}. In other words, every
1-form on R is exact. Namely, if ω ∈ Ω1(R) is arbitrary, we may write it as
ω = f dx for some f ∈ C∞(R), and define F : R→ R by

F(x) =
∫ x

0
f (t)dt.

Then F is also smooth and has F′(x) = f (x), so that dF = ω.

The proof of the Poincaré Lemma consists in taking a chart centered at the given
point p, constructing η in a starshaped neighborhood (cf. Definition 21, p. 57) of
0 in Rn, and then pulling it back to the chart domain. When M = Rn, such star-
shaped neighborhood of 0 can be taken to be the entire space Rn. In other words,
in the case where M = Rn, the conclusion of the Poincaré Lemma is global, and
we in fact have H0

dR(R
n) ∼= R and Hk

dR(R
n) = {0} for every k ≥ 1.

Example 117 (The cohomology of the circle)

Now, we consider the circle M = S1. As before, H0
dR(S

1) ∼= R and it remains to
determine H1

dR(S
1).

This time, we claim that H1
dR(S

1) ∼= R. To establish this, we regard integration
over S1 as a linear functional ∫

S1
: Z1(S1)→ R.

The desired conclusion will follow once we show that

(i)
∫

S1 is surjective, and (ii) has kernel equal to B1(S1). (5.27)

Taking ω = −y dx + x dy ∈ Ω1(S1) and the parametrization γ : (0, 2π) → S1
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given by γ(t) = (cos t, sin t), we may computea

∫
S1

ω =
∫ 2π

0
ωγ(t)(γ

′(t))dt =
∫ 2π

0
(− sin t)(− sin t) + (cos t)(cos t)dt = 2π

and conclude that (5.27-i) holds.

Stokes’ theorem implies that B1(S1) is contained in the kernel of the integration
functional (as S1 has no boundary). For the reverse inclusion, let α ∈ Ω1(S1) have∫

S1 α = 0, and write it as α = f ω for some f ∈ C∞(S1)—this is possible because
ω is nowhere-vanishing, and thus ωp spans T∗p (S1) for each p ∈ S1. Identifying
S1 with the quotient R/(2πZ), and letting π : R→ R/(2πZ) denote the quotient
projection, we have that f ◦ π ∈ C∞(R) is in fact a 2π-periodic function with∫ 2π

0
f (π(t))dt = 0. (5.28)

We may once again define a smooth function F : R→ R by

F(t) =
∫ t

0
f (π(s))ds,

and then compute

d
dt

(F(t + 2π)− F(t)) = f (π(t + 2π))− f (π(t)) = 0.

This means that there is c ∈ R such that F(t + 2π) = F(t) + c, for every t ∈ R,
but choosing t = 0 and using (5.28) we obtain that c = 0. It now follows that
there is F̄ ∈ C∞(S1) such that F̄ ◦ π = F (smoothness of F̄ follows from the one
of F via the characteristic property of π as a surjective submersion). As the final
step, we argue that dF̄ = α. Namely, this follows from the easily-verified relation
π∗ω = dt, which implies that

π∗(dF̄) = d(F̄ ◦ π) = dF = F′(t)dt = ( f ◦ π)(t)π∗ω = π∗( f ω) = π∗α,

together with Proposition 45. Therefore, (5.27-ii) holds as well.
aThe image of γ in S1 misses just a point, which has measure zero—the integral is not affected.

Exercise 120

In R2 r {0}, consider the 1-form

ω =
x dy− y dx

x2 + y2 .

Show that dω = 0, but
∫

S1 ω 6= 0. Conclude that [ω] 6= 0 in H1
dR(R

2 r {0}).

As it turns out, we can still obtain more from the idea of regarding integration as a
linear functional:
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Proposition 52

Let M be a compact and oriented n-dimensional smooth manifold without bound-
ary. The integration functional ∫

M
: Zn(M)→ R (5.29)

is surjective and has kernel equal to Bn(M), therefore inducing an isomorphism
Hn

dR(M) ∼= R.

