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This is a diary for the MATH2177 - Mathematical Topics for Engineers recitation
classes offered at OSU, on the Autumn 2022 term. No additional material or exercises
will be added here, as it is meant to be a reasonably faithful reflection of what happens
in class (although I cannot promise I won’t add a remark or footnote here or there,
elaborating further on things I particularly find interesting). Since it is unlikely that all
three recitations will be 100% equal all the time, you may occasionally see an exercise
that was not discussed in class (but this only means that it may have been discussed in
one of the other sections). Most of the exercises and problems discussed will be taken
from reference [1], as expected.
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1 August 23rd

This class is divided into four major parts:

(1) Multivariable Calculus;

(2) Linear Algebra;

(3) Ordinary Differential Equations;

(4) Fourier Series.

There’s no need to justify Multivariable Calculus here (after all, this is a natural
continuation of MATH1172). Linear Algebra is too useful of a subject for us to spend
the entire semester without using it (although most of you may have to take an ac-
tual Linear Algebra class later). Ordinary Differential Equations: briefly speaking,
those are equations where one solves for a function instead of a number, and there
are derivatives involved in the given equation (the word “ordinary” refers to the fact
that only functions of a single variable are involved; “partial differential equations”
are those with partial derivatives involved). Fourier Series: you can vaguely think of
those as a trigonometric analogue of the Taylor series you have seen before:

f (x) = ∑
n≥0

f (n)(a)
n!

(x− a)n versus f (x) ∼ a0

2
+ ∑

n≥1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
Just like the coefficients of a Taylor series are given in terms of derivatives of f , there
are specific formulas for the coefficients an and bn of a Fourier series, but we don’t
need to worry about that now. The pressing question, however, is how these four
topics make sense together.

To answer it, consider the Heat Flow Problem: imagine you have a metal wire of
length L, positioned in the x-axis of a cartesian plane, with endpoints at x = 0 and
x = L. Assume that:

(i) we are given the initial temperature distribution f (x) of the wire (i.e., a point
of coordinate x in the wire has temperature equal to f (x); in particular, non-
constant f means that the temperature distribution along the wire is not uni-
form);

(ii) we are given the diffusivity coefficient β of the wire;

(iii) the temperature at the endpoints of the wire will always be the same throughout
time (say, 0 in some appropriate scale).

Question: Can we predict future temperature distributions along the wire? (i.e., can
we find a function u(x, t) giving us the temperature at the point of coordinate x at the
wire t minutes after the initial measurement?)

This sort of question is the basis of the mathematical modeling for problems of
physical nature: find a function controlling the time evolution of the physical system
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you’re interested in studying. Such a function is usually a solution of some partial
differential equation.

Answer: Yes! It boils down to solving the following problem:
∂u
∂t

(x, t) = β
∂2u
∂x2 (x, t), 0 < x < L, t > 0

u(0, t) = u(L, t) = 0, t > 0

u(x, 0) = f (x), 0 < x < L.

(H)

It is, prima facie, a very complicated problem. Think back of the four major parts
of this course (1)-(4) mentioned above. The time-dependent temperature distribution
u(x, t) is a function of more then one variable (1), dealing with the boundary condi-
tions u(0, t) = u(L, t) = 0 becomes easier with the use of Linear Algebra (2), it allows
us to reduce the partial differential equation to an ordinary differential equation (3),
and the final answer can be conveniently expressed in terms of the Fourier Series (4)
of the initial temperature distribution f (x).

The ultimate goal of this class is to get you to combine all the tools
listed above to solve problems such as the Heat Flow Problem (H).

With this in place, we’ll start with a review of multivariable calculus. It essentially
deals with functions of several variables (where “several” will usually be two or three1),
such as

f (x, y) = x2 + y, f (x, y, z) = xey + sin z, f (x, y, z, w) = sin(xy) + cos(zw),

as opposed to the functions f (x) of a single variable studied in previous classes. The
main program then was to find the critical points of a given function and study their
local nature (that is, whether they’re local maxima, local minima, or saddle/inflection
points). The main tools to do so, in turn, were derivatives. For functions of several
variables, we have partial derivatives

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

,
∂ f
∂w

, ...

These are computed from the usual rules from single-variable calculus (product rule,
quotient rule, chain rule), by freezing (hence treating as constants) all the variables
except for the one on which the differentiation process is acting.

The mantra repeated throughout the first semester of calculus was “the derivative
is the slope of the tangent line”. If we’re dealing with a function of, say, two variables
instead, the picture goes like this: the graph of f is a surface on three-dimensional
space (henceforth denoted by R3), and the numerical value f (x, y) is understood as
the height of a point whose first two coordinates are x and y. Fix a vector v on the
plane (to be called R2 from now on), starting at the point (x, y), and draw a vertical
plane Π passing through the point (x, y) and containing the direction determined by

1For pedagogical reasons.
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v. The plane Π intersects the surface z = f (x, y) along a curve, completely contained
in Π, which may be thought of the graph of a function (more precisely, given by the
relation g(t) = f ((x, y) + tv)). The derivative g′(0) is the slope of the tangent line to
the intersection curve, in the plane Π, and it is called the directional derivative of f in the
direction v, at the point (x, y), and it is denoted by (∂ f /∂v)(x, y).

Instead of thinking about directional derivatives along infinitely many directions,
we recall the relation

∂ f
∂v

(x, y) = ∇ f (x, y) · v,

where · stands for the dot product of vectors, and ∇ f (x, y) is the gradient of f at the
point (x, y). More generally:

Definition 1

Let f be a differentiable function of the variables x1, . . . , xn. The gradient of f is
the vector (field) ∇ f defined by

∇ f =

(
∂ f
∂x1

, . . . ,
∂ f
∂xn

)
.

The gradient is a mathematical device to gather all information about the first-order
derivatives of a function, into a single object: namely, a vector. Knowledge of the
gradient is indeed knowledge about all directional derivatives of the function, due to
the dot product relation (which remains true in all dimensions).

Recall that, in single-variable calculus, a number a is a critical point of a function f
if f ′(a) = 0. Picturing the graph of f , this condition is to be expected, as the tangent
line to the graph of f at the candidates to local max/min is horizontal, the derivative
is the slope of the tangent line, and the slope of a horizontal line is zero.

With this in place:

Definition 2

Let f be a differentiable function of the variables x1, . . . , xn. Then (a1, . . . , an) is a
critical point of f if ∇ f (a1, . . . , an) = (0, . . . , 0) or if ∇ f (a1, . . . , an) does not exist.

In other words, a critical point is one for which the gradient vector is the zero
vector. In two variables, a point (a, b) is a critical point of f if∇ f (a, b) = (0, 0). Mean-
ing that we replace the single equation f ′(a) = 0 with the more elaborate system
∇ f (a1, . . . , an) = (0, . . . , 0) (one equation for each variable). Or yet, such system is ob-
tained by setting all the partial derivatives of f equal to zero (which by the dot product
relation is the same as requiring all directional derivatives to be zero).

Example 1

Find the critical points of the function f (x, y) = 1 + x2 + y2.
The graph of this function is called a paraboloid, and it is obtained by rotating

the parabola y = 1 + x2 around the z-axis. Geometrically, it should be clear that
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there is only one critical point, (0, 0), and that is is a global minimum for the
function. Sometimes it is not so simple to get the answer so quickly by using
geometric intuition. Doing it directly, we compute that ∇ f (x, y) = (2x, 2y), and
this equals (0, 0) if and only if (x, y) = (0, 0). Observe that the (0, 0)’s indicated in
different colors play different roles!

Example 2

Find the critical points of the function f (x, y) = (3x− 2)2 + (y− 4)2.
The graph of this function is very similar to the one in the previous example.

This can be made clearer by letting u = 3x − 2 and v = y − 4, so that (abusing
notation) f (u, v) = u2 + v2. This means that the graph of the function considered
here is a paraboloid, up to this change of variables (which amounts to an offset and
a stretching of the x-axis). Geometrically, we see that the critical point is described
by u = v = 0, which means that x = 2/3 and y = 4. Thus there is only one critical
point (2/3, 4), which is a global minimum for the function. Changing variables
like this will be useful not only to try and gain geometric intuition for situations
like this (where what you have in front of you is similar to something you have
already seen before, but not quite equal to it), but it will also be a very important
tool when dealing with change of variables for computing double integrals.

Doing it directly, however, we have that ∇ f (x, y) = (6(3x− 2), 2(y− 4)), and
this equals (0, 0) if and only if (x, y) = (2/3, 4). Compare the choice of colors here
with the one made in the previous example.

Example 3

Functions may not have critical points at all! Consider f (x, y, z) = g(x, y) + z, where
g(x, y) is the most horrible expression you can come up with. Then we have that
∇ f = (∗, ∗, 1). As the last component of ∇ f is never zero, then ∇ f can never be
the zero vector, and so f has no critical points.

Once critical points have been found, the next task is to decide their nature, i.e.,
whether they are local max/min or saddle/inflection points. In the situation where
we had a critical point a of a function f of a single-variable, we knew that:

• If f ′′(a) > 0, then a is a local minimum (
· ·
^)

• If f ′′(a) < 0, then a is a local maximum (
· ·
_)

• If f ′′(a) = 0, the test is inconclusive.