The majority of the argument is rather simple. As M is orientable, we may fix a
volume form ω ∈ Ωn(M), while compactness of M ensures that

∫
M ω is finite and

nonzero, making (5.29) surjective. At the same time, Stokes’s Theorem ensures that
Bn(M) is contained in the kernel of (5.29), as M is without boundary. The proof of
the reverse inclusion—that is, that if an n-form integrates to zero it must be exact—is
more subtle. You can see the detailed argument in [15, Theorem 17.31], as well as the
companion result: if M is compact and non-orientable, then Hn

dR(M) = {0}.

Example 118

Cohomology has very explicit meanings in the setting of classical vector calculus;
the key is, of course, Theorem 21. Let U ⊆ R3 be open, and X be a vector field on
U. Then:

(a) If H1
dR(U) = {0}, curl X = 0 implies that X = ∇ f for some function f .

(b) If H2
dR(U) = {0}, div X = 0 implies that X = curl Y for some vector field Y .

We may now justify why the de Rham cohomology is a differential invariant, that
is, why diffeomorphic manifolds have isomorphic de Rham cohomology spaces.

Proposition 53

Let M and N be smooth manifolds, and F : M → N be a smooth mapping. For
each k ≥ 0, the induced pullback operation F∗ : Ωk(N) → Ωk(M) survives in the
quotient as a linear mapping (also denoted by)

F∗ : Hk
dR(N)→ Hk

dR(M), given by F∗[ω]
.
= [F∗ω]. (5.30)

This construction has the two properties below:

(a) If P is a third smooth manifold and G : N → P is a second smooth mapping,
then we have that G∗ ◦ F∗ = (F ◦ G)∗ as linear mappings Hk

dR(P)→ Hk
dR(M).

(b) (IdM)∗ = IdHk
dR(M).

In particular, if F : M → N is a diffeomorphism, then F∗ : Hk
dR(N) → Hk

dR(M) is
an isomorphism, with inverse (F∗)−1 = (F−1)∗.
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Proof: What we must really prove here is that F∗ in (5.30) is indeed well-defined.
Once this is in place, items (a) and (b) are trivial consequences of items (iii) and (iv)
in Proposition 44 (p. 169), while linearity of (5.30) is also clear. To show that (5.30) is
well-defined, it suffices to show that F∗(Zk(N)) ⊆ Zk(M) and F∗(Bk(N)) ⊆ Bk(M)
for each k ≥ 0. This, in turn, follows directly from Proposition 46: if ω ∈ Zk(N), then
F∗ω ∈ Zk(M) because d(F∗ω) = F∗(dω) = F∗(0) = 0, while for any η ∈ Ωk−1(N) we
have that F∗(dη) = d(F∗η) ∈ Bk(M).

The invariance property of the de Rham cohomology is actually much more refined
than what the previous result suggests. It is possible to show that manifolds which are
homotopy equivalent14 already have isomorphic de Rham cohomology spaces; see
[15, Theorem 17.11] or [23, Chapter 27].

Another standard result in de Rham theory is the existence of Mayer-Vietoris se-
quences. The setup is the following: M is a smooth manifold, and U, V ⊆ M are open
subsets such that M = U ∪ V. The goal is to compute the cohomology of M in terms
of the cohomologies of U, V, and U ∩V. The inclusions

i : U ∩V ↪→ U, j : U ∩V ↪→ V, k : U ↪→ M, and ` : V ↪→ M

induce, via Proposition 53, linear mappings

i∗ : Hp
dR(U)→ Hp

dR(U ∩V), j∗ : Hp
dR(V)→ Hp

dR(U ∩V),

k∗ : Hp
dR(M)→ Hp

dR(U), and `∗ : Hp
dR(M)→ Hp

dR(V),

for each p ≥ 0. We may put them together as

Hp
dR(M) Hp

dR(U)⊕ Hp
dR(V) Hp

dR(U ∩V).k∗⊕`∗ i∗−j∗
(5.31)

There is one copy of (5.31) for each value of p ≥ 0, but it turns out that they can be
connected to each other:

Theorem 27 (Mayer-Vietoris)

Let M be a smooth manifold, and U, V ⊆ M be open subsets such that M = U∪V.
There is a sequence of linear mappings

· · · → Hp
dR(M)→ Hp

dR(U)⊕ Hp
dR(V)→ Hp

dR(U ∩V)→ Hp+1
dR (M)→ · · · (5.32)

such that the image of any mapping equals the kernel of the next one.