Remark. A very common mistake is to think that f ′′(a) = 0 means that a is a sad-
dle/inflection point. This is not true. Case in point: for the function f (x) = x4 and
a = 0 ( f (0) = f ′(0) = f ′′(0) = f ′′′(0) = 0 but f (4)(0) > 0 and a is a global minimum).
If f ′′(a) = 0 but f ′′′(a) 6= 0, then a is a saddle point. If f ′′′(a) = 0, then we must look at
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the fourth derivative f (4)(a): if positive, then a is a local minimum, and if negative, a
is a local maximum. If f (4)(a) = 0, we must look at the fifth derivative. If f (5)(a) 6= 0,
then a is a saddle point. If f (5)(a) = 0, we must look at the sixth derivative f (6)(a): if
positive, then a is a local minimum, and if negative, a is a local maximum. This proce-
dure repeats, alternating between even-order derivatives and odd-order derivatives,
until a conclusion is obtained. The “proof” of this fact relies on the Taylor polynomial
of f . More about this on office hours if anyone is interested.

Let’s focus on the case where f is a function of two variables instead. The first
derivative became the gradient vector. The second derivative must correspond to what
comes after a vector: a matrix.

Definition 3

Let f be a twice-differentiable function of the variables x and y. The Hessian
matrix of f is defined by

H =

(
fxx fxy
fyx fyy

)
,

where we use the shorthands

fxx =
∂2 f
∂x2 , fxy = fyx =

∂2 f
∂x∂y

=
∂2 f

∂y∂x
, fyy =

∂2 f
∂y2 .

We also let D = fxx fyy − f 2
xy be the determinant of H.

Theorem 1

Let f be a twice-differentiable function of the variables x and y, and let (a, b) be a
critical point of f . Then:

• If D(a, b) > 0 and fxx(a, b) > 0, then (a, b) is a local minimum.

• If D(a, b) > 0 and fxx(a, b) < 0, then (a, b) is a local minimum.

• If D(a, b) < 0, then (a, b) is a saddle point.

• If D(a, b) = 0, the test is inconclusive.

Remark. There is a version of the second derivative test for functions with more than
two variables. The number of conditions to be considered increases with the number
of variables. Justifying it requires more Linear Algebra than what we have available
now. The keyword is “Sylvester’s Criterion” (for positivity of matrices).

We’ll continue to explore this on next class.
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2 August 30th

We’ll start picking up from last time, with a full example of how the Hessian second
derivative test works.

Example 4

Find and classify the critical points of the function f (x, y) = x2 + xy2 − 2x + 1.
To find the critical points of f , we must compute the gradient of f and set

it equal to the zero vector (0, 0). In this case, we have that the gradient equals
∇ f (x, y) = (2x + y2 − 2, 2xy), and we must consider the system{

2x + y2 − 2 = 0,
2xy = 0.

Recall here the key idea: whenever the product of two factors equals zero, one
of them must necessarily be zero. So, the second equation says that either x = 0
or y = 0. But we have no way to tell which one, and so we must consider both
cases.

• Case 1: If x = 0, then y2 − 2 = 0 and so y = ±
√

2. This gives us the pair of
critical points (0,

√
2) and (0,−

√
2).

• Case 2: If y = 0, then 2x − 2 = 0 and so x = 1. This gives us the single
critical point (1, 0).

It remains to classify these critical points. To do so, we compute the Hessian of f
as

H(x, y) =
(

2 2y
2y 2x

)
,

as well as its determinant D(x, y) = 4x− 4y2. Then:

• (1, 0): here, we have that D(1, 0) = 4 > 0, so we can think of the single-
variable second derivative test with fxx playing the role of f ′′. Since we
have that fxx(1, 0) = 2 > 0, we conclude that (1, 0) is a local minimum of f .

• (0,
√

2): this time, we have D(0,
√

2) = −8 < 0, so (0,
√

2) is a saddle point.

• (0,−
√

2): this time, we have D(0,−
√

2) = −8 < 0, so (0,−
√

2) is a saddle
point.

The fact that the critical points (0,±
√

2) had the same local nature should not be
a surprise: the relation f (x, y) = f (x,−y) says that f is “even in the variable y”
(which geometrically says that the graph of f is symmetric about the xz-plane in
space).

Remark. Note that H(x, y) is always a symmetric matrix, due to the equality fxy = fyx,
which in words says that taking the derivative with respect to x first, and then y, pro-
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duces the same result as doing things in the reverse order, namely, differentiating with
respect to y first, and then x. This is sometimes called the Clairaut-Schwarz theorem2.
Another observation which may be very useful for computing Hessians quickly is that,
writing∇ f = ( fx, fy), the first row of H is the gradient of the first component fx, while
the second row of H is the gradient of the second component fy.

We continue with the discussion on maxima and minima of functions of two vari-
ables. Most of the time, the region R to be considered will be closed and bounded
(those are called “compact”, in short), and so may be thought of as having two regions:
an interior int(R), and a boundary ∂R. Candidates to global max/min in int(R) are
nothing more than the critical points of f which turn out to land there. Observe that
the second derivative test is only good for determining the local behavior of critical
points, not the global one. So, in the end of the day, one must still list all candidates
and compute the value of the function on each of them.

The question still remains of how to study the boundary ∂R. Very frequently, it
may be described as an equation of the form g(x, y) = 0, where g is nice enough. In
this case, we have a specific technique to use:

Theorem 2 (Lagrange multipliers)

Let f and g be differentiable functions of the variables x1, . . . , xn, with continuous
partial derivatives. Assume that ∇g(x1, . . . , xn) is not the zero vector whenever
g(x1, . . . , xn) = 0. If (a1, . . . , an) is the global maximum or minimum of f restricted
to the set {(x1, . . . , xn) | g(x1, . . . , xn) = 0}, there is a real number λ such that

∇ f (a1, . . . , an) = λ∇g(a1, . . . , an),

i.e., the gradients of f and g are proportional in such point.

Back to the problem at hand, the strategy will be to solve the system{
∇ f (x, y) = λ∇g(x, y),
g(x, y) = 0.

The condition g(x, y) = 0 there is a crucial part of the problem, and it is always used in
practice. Without it, one could find points not on the given curve for which the gradients
of f and g are proportional, but we do not care about those. On the other hand, know-
ing the value of the Lagrange multiplier λ is not crucial. Sometimes it is convenient to
solve for it as an intermediate step in finding x and y. If one manages to find all the
candidates to max/min without solving for λ, there is nothing wrong.

For boundary regions ∂R which are not of the form g(x, y) = 0, the usual strategy
is to parametrize each differentiable component of ∂R and use single-variable calculus
strategies on each piece. Let’s illustrate on the next example how this can be done.

2Whose formal assumption is that f is twice-differentiable and all the second order derivatives are
continuous (or, more generally, defined on all points of an open set).
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Example 5

Find the global maximum and global minimum values of the function

f (x, y) = x2 + y2 − 2y + 1

on the region R = {(x, y) | x2 + y2 ≤ 4}.
We’ll always organize our work in two parts. Observe that R describes a closed

disk with center in (0, 0) and radius 2.

(a) Candidates on int(R): the interior consists of the points (x, y) satisfying the
relation x2 + y2 < 4. By replacing the inequality ≤ with the strict inequality
<, we are forgetting about the boundary circle and considering only the open
disk bounded by it. We compute the gradient of f as ∇ f (x, y) = (2x, 2y− 2).
Setting this equal to (0, 0), we obtain (x, y) = (0, 1). Is the point (0, 1) in
the interior of R? Yes. The reason why we ask ourselves this is because f is
defined everywhere (in particular, its domain is larger than R), so a priori it
could be that critical points found here lie outside R. If this were to happen,
such critical points would have to be ignored.

(b) Candidates on ∂R: we use Lagrange multipliers, letting g(x, y) = x2 + y2 − 4.
In this case, ∇g(x, y) = (2x, 2y) cannot be the zero vector whenever we have
x2 + y2 = 4, which means that the assumptions for using Lagrange multipliers
are satisfied. Thus, we have that

{
∇ f (x, y) = λg(x, y)
g(x, y) = 0

=⇒


2x = 2λx
2y− 2 = 2λy
x2 + y2 = 4

Consider the first equation 2x = 2λx. We would like to cancel x on both sides,
but this step cannot be made if x = 0. Thus, we have cases to analyze.

• Case 1: if x 6= 0. Then λ = 1, and substituting this onto the second
equation gives 2y− 2 = 2y, and thus −2 = 0. This is clearly nonsense,
which says that Case 1 does not happen, and so we get no candidates
here.

• Case 2: if x = 0. In this case, we only have to solve for y, and then the
third equation reads 02 + y2 = 4, so that y = 2 or y = −2. This case gave
us two candidates, (0, 2) and (0,−2).

(c) Candidates on ∂R without using Lagrange multipliers: consider the parame-
trization r(t) = (2 cos t, 2 sin t), defined for all t (in fact, 0 ≤ t ≤ 2π covers
the circle). Then f (r(t)) = 5− 4 sin t. The maximum value of this expression
is 9, for t = 3π/2, and we have r(3π/2) = (0,−2). The minimum along the
curve is 1, for t = π/2, with r(π/2) = (0, 2) (as we’ll see, is not the global
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minimum of f because the critical point in int(R) gives a lower value). We
have reobtained the candidates (0, 2) and (0,−2).