See [15, Theorem 17.20] or [23, Section 26.1] for a proof. The crucial point is the
construction of the mappings Hp

dR(U ∩ V) → Hp+1
dR (M). A sequence of vector spaces

14Two continuous mappings f , g : X → Y are called homotopic if there is a continuous mapping
H : X × [0, 1] → Y such that H(x, 0) = f (x) and H(x, 1) = g(x) for every x ∈ X. A homotopy
equivalence is a continuous mapping F : X → Y for which there is G : Y → X such that F ◦ G is
homotopic to IdY, and G ◦ F is homotopic to IdX . In other words, F is invertible “up to homotopy”.
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and linear mappings like (5.32), with the property that the image of a mapping equals
the kernel of the next, is called a long exact sequence. In particular, a piece of a long
exact sequence like

· · · → 0→W → Z → 0→ · · · ,

where 0 stands for the trivial vector space, implies that the arrow from W to Z is an
isomorphism. Indeed, if f : W → Z is the arrow in question, the piece 0 → W → Z
says that ker f equals the image of the zero mapping, making f injective; at the same
time W → Z → 0 says that Im f equals the kernel of the zero mapping, which is all of
Z, making f surjective.

Many of the ideas present in the proof of Theorem 27 belong to a branch of mathe-
matics called homological algebra. We will not pursue this here, and instead just use
Theorem 27 to compute cohomologies of a few more concrete examples.

Example 119 (The cohomology of the sphere)

We claim that

H0
dR(S

n) ∼= Hn
dR(S

n) ∼= R, and Hk
dR(S

n) = {0} for 0 < k < n.

The standard argument is by induction on n, applying Mayer-Vietoris. The base
case n = 1 was already established back in Example 117. As for the induction step,
assume that the cohomology of Sn has been computed, and consider the open sets
U = Sn+1 r {N} and V = Sn+1 r {S}, where N and S are the north and south
poles of Sn+1. We have that U ∪V = Sn+1. Clearly U and V are diffeomorphic to
Rn (via stereographic projection, and hence have trivial cohomology by Example
116), while U ∩V equals the “equator” of Sn+1, which is Sn. The piece

· · · Hk
dR(U)⊕ Hk

dR(V) Hk
dR(U ∩V)

Hk+1
dR (Sn+1) Hk+1

dR (U)⊕ Hk+1
dR (V) · · ·

of the Mayer-Vietoris sequence now reads as

· · · → 0→ Hk
dR(S

n)→ Hk+1
dR (Sn+1)→ 0→ · · · ,

and hence Hk+1
dR (Sn) ∼= Hk+1

dR (Sn+1) for every n ≥ 1 and k = 1, . . . , n. The desired
conclusion now follows.

There is one more very geometric example we can study using Theorem 27. Recall
that the genus of a closed surface is informally defined as the “number of holes” it
has. Here (and always) “closed” means compact and without boundary. For example,
a closed surface of genus zero is a sphere, of genus one is a torus, and so on.
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Example 120 (The cohomology of genus-g surfaces)

Consider a closed orientable surface Σg of genus g ≥ 0, as in Figure 71.

· · ·

Σg

Figure 71: A closed surface of genus g ≥ 0.

We claim that

H0
dR(Σg) = H2

dR(Σg) ∼= R, and H1
dR(Σg) ∼= R2g.

Once again the argument is by induction, but this time on g. As Σ0
∼= S2, the

previous example takes care of the base case, and our goal reduces to showing
that H1

dR(Σg+1) ∼= H1
dR(Σg)⊕R2. Proceeding, we take only one fact for granted:

if M is any compact and oriented n-dimensional manifold, and p ∈ M, we have
that Hn

dR(M r {p}) = {0}. As Σg = (Σg r {p}) ∪ D, where p ∈ Σg is any point
and D ∼= R2 is a disk in Σg around p, so that (Σg r {p}) ∩ D is diffeomorphic to
S1 ×R, we obtain the Mayer-Vietoris sequence

0→ R→ R2 → R→ H1
dR(Σg)→ H1

dR(Σg r {p})⊕ {0} → R→ R→ 0.

Exactness of the long exact sequence implies that both arrows R → H1
dR(Σg) and

H1
dR(Σg r {p})→ R are in fact the zero mapping, so that

0→ H1
dR(Σg)→ H1

dR(Σg r {p})→ 0

gives us that H1
dR(Σg r {p}) ∼= H1

dR(Σg).

With this in place, we set up a second Mayer-Vietoris sequence, noting that we
may write Σg+1 = U ∪ V for open subsets U and V which are diffeomorphic to
Σg r {p} and Σ1 r {p} (for some point p ∈ Σg+1), with U ∩ V diffeomorphic to
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S1 ×R. We obtain the long exact sequence

0 R R2

R H1
dR(Σg+1) H1

dR(Σg r {p})⊕ H1
dR(Σ1 r {p})

R R H2
dR(Σg r {0})⊕ H2

dR(Σ1 r {p}) 0

which, similarly to what was done above, reduces to

0→ H1
dR(Σg+1)→ H1

dR(Σg r {p})⊕R2 → 0,

so that H1
dR(Σg+1) ∼= H1

dR(Σg)⊕R2, as required. (Here we have used the previ-
ously established relation H1

dR(Σg r {p}) ∼= H1
dR(Σg), as well as its particular case

H1
dR(Σ1 r {p}) ∼= H1

dR(Σ1) = H1
dR(T

2) = R2, which can be justified ith a third
application of Mayer-Vietoris, or using the Künneth formula below.)

The next natural question, as far as examples go, could be: how to compute the
cohomology of a product of manifolds, in terms of the cohomologies of the factors? It
is not as straightforward as it might seem, but there is also a result for that.

Theorem 28 (The Künneth formula)

Let M and N be smooth manifolds, and assume that one of them is compact. The
cohomology of the product M× N is given by

Hk
dR(M× N) =

⊕
i+j=k

Hi
dR(M)⊗ H j

dR(N),

for every k ≥ 0.

For a proof, see e.g. [2, pp. 47-50]. In practice, however, we don’t really write
out all of these tensor products explicitly. For any smooth n-dimensional manifold
M, we may set bi(M) = dim Hi

dR(M) for each i = 0, . . . , n; these are called the
Betti numbers of M. We then use the Betti numbers as coefficients of a polynomial,
pM(t) = ∑n

i=0 bi(M)ti. It is called the Poincaré polynomial of M, and the Künneth
formula reads simply as pM×N(t) = pM(t)pN(t). Here are some explicit examples:

pRn(t) = 1, pSn(t) = 1 + tn, pTn(t) = (1 + t)n, pΣg(t) = 1 + 2gt + t2.

The famous Euler characteristic of M (when compact) can be directly defined as the
alternating sum χ(M) = ∑n

i=0(−1)ibi(M), but in terms of the Poincaré polynomial, it
becomes simply χ(M) = pM(−1). So we have that χ(Sn) = 1 + (−1)n, χ(Tn) = 0,
and χ(Σg) = 2− 2g. We also have that χ(M× N) = χ(M)χ(N). You can get a feeling
for how the Künneth formula is used in the two exercises below.
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Exercise 121

Show that if M is a smooth manifold with n = dim M, then

Hk
dR(M× S1) =


H0

dR(M), if k = 0,

Hk
dR(M)⊕ Hk−1

dR (M), if k = 1, . . . , n,

Hn
dR(M), if k = n + 1.

And what about Hk
dR(M× Sm) for some fixed m ≥ 2?

Exercise 122

Show that if M is a smooth manifold with n = dim M, and Σg is a compact ori-
entable surface of genus g ≥ 1, as in Example 120, then

Hk
dR(M× Σg) =



H0
dR(M), if k = 0,

H1
dR(M)⊕ H0

dR(M)⊗2g, if k = 1,

Hk
dR(M)⊕ Hk−1

dR (M)⊗2g ⊕ Hk−2
dR (M), if k = 2, . . . , n,

Hn
dR(M)⊗2g ⊕ Hn−1

dR (M), if k = n + 1,

Hn
dR(M), if k = n + 2.

One can simply write Hk
dR(M× Σg) = Hk

dR(M)⊕ Hk−1
dR (M)⊗2g ⊕ Hk−2

dR (M) with-
out considering cases for k, with the understanding that all cohomology spaces of
negative degree are trivial.

We conclude the course briefly visiting the situation dual to products: how to com-
pute the cohomology of a quotient manifold? The next result below is also very well-
known, but we present a complete proof (I could not find a reference for it stated in
this manner and at this intermediate level of generality quickly enough).