Conclusion:

Candidates Values of f

(0, 1) 0

(0, 2) 1

(0,−2) 9

Hence the global maximum is 9, realized at (0,−2), while the global minimum
is 0, realized at (0, 1).

Example 6

Find the global maximum and global minimum values of the function

f (x, y) = 2x2 − 4x + 3y2 + 2

restricted to the circle of equation (x− 1)2 + y2 = 1.
Note that the circle has center at (1, 0) and radius 1. We can parametrize the

circle with r(t) = (1 + cos t, sin t), for t ranging over all real numbers. Write

h(t) = f (r(t))
= f (1 + 2 cos t, 2 sin t)

= 2(1 + cos t)2 − 4(1 + cos t) + 3(sin t)2 + 2
(do it!)
= 2 + sin2 t.

Critical points of h will correspond under r to candidates to extremum points of
f along the circle. The minimum value of h is 2 whenever sin2 t = 0, and its
maximum value is 3 whenever sin2 t = 1. Since restricting r to the domain [0, 2π]
already covers the circle and the circle has no corners, we directly obtain that the
global maximum is 3, realized at (1, 1) and (1,−1) (coming from t = π/2 and
t = 3π/2), while the global minimum is 2, realized at (2, 0) and (0, 0) (coming
from t = 0 and t = π).

We’ll concluce pointing some directions for a couple of the homework problems:
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Example 7

Find the global maximum and global minimum values of the function

f (x, y) = x2 + y2 − 2x− 2y

on the region R bounded by the triangle of vertices at (0, 0), (2, 0) and (0, 2).
The boundary ∂R has three sides:

A = {(0, y) | 0 ≤ y ≤ 2}
B = {(x, 0) | 0 ≤ x ≤ 2}
C = {(x, y) | y = −x + 2 and 0 ≤ x ≤ 2}

We proceed with our analysis as before:

(a) Candidates on int(R): this time we have∇ f (x, y) = (2x− 2, 2y− 2), so setting
this equal to (0, 0) gives (x, y) = (1, 1). Is the point (1, 1) in the interior of R?
No. In fact, (1, 1) lies on side C, and so it is not considered a candidate as far
as int(R) is concerned.

(b) Candidates on ∂R: we’ll study each of the sides A, B and C separately.

• Side A: evaluating f alongside Side A, we’re led to consider the com-
position g(y) = f (0, y) = y2 − 2y, defined on the interval [0, 2]. The
candidates here will be the points corresponding to the endpoints of the
interval [0, 2], and critical points of g inside the open interval ]0, 2[. The
graph of g is a parabola which is concave up, and so g′(y) = 2y− 2 leads
to y = 1. Side A thus gives us the candidates (0, 0), (0, 2) and (0, 1).

• Side B: can you draw conclusions from the work done for Side A given
that the function f satisfies the symmetry f (x, y) = f (y, x)?

• Side C: what is the line equation for Side C? Consider the composition

h(x) = f (x, "line equation"(x)),

defined on [0, 2]. As before the endpoints of [0, 2] gives us the candidates
(2, 0) and (0, 2) (both repeated). Now find which candidates are coming
from h′(x) = 0 repeating what was done for side (a).

Summarizing it:
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Candidates Values of f

(0, 0) ?

(2, 0) ?

(0, 2) ?

(0, 1) ?

from Side B ?

from Side C ?

Fill the table and read off it the desired conclusions.

Example 8

Find the global maximum and global minimum values of the function

f (x, y) =
√

x2 + y2 − 2x + 2

on the region R = {(x, y) | x2 + y2 ≤ 4 and y ≥ 0}.
Observe that x2 + y2 − 2x + 2 = (x − 1)2 + y2 + 1 > 0, so f is differentiable

at all points. This means that when looking for critical points in the interior of R,
you don’t have to worry about points where ∇ f (x, y) does not exist: this won’t
happen. Start finding all points for which ∇ f (x, y) = (0, 0). Are they in the
interior of R? If yes, list them as candidates. If not, do not list them as candidates.

The next step is to study the boundary ∂R. Note that Lagrange multipliers
may not be applied here as we cannot describe the region as the level set of a
function g with nowhere-vanishing gradient. This means we must look at the two
“components” of the boundary separately.

• The upper half-arc. It may be parametrized by r(t) = (cos t, sin t), with t
ranging over a certain interval. What is such interval? What are the candi-
dates for max/min of the function h1(t) = f (cos t, sin t) on this interval? To
which points in ∂R do they correspond under r?

• The line segment on the x-axis. It may be parametrized by r(t) = (t, 0), with
−2 ≤ t ≤ 2. What are candidates for max/min of the function h2(t) = f (t, 0)
on the interval [−2, 2]. To which points in ∂R do they correspond under r?
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List all candidates in a table as in the previous example, fill in the values of f at
the candidates, and find where the global max/min values are realized.
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3 September 6th

Today we start with double integrals. Recall the geometric intuition: if f > 0, thens
R f (x, y)dA computes the volume bounded between the xy-plane and the graph of

f , in the same fashion that
∫ b

a f (x)dx computed the area under the graph of f . The
main difficulty here, however, is to deal with bounds of integration when setting up
iterated integrals.

Example 9

Compute
x

R

y cos(xy)dA, where R = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ π/3}.

Here, dA stands for the infinitesimal area element, which in rectangular co-
ordinates is just given by dA = dx dy. The region R is simply a rectangle, as the
bounds for x and y are all constants. Do not be mislead to think that R is a sector of
a circle just because there’s π there: R is not being described in polar coordinates,
there’s no θ anywhere. One could set up the iterated integrals as∫ π/3

0

∫ 1

0
y cos(xy)dx dy or

∫ 1

0

∫ π/3

0
y cos(xy)dy dx.

Fubini’s Theorem says that the order you choose does not matter, you will obtain
the same result regardless of the choice made. Now, it could very well happen
that one choice of order leads to a much easier computation than the other. In this
case, the second option would require an unpleasant integration by parts, while
the first one requires a simple u-substitution. Making u = xy, so du = y dx (as y
is a constant from the perspective of x), we have that∫

y cos(xy)dy =
∫

cos u du = sin u = sin(xy).

We don’t bother with the constant of integration here because we’re dealing with
definite integrals, so it would dissapear anyway. Thus∫ π/3

0

∫ 1

0
y cos(xy)dx dy =

∫ π/3

0
sin(xy)

∣∣∣x=1

x=0
dx

=
∫ π/3

0
sin y dx

= − cos y
∣∣∣y=π/3

y=0

= −1
2
+ 1

=
1
2

.

Next, let’s look at more general regions which are not rectangles.
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Example 10

Set up iterated integrals for a generic continuous function f (x, y) over the region R given
in the picture.

As usual, there are two orders we can set up.

• dx dy. Fix one value of the outermost variable, y. What is the range for
the other variable x, as the horizontal line passing through y cuts the given
region, from left to right? Here, we must express x as a function of y, so
there’s some small work to be done. The lower bound for x is x = y/4,
coming from the line equation, and the upper bound is x = 3

√
y, from the

cubic equation. The variable y, in turn, goes from 0 to 8. Thus

x

R

f (x, y)dA =
∫ 8

0

∫ 3√y

y/4
f (x, y)dx dy.

• dy dx. Fix one value of the outermost variable, x. What is the range for the
other variable y, as the vertical line passing through x cuts the given region,
upwards? Here, we must express y as a function of x, so there no work to
be done. The lower bound for y is x3, coming from the cubic equation, and
the upper bound is 4x, from the line equation. The variable x, in turn, goes
from 0 to 2. Thus

x

R

f (x, y)dA =
∫ 2

0

∫ 4x

x3
f (x, y)dy dx.

Here’s another one:

Example 11

Set up iterated integrals for a generic continuous function f (x, y) over the region R given
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in the picture.
One more time, there are two orders we can set up. The exercise did not give

us the coordinates for the left intersection point between the graphs, but we need
it to know the full bounds for x. To find it, we consider 2x2 = 2x + 24, which is
readily simplified to x2 − x− 12 = 0. We already know that one of the solutions
is x = 4. Due to the coefficient 12, the other one is −3 or 3, but it clearly cannot be
the latter. Hence, the coordinates of the remaining intersection point are (−3, 18)
(where 18 is obtained by plugging x = −3 into either y = 2x2 or y = 2x + 24).
Now, let’s study what happens with both orders of integration:

• dy dx: Fix one value of the outermost variable, x. What is the range for the
other variable y, as the vertical line passing through x cuts the given region,
upwards? Here, we must express y as a function of x, so there no work to
be done. The lower bound for y is 2x2, coming from the quadratic equation,
and the upper bound is 2x + 24, from the line equation. The variable x, in
turn, goes from −3 to 4. Thus

x

R

f (x, y)dA =
∫ 4

−3

∫ 2x+24

2x2
f (x, y)dy dx.