Theorem 29 (Invariant cohomology versus cohomology of quotients)

Let M be a smooth manifold, and Γ be a finite group of diffeomorphisms of M
acting freely on M, cf. Exercise 68 (p. 91). For each k ≥ 0, let

Ωk(M)Γ = {β ∈ Ωk(M) : γ∗β = β for all γ ∈ Γ}
be the space of all Γ-invariant k-forms on M, and consider the spaces Zk(M)Γ and
Bk(M)Γ of all Γ-invariant closed and exact k-forms, respectively. Then we have
that Bk(M)Γ ⊆ Zk(M)Γ and, defining the k-th Γ-invariant cohomology space of
M as Hk(M)Γ = Zk(M)Γ/Bk(M)Γ, we have that

Hk
dR(M/Γ) = Hk(M)Γ,

for each k ≥ 0. In addition, assigning to an invariant-cohomology class its corre-
sponding de Rham cohomology class defines an injection Hk(M)Γ ↪→ Hk

dR(M).
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Proof: The inclusions Bk(M)Γ ⊆ Zk(M)Γ follow, as usual, from d2 = 0 on Γ-invariant
forms, together with the observation that dβ ∈ Ωk+1(M)Γ whenever β ∈ Ωk(M)Γ.
Indeed, by Proposition 46 we have γ∗(dβ) = d(γ∗β) = dβ for every γ ∈ Γ.

The first thing to establish here is that, if π : M → M/Γ denotes the quotient projec-
tion, then

the image of π∗ : Ωk(M/Γ)→ Ωk(M) is precisely Ωk(M)Γ. (5.33)

On one hand, whenever ω ∈ Ωk(M/Γ) we have that π∗ω ∈ Ωk(M)Γ, since for every
γ ∈ Γ we have—using item (iv) of Proposition 44—that γ∗π∗ω = (π ◦ γ)∗ω = π∗ω.
For the reverse inclusion, if β ∈ Ωk(M)Γ is given, we define

β̂y(v̂1, . . . , v̂k) = βx(v1, . . . , vk), for all y ∈ M/Γ and v̂1, . . . , v̂k ∈ Ty(M/Γ), (5.34)

where x ∈ π−1(y) and v1, . . . , vk ∈ Tx M such that dπx(vi) = v̂i for all i = 1, . . . , k
are chosen at will. The definition of β̂ is correct: if x′ ∈ π−1(y) and v′1, . . . , v′k ∈ Tx′M
are such that dπx′(v′i) = v̂i for all i, . . . , k, there is γ ∈ Γ such that x′ = γ(x), and
thus v′i − dγx(vi) ∈ ker dπx′ = {0} leads to v′i = dγx(vi), for all i = 1, . . . , k; then
βx(v1, . . . , vk) = βx′(v′1, . . . , v′k) follows from γ∗β = β. Then β̂ ∈ Ωk(M/Γ) (it is
smooth by the characteristic property of surjective submersions as π is a local diffeo-
morphism, cf. Exercise 80, p. 109) has π∗ β̂ = β, by construction, proving (5.33).

As we know by Proposition 45 that π∗ in (5.33) is injective, the desired conclusion
(namely, that π∗ induces an isomorphism at the cohomology level) will follow once
we prove that

(i) π∗(Zk(M/Γ)) = Zk(M)Γ and (ii) π∗(Bk(M/Γ)) = Bk(M)Γ. (5.35)

Consider (5.35-i): if ω ∈ Zk(M/Γ), then π∗ω is already Γ-invariant due to (5.33),
while d(π∗ω) = π∗(dω) = π∗(0) = 0, so that π∗ω ∈ Zk(M)Γ; if β ∈ Zk(M)Γ, (5.33)
yields β̂ ∈ Ωk(M/Γ) such that π∗ β̂ = β, and taking exterior derivatives (again using
Proposition 46) leads to π∗(dβ̂) = d(π∗ β̂) = dβ = 0, and hence dβ̂ = 0 (meaning that
β̂ ∈ Zk(M/Γ)) by injectivity of π∗.