• dx dy: This time, we’re forced to break the region into two pieces, as once a
value for the outermost variable y is fixed, the lower bound for x cannot be
written as a single formula as a function of y, due to the “break” at the point
(−3, 18). We know that if R = R1 ∪ R2 with R1 ∩ R2 = ∅, then the double
integral of f over R equals the suma of the double integrals over R1 and R2.
Let’s say that R1 is the part of R which lies inside the strip 0 ≤ y ≤ 18, and
R2 is the one inside the strip 18 < y ≤ 32.
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Then we have that
x

R

f (x, y)dA =
x

R1

f (x, y)dA +
x

R2

f (x, y)dA

=
∫ 18

0

∫ √y/2

−
√

y/2
f (x, y)dx dy +

∫ 32

18

∫ √y/2

(y−24)/2
f (x, y)dx dy.

Namely, the “upper bound” for x, once y is fixed, is always
√

y/2, but the
lower bound depends on whether 0 ≤ y ≤ 18 or 18 < y ≤ 32: in the
former case, it is −

√
y/2, and in the latter case it is (y − 24)/2 (obtained

from solving for x in terms of y in y = 2x + 24).

aThis is a two-variable version of the general rule
∫ c

a f (t)dt +
∫ b

c f (t)dt =
∫ b

a f (t)dt for single-
variable integrals.

By now, you should be convinced that a convenient choice of order of integration
is crucial to making things simpler (getting the feeling for which choice is best takes
some practice and experience). There are situations, however, where one choice simply
makes the problem impossible, and we’re forced to switch the order.

Example 12

Compute
∫ 1

0

∫ 1

y
ex2

dx dy.

The function f (x) = ex2
has no elementary anti-derivative, in the sense that

its indefinite integral cannot be expressed in terms of well-known functions (such
as polynomials, rational functions, exponentials, logarithms, and trigonometric
functions). Knowing whether a given function of a single-variable has an elemen-
tary anti-derivative or not is not a simple task (keywords: Risch’s Algorithm, and
Differential Galois Theory). We will not concern ourselves with this. The extra
tool we have in this case, is precisely to change the order of integration.

To draw the region of integration, one general strategy is: first recognize that
the outermost bounds for y are 0 and 1, so whatever we draw will be inside the
region where 0 ≤ y ≤ 1. As for the innermost bounds, draw the curves described
by the bounds, x = y and x = 1. Namely, they’re the usual diagonal, and a vertical
line.
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If the innermost original bounds were from 0 to y, the region of integration
would be the upper triangle, as opposed to the lower one (as the picture indicates).
Now: ∫ 1

0

∫ 1

y
ex2

dx dy =
∫ 1

0

∫ x

0
ex2

dy dx

=
∫ 1

0
xex2

dx

=
ex2

2

∣∣∣∣1
0
=

e− 1
2

.

The x factor produced by realizing the integral with respect to y first saves the
day.

Being able to sketch regions given algebraically is an important skill. Here’s more
practice:

Example 13

Sketch R = {(x, y) | 0 ≤ x ≤ 4 and x2 ≤ y ≤ 8
√

x} and set the iterated integral of a
generic continuous function f (x, y) over R in the order dy dx.

We immediately know that whatever we draw will remain inside the vertical
strip 0 ≤ x ≤ 4. As for x2 ≤ y ≤ 8

√
x, forget for one moment that we’re dealing

with inequalities, and draw the bounds y = x2 and y = 8
√

x instead. Recall that
the graph of

√
x is obtained by reflecting the graph of x2 about the diagonal line

y = x, and that 8 is just a vertical stretching factor (made by design to make (4, 16)
the rightmost intersection of the two curves).
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Fixed x, the lower bound for y is x2 and the upper bound is 8
√

x. As x itself
ranges from 0 to 4, we simply have that

x

R

f (x, y)dA =
∫ 4

0

∫ 8
√

x

x2
f (x, y)dy dx.

While sketching the regions of integration is always helpful, it is also possible to
switch the order of integration without making any pictures (although I do not recom-
mend doing so).

Example 14

Reverse the order of integration in
∫ 1

0

∫ ey

1
f (x, y)dx dy.

Let’s do it algebraically, starting from 0 ≤ y ≤ 1 and 1 ≤ x ≤ ey, and rewriting
them in an equivalent form which makes the bounds for x constant (as the region
of integration is not a rectangle, we will pay the price: the bounds for y will be
functions of x instead of constants as well).

Since y ≤ 1, we have ey ≤ e1 = e. So, we already have 1 ≤ x ≤ e. As for the
bounds for y, applying ln (which is an increasing function and thus preserves in-
equalities) to x ≤ ey, we obtain ln x ≤ y ≤ 1 (the latter inequality given initially).
Conclusion: ∫ 1

0

∫ ey

1
f (x, y)dx dy =

∫ e

1

∫ 1

ln x
f (x, y)dy dx.
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4 September 13th

Let’s start with the setup for two of the most challenging problems in HW3.

Exercise 1

Find the area bounded between the unit circle r = 1 and the cardioid r = 1− cos θ.
The “cardio” in “cardioid” hints at the origin of the word and that the curve

described by r = 1− cos θ should resemble a heart. See the following picture:

For 0 ≤ θ < π/2, we have that 0 ≤ r < 1, and r = 1 for θ = π/2 (this
indicates the intersection point (0, 1)). For π/2 < θ < 3π/2, we have that r > 1,
so the cardioid doesn’t intersect the circle (e.g., for θ = π we see that the point
(−2, 0) is in the cardioid). For θ = 3π/2, we again have r = 1 (this indicates the
second intersection point (0,−1)). The “polar graph” changes at θ = π/2 and
θ = 3π/2, so we should expect that more than one integral is needed here. The
region considered is symmetric about the x-axis, so we may write its area as

A = 2
(∫ π/2

0

∫ 1−cos θ

0
r dr dθ +

∫ π

π/2

∫ 1

0
r dr dθ

)
Don’t forget the correction factor of r in r dr dθ. Now think of “slices” as explained
in class:

• For a generic θ between 0 and π/2, send forward a “radial slice”. The lowest
value of r in this slice is 0 and the highest is 1− cos θ (it hits the cardioid
before the circle).
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• For a generic θ between π/2 and π, send forward a “radial slice”. The lowest
value of r in this slice is 0 and the highest is 1 (it hits the circle before the
cardioid).

Exercise 2

Use a triple integral to compute the volume bounded between the plane z = 0 and the
graph of z = sin y, over the region D = {(x, y) : x ≤ y ≤ π and 0 ≤ x ≤ π}.

Let’s set up the iterated integral in the order dz dy dx (which is one of the most
useful when we have a solid bounded by graphs above and below):

y

D

1 dV =
∫ ?

?

∫ ?

?

∫ ?

?
1 dz dy dx.

Recall that the when computing a volume with a triple integral, the function to
be integrated is 1 by default (note the general mechanism: to find a volume one
integrates 1 dV, for an area one integrates 1 dA, and for arclengths one integrates
1 ds – more on this last one in a week or two). Sketching the region yourself (or
looking at what the book gives you), you can see that the lowest value of x that
occurs in D is 0 and the highest is π. So we have∫ π

0

∫ ?

?

∫ ?

?
1 dz dy dx.

Fixed a generic value of x, what are the bounds for y in terms of x? This leads us
to ∫ π

0

∫ π

x

∫ ?

?
1 dz dy dx.

Fixed generic values of x and y, what are the bounds for z in terms of x and y? We
obtain that ∫ π

0

∫ π

x

∫ sin y

0
1 dz dy dx

is the integral to be computed. Time for a sanity-check: if you were to compute
the volume under the graph of sin y with a double integral, you would have∫ π

0

∫ π

x
sin y dy dx.

Now observe that
∫ sin y

0
dz = sin y. This general mechanism explains why we

integrate “top minus bottom” when computing the volume of a solid bounded
between two graphs, it’s like

x

R

∫ top

bottom
1dz dA =

x

R

(top− bottom)dA.
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Before we go back to the regular schedule, let’s register a useful shortcut (for spe-
cific situations):

Lemma

Let f be a continuous function on the rectangle [a, b] × [c, d], and assume that
variables may be separated, i.e., that f (x, y) = g(x)h(y), where g is a continuous
function on [a, b] and h is a continuous function on [c, d]. Then

x

[a,b]×[c,d]

f (x, y)dA =

(∫ b

a
g(x)dx

)(∫ d

c
h(y)dy

)
.

In other words, when the region of integration is a rectangle and variables can
be separated on the integrand, the integral of a product equals the product of the
integrals.

Proof: Just compute

x

[a,b]×[c,d]

f (x, y)dA =
∫ b

a

∫ d

c
g(x)h(y)dy dx

=
∫ b

a
g(x)

(∫ d

c
h(y)dy

)
dx

=

(∫ b

a
g(x)dx

)(∫ d

c
h(y)dy

)
,

where in the first equalilty we used Fubini’s Theorem, on the second one we pulled
g(x) out of the inner integral relative to y, and on the third equal sign we pulled out
the number (and not function!)

∫ d
c h(y)dy out of the outer integral relative to x.

Finally, let’s talk about polar coordinates. What you need to know is:

• x = r cos θ;

• y = r sin θ;

• x2 + y2 = r2;

• dx dy = r dr dθ.

Note:

It is absolutely crucial to not forget r in r dr dθ! This is probably the
most common mistake students make in multivariable calculus!

Remembering this, you should be able to solve essentially every problem involving
polar coordinates. We start with the following problem:
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Example 15

Compute
x

R

dA√
16− x2 − y2

, where R = {(x, y) ∈ R2 | x2 + y2 ≤ 4, x ≥ 0, y ≥ 0}.

First of all, we sketch the region of integration:

With this, we move on to the change to polar coordinates:

x

R

dA√
16− x2 − y2

=
∫ π/2

0

∫ 2

0

r dr dθ√
16− r2

=

(∫ π/2

0
dθ

)(∫ 2

0

r√
16− r2

dr
)

(∗)
=

π

2

(
−
√

16− r2
) ∣∣∣∣2

0

=
π

4
(4− 2

√
3)

= 2π − π
√

3.

On (∗), we could have done an u-substitution to flesh out more details, as in
u = 16− r2, so du = −2r dr, and thus∫ r√

16− r2
dr =

∫ 1√
u

(
−du

2

)
= −1

2

∫
u−1/2 du = −u1/2 = −

√
16− r2.

Note that by doing this u-substitution on the side, we don’t risk writing the in-
tegrand as a function of u but keeping the bounds for the old variable r; this is
NOT ok even if you know you’ll come back to the initial variable later.

Next, a fun example (which you should see at least once in your life):
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Example 16

We know from single-variable calculus that the integral∫
e−x2

dx

cannot be solved, in the sense that there is no elementary anti-derivative for e−x2
.

If you don’t remember this or don’t believe me, set up a timer on your phone for,
say, 15 minutes (but no longer!) and try to solve it yourself. Failure builds up the
character. So, let’s take the impossible and make it worse. Consider∫ +∞

−∞
e−x2

dx.

Indulging the lack of self-love of yours truly, let’s not stop here and square it:(∫ +∞

−∞
e−x2

dx
)2

.

Now, the fun begins.(∫ +∞

−∞
e−x2

dx
)2

=

(∫ +∞

−∞
e−x2

dx
)(∫ +∞

−∞
e−x2

dx
)

=

(∫ +∞

−∞
e−x2

dx
)(∫ +∞

−∞
e−y2

dy
)

=
∫ +∞

−∞

∫ +∞

−∞
e−x2−y2

dx dy

Performing a change of variables to polar coordinates, we continue:(∫ +∞

−∞
e−x2

dx
)2

=
∫ 2π

0

∫ +∞

0
e−r2

r dr dθ

(∗)
=

(∫ 2π

0
dθ

)(∫ +∞

0
re−r2

dr
)

= 2π

(
−1

2
e−r2

) ∣∣∣∣+∞

0

= π(0− (−1))
= π,

where on (∗) we used an obvious variant of the lemma regarding the integral
of a product over a rectangle. Note how the correction factor r coming from the
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Jacobian saved the day. We conclude (as the original definite integral is positive
to begin with) that ∫ +∞

−∞
e−x2

dx =
√

π.

This integral appears in statistics, when studying random variables X ∼ N(µ, σ2)
with normal probability distribution (here, µ is the mean and σ2 is the variance);
the graph of f (x) = e−x2

is the “bell curve” you might be already familiar with:

We have effectively shown that the area under the bell curve equals
√

π.

Let’s also practice setting up bounds of integration for triple integrals, like done
last week in class for double integrals.

Example 17

Write an iterated integral in the order dz dy dx for
y

D

f (x, y, z)dV, where f is a generic

continuous function and D is the sphere centered at the origin (0, 0, 0) with radius 9.
Observe that we are not being asked to compute any integrals here. The con-

tinuous function f is arbitrary! If f = 1 and we computed the integral, the result
would be the volume. If f were positive everywhere and interpreted as a mass
distribution, the integral would be the total mass. But in general, f doesn’t nec-
essarily have any relation to the sphere whatsoever. What matters here are the
bounds we need to find:

y

D

f (x, y, z)dV =
∫ ?

?

∫ ?

?

∫ ?

?
f (x, y, z)dz dy dx.

We always start with the outermost variables, whose bounds must always be both
constants. What are the lowest and highest values of x occuring in D? This leads
us to y

D

f (x, y, z)dV =
∫ 9

−9

∫ ?

?

∫ ?

?
f (x, y, z)dz dy dx.

Now, fixed a value of x, we slice D with a vertical plane parallel to the yz-plane,
but passing through the point (x, 0, 0). The resulting cross-section is a circle on the
yz-plane, described by the equation y2 + z2 = 81− x2 (since the original equation
of the sphere was x2 + y2 + z2 = 81 and x is fixed, we just subtract it on both
sides). On this cross-section, what are the lowest and highest values of y (the next
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variable, in order)? Setting z = 0, we obtain

y

D

f (x, y, z)dV =
∫ 9

−9

∫ √81−x2

−
√

81−x2

∫ ?

?
f (x, y, z)dz dy dx.

With x still fixed and y now fixed as well, what are the lowest and highest values
of z that appear in the intersection of the circle y2 + z2 = 81− x2 and the “vertical”
(in the yz-plane) line passing through (y, 0)? We finally obtain

y

D

f (x, y, z)dV =
∫ 9

−9

∫ √81−x2

−
√

81−x2

∫ √81−x2−y2

−
√

81−x2−y2
f (x, y, z)dz dy dx.
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5 September 20th

Let’s start with the setup for one of the homework problems:

Exercise 3

Describe the region of integration for
∫ 1

−1

∫ 1/2

0

∫ √1−y2

√
3y

f (x, y, z)dx dy dz in cylindrical

coordinates.
For each value of z between −1 and 1, the bounds for the double integral

∫ 1/2

0

∫ √1−y2

√
3y

f (x, y, z)dx dy

over the “z-slice” don’t depend on z, which means that all slices look the same.
The angle between the line of equation x =

√
3y and the x-axis is π/6 (since

tan(π/6) =
√

3/3 = 1/
√

3 and y = (1/
√

3)y), and we have that:

To wit, for each fixed value of y between 0 and 1/2, x starts at
√

3y and stops at√
1− y2. We have that

∫ 1

−1

∫ 1/2

0

∫ √1−y2

√
3y

f (x, y, z)dx dy dz =
∫ 2π

0

∫ π/6

0

∫ 1

0
f (r, θ, z)r dr dθ dz.

Exercise 4

Change the order of integration on
∫ 4

1

∫ 4z

z

∫ π2

0

sin
√

yz
x3/2 dy dx dz so it works.

Let’s do an elimination process. The variables y and z are in equal standing
in the expression sin

√
yz/x3/2, and there’s no way to integrate something like∫

sin
√

u du, so we must have dx first to have any hope of succeeding. Between
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the two choices dx dy dz and dx dz dy, the latter seems better, as the outermost
bounds

∫ 4
1 for z will remain unchanged. Now, we must look at

∫ 4

1

(∫ ?

?

∫ ?

?

sin
√

yz
x3/2 dx dy

)
dz.

However, for any fixed value of z, the region of integration for the inner double
integral is just a rectangle, and so we may just switch the order of the differentials
without worrying about the bounds:

∫ 4

1

∫ 4z

z

∫ π2

0

sin
√

yz
x3/2 dy dx dz =

∫ 4

1

∫ π2

0

∫ 4z

z

sin
√

yz
x3/2 dx dy dz.

Note that if, for each value of z, the corresponding cross-sections were not sim-
ple rectangles, this would not have been so simple!

Next, let’s review how spherical coordinates work. Suppose that (x, y, z) is a point
in space, and consider the following setup:

x

z

ρ

rθ

y

z

(x, y, z)

(x, y) ≡ (x, y, 0)

ϕ

Figure 1: Spherical coordinates in R3.

Thinking about polar coordinates in the xy-plane, we may write x = r cos θ and
y = r sin θ. To relate r with ρ and ϕ, see the following right triangle:
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ρ z

r

ϕ

Figure 2: Eliminating the variable r.

Since we have r = ρ sin ϕ and z = ρ cos ϕ, we may substitute it to obtain
x = ρ sin ϕ cos θ

y = ρ sin ϕ sin θ

z = ρ cos ϕ.

We also note that ρ2 = r2 + z2 = x2 + y2 + z2, by the Pythagorean Theorem applied
twice. To cover all of space, we must have

ρ ≥ 0, 0 ≤ θ < 2π and 0 ≤ ϕ ≤ π.

Observe that if ϕ took values bigger than π, we would be counting some points in
space twice. The correction between differentials is dx dy dz = ρ2 sin ϕ dρ dϕ dθ. Let’s
put all of it together in an example:

Example 18

Compute
y

D

dV
(x2 + y2 + z2)3/2 , where D is the solid bounded by the spheres of radius 1

and 2 centered at the origin.
We directly have that

1 ≤ ρ ≤ 2, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π.