Finally, we address (5.35-ii): if ω ∈ Bk(M/Γ), we may fix η ∈ Ωk−1(M/Γ) such that
ω = dη, and take pullbacks to obtain π∗ω = d(π∗η); as π∗η ∈ Ωk−1(M)Γ by (5.33),
we have that π∗ω ∈ Bk(M)Γ. The reverse inclusion is more subtle: if β ∈ Bk(M)Γ

there is α ∈ Ωk−1(M) such that β = dα, but α is not guaranteed to be Γ-invariant. We
instead consider

the Γ-average ᾱ ∈ Ωk−1(M)Γ of α, defined as ᾱ =
1
|Γ| ∑

γ∈Γ
γ∗α, (5.36)

which is indeed Γ-invariant by construction: if µ ∈ Γ is arbitrary, then

µ∗ᾱ = µ∗
(

1
|Γ| ∑

γ∈Γ
γ∗α

)
=

1
|Γ| ∑

γ∈Γ
µ∗γ∗α

=
1
|Γ| ∑

γ∈Γ
(γ ◦ µ)∗α

(†)
=

1
|Γ| ∑

γ∈Γ
γ∗α

= ᾱ,

(5.37)
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where in (†) we use that Γ 3 γ 7→ γ ◦ µ ∈ Γ is a bijection. In addition, we have that

dᾱ = d

(
1
|Γ| ∑

γ∈Γ
γ∗α

)
=

1
|Γ| ∑

γ∈Γ
d(γ∗α)

=
1
|Γ| ∑

γ∈Γ
γ∗(dα) =

1
|Γ| ∑

γ∈Γ
γ∗β

(‡)
=

1
|Γ| ∑

γ∈Γ
β =

1
|Γ| |Γ|β

= β,

(5.38)

where in (‡) we use Γ-invariance of β. Now, we may use (5.33) to fix α̂ ∈ Ωk−1(M/Γ)
such that ᾱ = π∗α̂, and take exterior derivatives to obtain that β = π∗(dα̂) with
dα̂ ∈ Bk(M/Γ), as required, establishing (5.35-ii).

That Hk(M)Γ ↪→ Hk
dR(M) is indeed an injection was already proved with (5.37) and

(5.38): namely, if a Γ-invariant k-form has an antiderivative, then it has a Γ-invariant
antiderivative.

Remark. As discussed in the end of Section 4.2, one could reasonably wonder what
Theorem 29 would look like if instead of Γ we had considered a positive-dimensional
Lie group G acting freely and properly on M. However, there are two main changes.
The first one occurs as immediately as in (5.33): the image of π∗ : Ωk(M/G)→ Ωk(M)
is not Ωk(M)G, but instead the subspace Ωk(M)G

bas. consisting of the G-invariant
k-forms which are also basic, that is, such that βx(v1, . . . , vk) = 0 whenever there is
i = 1, . . . , k such that vi ∈ ker dπx (when G = Γ is zero-dimensional this kernel is triv-
ial, so every form is basic). The need for this condition becomes apparent when prov-
ing that β̂ in (5.34) is well-defined: we can still conclude that v′i − dγx(vi) ∈ ker dπx′ ,
but the equality βx(v1, . . . , vk) = βx′(v′1, . . . , v′k) now follows from rewriting the latter
term as a certain telescopic sum and using basicness of β to eliminate all terms con-
taining some such difference v′i − dγx(vi). The two conditions in (5.35) now obviously
read π∗(Zk(M/G)) = Zk(M)G

bas. and π∗(Bk(M/G)) = Bk(M)G
bas., but while the proof

of the former remains essentially the same as the one given above, the latter finally
requires our second main change: the assumption that the Lie group G is compact.
The reason for this is that if Γ is not finite, the sum used in (5.36) to define the av-
erage ᾱ may not necessarily converge. However, every compact Lie group admits a
unique bi-invariant probability measure µG, called its Haar measure, which is used
as an replacement for the sum in (5.36); namely, we set ᾱ =

∫
G g∗α dµG(g). We then

have obvious analogues of (5.37) and (5.38), which allow us to conclude the proof.
When G = Γ is zero-dimensional and finite, we have that µΓ(A) = |A|/|Γ| is just the
normalized counting measure.