This is because the smallest distance from a point in D to the origin is 1, while the
largest is 2. We are not omissing any directions around the z-axis, so the interval
for θ is full and, lastly, ϕ goes from 0 to π (because stopping at π/2 would cover
only the upper half of D). With this in place, we proceed:

y

D

dV
(x2 + y2 + z2)3/2 =

∫ 2π

0

∫ π

0

∫ 2

1

ρ2 sin ϕ

(ρ2)3/2 dρ dϕ dθ
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=
∫ 2π

0

∫ π

0

∫ 2

1

sin ϕ

ρ
dρ dϕ dθ

=
∫ 2π

0
dθ
∫ π

0
sin ϕ dϕ

∫ 2

1

dρ

ρ

= 2π · 2 · ln 2
= 4π ln 2.

Let’s now review how change of variables work. It is essentially a multivariable
version of an u-substitution. Then, we had that if u = g(x), then du = g′(x)dx, and
then ∫ b

a
f (u)du =

∫ d

c
f (g(x))g′(x)dx,

where g(c) = a and g(d) = b. Two things happened here: we needed to update the
interval of integration, and pay attention to the correction in the differential. The same
thing will happen with more than one variable, with the only difference being that
computing this correction is more complicated. Roughly, what happens is that

dx dy =

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣du dv and du dv =

∣∣∣∣∂(u, v)
∂(x, y)

∣∣∣∣dx dy.

We will occasionally need to pay attention to both. Here, we have that

∂(x, y)
∂(u, v)

=

[
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

]
,

and same for ∂(u, v)/∂(x, y). The bars here stand for “taking the absolute value of
the determinant”. How can you be sure you’re not mixing things up? The following
illegal cancellations should happen (in your head, never in the paper):

dx dy =

∣∣∣∣∂(x, y)
���

�∂(u, v)

∣∣∣∣����du dv and du dv =

∣∣∣∣∂(u, v)
���

�∂(x, y)

∣∣∣∣����dx dy.

An expression like

dx dy =

∣∣∣∣∂(u, v)
∂(x, y)

∣∣∣∣du dv,

where things “don’t want to cancel each other”, is wrong. In any case, it is often easier
to compute one of |∂(u, v)/∂(x, y)| or |∂(x, y)/∂(u, v)| over the other (depending on
how the change of variables was set up or given to you). The strategy here is to always
go for the easier one and use the inverse relation∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ = ∣∣∣∣∂(u, v)
∂(x, y)

∣∣∣∣−1

if needed. Let’s put all of this together in one last example, emphasizing all the steps
to be carried out.
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Example 19

Compute the integral x

R

exy dA,

where R is the region in the first quadrant bounded by the hyperbolas y = 1/x and
y = 4/x, and the lines y = x and y = 3x.

• Step 1: sketch the region R. You just have to remember that the graph of
y = 1/x is a branch of a hyperbola and that the 4 in y = 4/x is just a
rescaling factor.

• Step 2: rewrite the bounds of R in the form “something” = “constant” and
hopefully read the new variables and their bounds from there. Namely, we
have that

y = 1/x → xy = 1
y = 4/x → xy = 4

y = x → y/x = 1
y = 3x → y/x = 3

This suggests letting u = xy and v = y/x. Immediately, the new bounds are
1 ≤ u ≤ 4 and 1 ≤ v ≤ 3. Who is u and who is v is not relevant here: the
rectangle in the uv-plane corresponding to R will just come out rotated, and
the negative sign you get in the Jacobian determinant disappears because of
the absolute value present when we write du dv in terms of dx dy or vice-
versa.
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• Step 3: compute the Jacobian determinant. As we have u and v in terms of x
and y, it’s easier to begin with

∂(u, v)
∂(x, y)

= det
(

y x
−y/x2 1/x

)
=

y
x
− x

(
− y

x2

)
= 2

y
x
= 2v.

As v ≥ 0, we have |2v| = 2v, so

du dv = 2v dx dy =⇒ dx dy =
1

2v
du dv.

• Step 4: plug everything into the original integral and solve it.

x

R

exy dA =
∫ 3

1

∫ 4

1

eu

2v
du dv =

(∫ 3

1

1
2v

dv
)(∫ 4

1
eu du

)
=

ln 3
2

(e4 − e).
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6 September 27th

We’ll start going over the setup for a couple of homework problems.

Exercise 5

Compute the integral
x

R

xy dA, where R is the region bounded by the ellipse whose equa-

tion is 9x2 + 4y2 = 36. Use x = 2u and y = 3v.
Here, the idea is to note that the ellipse equation becomes u2 + v2 = 1, so the

region R in the xy-plane corresponds to the unit circle S in the uv-plane. The next
step would be to compute the Jacobian determinant of the change-of-variables. To
do so, note that the correct relation is

dx dy =

∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣du dv.

In this case, we have that

∂(x, y)
∂(u, v)

=

[
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

]
=

[
2 0
0 3

]
=⇒ dx dy = 6 du dv.

With this in place, we have that
x

R

xy dx dy =
x

S

(2u)(3v)(6 du dv) =
x

S

36uv du dv.

For some strange reason people seem to be under the impression that the bounds
for this last integral are simply ∫ 1

−1

∫
−1

1
36uv du dv,

but this is wrong: all-constant bounds for u and v would mean that the ellipse got
sent via the change-of-variables (x, y) 7→ (u, v) to a rectangle, but we know that S
is a circle instead. The correct expression would be

∫ 1

−1

∫ √1−v2

−
√

1−v2
36uv du dv,

but the point of using polar coordinates is precisely to avoid annoying bounds
such as those. A further change of coordinates (u, v) 7→ (r, θ) with du dv = r dr dθ
does the job now.

It is possible, however, to cut the middle man and use “fake polar coordinates”,
by noting that

9x2 + 4y2 = 36 =⇒ x2

4
+

y2

9
= 1 =⇒

(x
2

)2
+
(y

3

)2
= 1
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suggests setting x = 2r cos θ and y = 3r sin θ. This time, the equation r = 1
corresponds not to the unit circle, but to the given ellipse. And we have that
dx dy = 6r dr dθ, since 6 is the product of the stretching factors 2 and 3. More
precisely, one could compute

∂(x, y)
∂(r, θ)

=

[
∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

]
=

[
2 cos θ −2r sin θ
3 sin θ 3r cos θ

]
,

so that ∣∣∣∣∂(x, y)
∂(r, θ)

∣∣∣∣ = (2 cos θ)(3r cos θ)− (−2r sin θ)(3 sin θ) = 6r,

by using that cos2 θ + sin2 θ = 1. Of course, you’re supposed to solve this problem
in the subpar way the book suggests with the intermediate variables (u, v), since
it was explicitly said so in the problem statement.

Now, we move on to understand what line integrals are really about. Formally,
they can be defined as certain limits of Riemann-like sums. What you need to keep
in mind, however, is that there are two types of line integrals: scalar line integrals of
functions, and line integrals of vector fields.

• Scalar case:
∫

C f ds. For curves in the plane,
∫

C f ds equals the area of the “cur-
tain” determined by the curve C inside the domain of f , and the graph surface
z = f (x, y) in space. “Stretching” the curve C like a string, the curve C can be
thought of an “axis”, and the integral computes the area of a graph over this axis.
So, scalar line integrals are very similar to single-variable integrals, in this sense.
When f = 1, the integral

∫
C ds gives simply the length of the curve C. If f > 0 is

regarded as a mass density, then the integral
∫

C f ds is the total mass of the string
C. In particular, with line integrals we can compute the center of mass/gravity
of a string with non-uniform mass distribution, as the point(∫

C x f ds∫
C f ds

,

∫
C y f ds∫
C f ds

,

∫
C z f ds∫
C f ds

)
.

• Vector case:
∫

C F · dr. Let’s think of basic mechanics: if a constant force F moves
a block (with a certain mass) along a linear path, with displacement d, the work
realized by the force to perform this action is W = Fd. The assumptions that
the force F is constant and that the displacement happens along a linear path are
very restrictive. Say that the initial position of the block is at x = a and that the
final one is at x = b, with a < b. Then W =

∫ b
a F dx (the constant force may be

pulled out of the integral, while
∫ b

a dx = b− a = d). This suggests that the work
done by a (generally non-constant) force field F on space to move a block from
an initial position to a final position, along some now curvilinear path C, should
simply be W =

∫
C F · dr. The generalization was

∫ b

a
→
∫

C
, F → F, dx → dr.
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We still need to understand what the notations for line integrals mean. First, we
observe that the dot · in

∫
C F · dr is actually a dot product, between the vector field

F and dr, the “infinitesimal tangent vector to C”. We write dr = (dx, dy, dz). Why
does it make sense to form a vector with those differentials? If there’s any justice in
the world, we should be able to write dr = r′(t)dt. But then

dr = r′(t)dt = (x′(t), y′(t), z′(t))dt = (x′(t)dt, y′(t)dt, z′(t)dt) = (dx, dy, dz).

As for the remaining differential ds, a similar reasoning goes. Writing ds = s′(t)dt, it
remains to understand what s′(t), or more generally s(t), means. This turns out to be a
standard notation for the arclength function of a curve. Namely, given a parametriza-
tion r(t) of C on some interval [a, b], the integral

s(t) =
∫ t

a
‖r′(τ)‖dτ

computes the arclength of C from the initial point r(a) to the chosen instant r(t) (in
particular, s(b) is the full length of C). The Fundamental Theorem of Calculus says
that s′(t) = ‖r′(t)‖dt. We now have our dictionary of differentials completed:

dr = (dx, dy, dz)
ds = ‖r′(t)‖dt
dx = x′(t)dt
dy = y′(t)dt
dz = z′(t)dt

As for how to ahead and compute line integrals, generally, we can organize our-
selves with steps, as in Example 19 (p. 31).