A precise statement would be: if M is a smooth manifold and G is a compact Lie group act-
ing freely, properly, and effectively15 on M, then Hk

dR(M/G) ∼= Hk(M)G
bas., where Hk(M)G

bas.
is defined as the quotient Zk(M)G

bas./Bk(M)G
bas..

15So that we can uniquely identify each g ∈ G with its corresponding diffeomorphism g : M → M.
As it turns out, this assumption is not really important here, but often made for psychological reasons.

Page 199



SMOOTH MANIFOLDS IVO TEREK

Example 121 (The cohomology of RPn)

As an application of Theorem 29, we’ll compute the cohomology of the real projec-
tive space RPn. We regard it as the quotient Sn/Z2, where Z2 = {1, τ} for the an-
tipodal mapping τ : Sn → Sn. As Hk

dR(RPn) can be seen as a subspace of Hk
dR(S

n),
which we have computed in Example 119, it follows that Hk

dR(RPn) = {0} for
k = 1, . . . , n− 1. As RPn is connected, we have that H0

dR(RPn) = R. Finally, in
view of Proposition 52 (and the companion result about the non-orientable case,
mentioned after it), Hn

dR(RPn) can only be either {0} or R, depending on whether
RPn is orientable or not. This, by Proposition 49, depends on whether the an-
tipodal mapping τ : Sn → Sn is orientation-preserving or not. But you must have
found in Exercise 116 that τ is orientation-preserving if and only if n is odd. In
summary, we have that:

Hk
dR(RPn) =


R, if k = 0,
{0}, if k = 1, . . . , n− 1,
R, if k = n is odd,
{0}, if k = n is even.
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Index

F-related, 140

algebra (over a field), 96
alternating tensor, 147
alternator, 148
atlas, 69

Banach space, 88
basis for a topological space, 11
Betti numbers, 196
boundary point, 26

Ck-compatibility, 72
Ck-structure, 77
chart, 68
closed subset of a topological space, 24
closure point, 25
cohomology

Γ-invariant, 197
de Rham, 189

compactness, 34
components of a tensor, 146
connected space, 43
continuous function, 3
cotangent space, 103
critical

point, 114
value, 114

degree (of a differential form), 159
dense subset, 29
derivation of an algebra, 97
diagonal (of a set), 33
diffeomorphism, 56
differential form, 159
discrete metric, 29

Einstein’s summation convention, 97
embedding, 118
equivalence relation, 19
Euler characteristic, 196

genus (of a surface), 194
germ of a smooth function, 95
Godement’s Criterion, 93

graded-commutative, 153

Hausdorff space, 31
homeomorphism, 3
homogeneous coordinates (in

projective space), 74
homomorphism

of algebras, 96
homotopy equivalence, 193

immersion, 59, 110
integral curve of a vector field, 133
interior point, 25
Inward/outward-pointing tangent

vectors, 176

Jacobian of a smooth function, 179

Lens spaces, 92
Lie bracket (of vector fields), 141
line with two origins, 15
local diffeomorphism, 89
locally constant function, 48
locally Euclidean space, 68
long exact sequence, 194

Mayer-Vietoris sequence, 193
metric space, 1
metrizable topological space, 3

natural isomorphism, 97

open set, 3
orbit of a group action, 21
Orientable manifolds, 177
Orientation form, see also volume form
orthogonal group, 131

Palais’s formula, 166
partition of unity, 182
path-connected space, 47
permutation group, 147
Poincaré

Lemma, 189
polynomial, 196

proper group action, 92

quotient mapping, 22
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radial extension (of a function on a
sphere), 87

rank (of a smooth function), 59
regular

point, 114
value, 114

Riemannian metric, 179

Sard’s theorem, 114
second-countable, 11
Seifert-Threlfall theorem, 92
sign of a permutation, 148
slice chart, 117
smooth function

(between Euclidean spaces), 56
special linear group, 129
standard

volume form, 177
starshaped set, 57
submanifold

regular, 117
submersion, 59, 110
support (of differential form), 180

tangent
space, 97
vector, 97

tensor, 144
product, 145

topological
manifold, 69
space, 3

topology, 3
torus, 17
transposition, 147
Tychonoff’s Theorem, 40

unitary group, 132

vector field, 133
velocity vector of a curve on a

manifold, 104
Volume form, 177

Whitney Embedding Theorem, 93

Zorn’s Lemma, 11, 78
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