Step 0: If dealing with a vector line integral
∫

C F · dr, writing the components of F as
( f , g, h), evaluate the dot product∫

C
F · dr =

∫
C
( f , g, h) · (dx, dy, dz) =

∫
C

f dx + g dy + h dz.

Step 1: Find a parametrization r(t), a ≤ t ≤ b, for C. Sometimes, the problem gives
r(t) to you. Other times, you have to figure it out yourself (but it’s generally not
too difficult).

Step 2: Set up all the differentials appearing in the problem as something times dt, by
using the little dictionary above.

Step 3: Plug x = x(t), y = y(t), z = z(t) into the given integral, as well as all the
differentials you have set up in Step 2. You have now obtained a single-variable
integral

∫ b
a · · · dt. Solve it.

Of course, everything here was described for functions and fields in space. When
working in two dimensions only, just ignore the variable z and the third components
of everything.
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Example 20

Compute the integral ∮
C

xy ds,

where C is the unit circle in the plane with parametrization r(t) = (cos t, sin t), defined
on 0 ≤ t ≤ 2π.

First, we note that the circle on the integral, as in
∮

C as opposed to
∫

C, is just
a reminder that the curve C on which we integrate over is closed. It makes ab-
solutely no difference on how we’ll solve it. Step 0 is unneeded, it’s a scalar line
integral. Step 1 is also unneeded, as the problem gave us r(t). For Step 2, we
have that r′(t) = (− sin t, cos t), so ‖r′(t)‖ = 1 for all t. This means that ds = dt.
Finally, Step 3: ∮

C
xy ds =

∫ 2π

0
cos t sin t dt =

1
2

∫ 2π

0
sin(2t)dt = 0.

Example 21

Compute the integral ∫
C
(x + y)dx,

where C is the upper half-circle (centered at the origin) with radius 2, oriented counter-
clockwise.

This is not really a scalar line integral, but a vector line integral in disguise,
with Step 0 already performed. One may see it as

∫
C F · dr with the field F given

by F(x, y) = (x + y, 0). In any case, for Step 1, we may take r(t) = (2 cos t, 2 sin t),
with 0 ≤ t ≤ π. For Step 2, there’s only one differential to be considered, dx: since
x = 2 cos t, we have dx = −2 sin t dt. Now, Step 3 becomes just∫

C
(x + y)dx =

∫ π

0
(2 cos t + 2 sin t)(−2 sin t dt)

= −4
∫ π

0
(cos t sin t + sin2 t)dt

= −2π.

Example 22

Compute
∫

C F · dr, where F(x, y) = (x, y) and C is parametrized by r(t) = (4t, t2),
with 0 ≤ t ≤ 1.

We’re dealing with a vector line integral, so let’s do Step 0:∫
C

F · dr =
∫

C
(x, y) · (dx, dy) =

∫
C

x dx + y dy.
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There’s no need to do Step 1, as the problem gave us r(t). As for Step 2, the only
differentials appearing herea are dx and dy. So we just note that x = 4t and y = t2

immediately give us that dx = 4 dt and dy = 2t dt. With this in place, Step 3 is
straightforward: ∫

C
x dx + y dy =

∫ 1

0
4t(4 dt + t2(2t dt)

=
∫ 1

0
(16t + 2t2)dt

= 8 +
2
3

=
26
3

.

aIf a vector field in three dimensions has zero as one of its components, the corresponding
differential will simply not appear: the zero component kills it with the dot product.

Lastly, we’ll explain the true reason for the name “conservative” when discussing
conservative fields, and review the consequences of this definition. We go back for a
moment to classical mechanics. Imagine that a particle in three-dimensional Euclidean
space R3, of mass m > 0, moves in space subject to the action of a force field F. The
trajectory r = r(t) satisfies Newton’s force equation F(r(t)) = mr′′(t) (the old formula
F = ma from your childhood). If F is a conservative field and we write F = −∇ϕ for
some potential function ϕ (the negative sign will be addressed in an instant and is not
relevant in this class), the total energy function

E(t) =
m‖r′(t)‖2

2
+ ϕ(r(t))

is constant along r, since

E′(t) = mr′′(t) · r′(t) +∇ϕ(r(t)) · r′(t)
=
(
mr′′(t) +∇ϕ(r(t))

)
· r′(t)

=
(
mr′′(t)− F(r(t))

)
· r′(t)

= 0 · r′(t)
= 0.

In words: if F is conservative, there is a potential function ϕ giving rise to a conserved
quantity, the total energy. If the field F were not conservative, we would not have a
potential function, and so we would not be able to set the total energy function. If one
wrote F = ∇ϕ instead of −∇ϕ, the conserved quantity would be the kinetic energy
minus the potential energy (as opposed to plus), which is psychologically uncomfort-
able.

In any case, this condition has nice mathematical consequences, and the Funda-
mental Theorem of Calculus comes back with a vengeance:
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Theorem 3

Let ϕ be a differentiable function of n variables and C be a curve, from a point A
to a point B. Then ∫

C
∇ϕ · dr = ϕ(B)− ϕ(A).

In particular, the result does not depend on the actual curve C, but only on the
endpoints A and B. And when C is a closed curve (i.e., A = B), then∮

C
∇ϕ · dr = 0.

Remark. Compare this with
∫ b

a f (x)dx = F(b)− F(a), where F is an anti-derivative
of f . One should think of ϕ as an anti-derivative of F (in the gradient sense). Of
course, the point is that it is not always true that a potential ϕ exists. When this does
happen, the path-independence is used in practice as follows: imagine you’re given
a line integral of a conservative field F over a curve C which is terribly unpleasant to
deal with. Since the field F is conservative, you are free to completely ignore the curve
C, and replace it with another curve C′, as simple as possible (such as the line segment
joining the endpoints of the original C).

If F = ( f , g) equals a gradient ∇ϕ = (ϕx, ϕy), then we necessarily have fy = gx,
since fy = ϕxy = ϕyx = gx. This means that if F = ( f , g) does not satisfy that fy = gx
then F is not equal to any gradient field, and therefore one has to use the techniques
discussed in the beginning of class (with parametrizing, setting up differentials, etc).
Recall that to find ϕ (when possible), the brief algorithm is: integrate f = ϕx with
respect to x, and the constant of integration is a function of the remaining variable,
c(y). Now differentiate both sides of what you have obtained with respect to y, and
use g = ϕy. Then find c(y).
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7 October 4th

We move on to the second part of this course: linear systems and matrices. The
goal here is to understand the general mechanism to solve linear systems with several
equations and variables (as opposed to small systems with only two or three equations
and variables). The main tool we’ll use to do so will be matrices. The program we’ll
try to carry out here is to:

start with linear system =⇒ convert it to a matrix
=⇒ get a simpler matrix =⇒ get a simpler system,

and then draw conclusions about the original system from the original one. To under-
stand how to convert between systems and matrices (that is, the first and last arrows
above), let’s consider the next two exercises. We’ll address the middle arrow and ex-
plain what we mean by a “simpler matrix” soon.

Exercise 6

What are the coefficient matrix and the augmented matrix for each of the following linear
systems?

(a)


x1 + 3x2 − x3 = 1
2x1 + 5x2 + x3 = 5
x1 + x2 + x3 = 3

(b)


x1 + x2 + x3 − x4 = 1
−x1 + x2 − x3 + x4 = 3
−2x1 + x2 + x3 − x4 = 2

For item (a) we have that the coefficient and augmented matrices are, respectively,1 3 −1
2 5 3
1 1 1

 and

1 3 −1 1
2 5 3 5
1 1 1 3

 .

Note that we have one row for each equation, and one column per variable in
the coefficient matrix. This is a general phenomenon. To obtain the augmented
matrix, we augment the coefficient matrix with an extra column, containing the
right-hand-sides of the equations in the system. When there is no coefficient in
front of a variable, as in x2, it means 1x2. When dealing with augmented matrix,
the last column is usually separated from the rest with a line or dotted line, just to
remind us that it does not correspond to any variable. For item (b), we have that
the the coefficient and augmented matrices are, respectively, 1 1 1 −1

−1 1 −1 1
−2 1 1 −1

 and

 1 1 1 −1 1
−1 1 −1 1 3
−2 1 1 −1 2

 .

How does the reverse process work?
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Exercise 7

If the following two matrices are the augmented matrices for two systems, write the sys-
tems explicitly.

(a)

 2 3 −1 1 1
−2 −3 5 π

√
2

1/2 5 0 0 2022

 (b)

0 1 e −2
4 3
√

2 −1 0
2 0 ln(5) 3


This time, we set up one equation per row, reading the coefficients in order, and
recalling that the last column after the divide correspond to the right-hand-sides
of the equations in the systems. For item (a) we obtain the system

2x1 + 3x2 − x3 + x4 = 1
−2x1 − 3x2 + 5x3 + πx4 =

√
2

1
2 x1 + 5x2 = 2022,

while for item (b) we have that
x2 + ex3 = −2

4x1 +
3
√

2x2 − x3 = 0
2x1 + ln(5)x3 = 3.

There are two things to observe here.

• The first one is that while most examples you’ll see on the book only have
nice, integer coefficients, there is nothing saying that this must be the case.
The word “linear” in linear system refers to the fact that each equation will
be a “linear combination” of variables, as in the first equation 2x1 + 3x2 −
x3 + x4 = 1 of the first system, but the numeric coefficients can be anything
(such as π, e, ln(5), cos(2), etc., all legit real numbers).

• The second one is that zeros in the coefficient matrix mean that the corre-
sponding variables are simply absent from the corresponding equation. This
is a good thing. Having fewer variables to worry about makes dealing with
the system easier.

Remark. This is a convenient moment to introduce one piece of terminology: a lin-
ear system is called homogeneous if all the right-hand-sides of the equations in the
system are equal to zero. For example, none of the systems presented so far in to-
day’s entry are homogeneous. It turns out that understanding homogeneous systems
is slightly easier than understanding non-homogeneous one, and solutions to non-
homogeneous systems can be found by first finding solutions to the “associated ho-
mogeneous system” (obtained by replacing all the right-hand-sides with zeros). More
on this later. A similar idea will appear again when we move on to the third part of
this class, discussing differential equations (they can be divided into homogeneous
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and non-homogeneous, and homogeneous ones are nicer).

Following up the idea of the second bulleted point above, we can return to the
idea of going from the augmented matrix representing a system to a simpler matrix.
The idea will be to create as many zeros as possible. More precisely, we will consider
matrices in reduced row echelon form (RREF), which look like this:

1 0 ∗ 0 0 ∗ ∗
0 1 ∗ 0 0 ∗ ∗
0 0 0 1 0 ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 0


The pivots, which are the first non-zero entries in each row, must all be equal to 1. On
each column where a pivot 1 appears, all entries other than the pivot itself must be
zero. The pivots must form a “staircase” shape (hence the name “echelon”). The word
“reduced”, in turn, refers to the fact that all entries in a given column with a pivot,
above the pivot, are zero. If a row consists only of zeros, it must be on the bottom of
the matrix.

But this cannot be done in a haphazard way. How can one ensure that the RREF of
a matrix will correspond to a system with the same solutions as the original one? To
ensure that the solutions of the original system will not be affected, one casts a given
matrix into RREF by using the following elementary operations are allowed:

(1) switch two rows;

(2) multiply any row by a non-zero number;

(3) add to any row a multiple of another row.

When solving a system, we will always follow this procedure of putting the aug-
mented matrix into RREF (as opposed to the coefficient matrix), as doing operations
between rows is morally the same as doing operations between equations in the sys-
tem (with the obvious advantage that we won’t keep writing variable names x1, x2,
etc., all the time), and when doing operations between equations, those operations
happen on the right-hand side of the equations involved too.

Remark. There are several ways of solving linear systems (one of them being “Cra-
mer’s method”, for example), but dealing with matrices in RREF is preferred from a
computational viewpoint for being more efficient, in the sense that solving a linear
system using this algorithm is what takes a computer the fewer number of operations
to do. Moreover, RREF is the answer to the natural question “could I do something
else to make the matrix simpler?” or “am I missing something?”. If the matrix is in
RREF, the answer is “no”: you did everything possible to simplify the matrix. And,
again, the reason why we’ll only stick with the elementary operations above is because they
make sure that the matrix in RREF obtained in the end does represent a system equivalent to
the original one.
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Exercise 8

Decide whether the following matrix is in RREF and, if not, put it in RREF.1 2 −1 −2
0 2 −2 −3
0 0 0 1


The pivots of this matrix are, respectively, 1, 2 and 1. Since we have a pivot which
is not equal to 1, the matrix is not in RREF. Each step we carry out has a specific
objective, and whatever happens with the rest of the matrix, happens. Our first
goal is to turn that pivot 2 into a 1, and for that we may divide the whole second
row by 2 (this is an allowed elementary operation):

R2 :=
1
2

R2 ∼

1 2 −1 −2
0 1 −1 −3/2
0 0 0 1


Note how we’re borrowing notation from computer science to keep track of the
operations performed. This is very important to do as it improves organization
and readability. You should take this seriously on HW assignments and exams.

By the way, it may be worth mentioning that there is also something called ech-
elon form: it should have the same “staircase” shape as in RREF with all pivots
being 1 and rows of zeros being in the bottom, but elements above a pivot don’t
need to be zero. So, the matrix is now in echelon form, but not RREF. Recogniz-
ing when a matrix is in echelon form but not RREF tells you that you’re halfway
through the process; it’s a checkpoint: all that’s left to do now is to take out the
trash above the pivots. This is done systematically, again from left to right, but
now from bottom to top. The next goal should be to eliminate the 2 in the first
row of the matrix.

R1 := R1 − 2R2 ∼

1 0 1 1
0 1 −1 −3/2
0 0 0 1


Since on the third column there is no pivot, nothing can be done about the non-
zero entries there. We move on to clean up what’s above the pivot on the fourth
column. As both R1 and R2 will interact with R3, but not with each other, we can
do two steps at once:

R1 := R1 − R3
R2 := R2 +

3
2 R3

∼

1 0 1 0
0 1 −1 0
0 0 0 1


We have obtained the RREF.

Let’s see how to put all of this together to solve a more complicated system.
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Exercise 9

Solve, if possible, the following system:
x1 + x2 − x5 = 1

x2 + 2x3 + x4 + 3x5 = 1
x1 − x3 + x4 + x5 = 0

Like in Exercise 6, let’s set up the augmented matrix for this system:1 1 0 0 −1 1
0 1 2 1 3 1
1 0 −1 1 1 0


This matrix is obviously not in RREF; we don’t even have the “staircase” shape.
The first 1 in the first row, however, is the pivot, and so we need to eliminate all
entries below it. This can be achieved as follows:

R3 := R3 − R1 ∼

1 1 0 0 −1 1
0 1 2 1 3 1
0 −1 −1 1 2 −1

 .

We have cleaned up everything below the first pivot, so we move on to the next.
The pivot in the second row is the 1 appearing in the second column as well, so
we need to eliminate the −1 below it. This is done by:

R3 := R3 + R2 ∼

1 1 0 0 −1 1
0 1 2 1 3 1
0 0 1 2 5 0

 .

Observe that this −1 could also have been eliminated via R3 := R3 + R1, but this
operation would produce a 1 in the bottom left corner of the matrix! The reason
why this happened is because we’re trying to make an operation involving a row
whose pivot has already had everything cleaned up below it. The moral of the
story here is that each step to be carried has a laser-like focus, a single goal, and if
you do an operation which undoes something that should have been already ok
by that point, you have done something wrong. As a matter of fact, the matrix
is now in echelon form, but not RREF. We must proceed to clean up the spaces
above the pivots, going from left to right, as usual. Above the pivot in the second
row, we have a 1, which is the next target:

R1 := R1 − R2 ∼

1 0 −2 −1 −4 0
0 1 2 1 3 1
0 0 1 2 5 0

 .

Page 43



MATH2177 – AU22 – RECITATION DIARY Ivo Terek

Observe that this operation did not destroy the “staircase” shape because we have
only started to clean up spaces above the pivots once the matrix was already in
echelon form. We move on to the next pivot, on the third row: we must clean
up the −2 and 2 above it. As in the previous example (and this turns out to be
a general phenomenon), since both R1 and R2 will interact with R3, but not with
each other, we can do the two steps at once:

R1 := R1 + 2R3
R2 := R2 − 2R3

∼

1 0 0 3 6 0
0 1 0 −3 −7 1
0 0 1 2 5 0

 .

The matrix is now in RREF, and it corresponds to the system
x1 + 3x4 + 6x5 = 0

x2 − 3x4 − 7x5 = 1
x3 + 2x4 + 5x5 = 0,

which is equivalent to the original one (that is, this system and the first one have
the same solution set). The variables x4 and x5 (corresponding to the columns in
RREF which could not be cleaned up – as we didn’t have pivots to use) are free,
in the sense that the remaining variables x1, x2 and x3 may be written in terms
of x4 and x5. We may change notation, say, to t1 = x4 and t2 = x5, effectively
parametrizing the solution set of the system, and writing

S = {(−3t1 − 6t2, 3t1 + 7t2 + 1,−2t1 − 5t2, t1, t2) ∈ R5 | t1, t2 ∈ R}.

The solution set S is a 2-dimensional plane in R5, not passing through the ori-
gin (0, 0, 0, 0, 0) of R5. Every point of such plane corresponds to a solution of
the system. For example, choosing t1 = 1 and t2 = 2, we obtain the solution
(−15, 18,−12, 1, 2) of the original system. This is the same as saying that plug-
ging

x1 = −15, x2 = 18, x3 = −12, x4 = 1 and x5 = 2

on the equations of the original system, the right-hand sides come out to be 1, 1,
and 0. Every time you have even a single free variable, the system has infinitely
many solutions. These variables are called “free” because you’re free to choose
values to substitute into it, thus generating different solutions to the system. If
there are infinitely many solutions (in fact, uncountably many, in a very precise
sense), you are not supposed to try and list them one by one. This is why it is im-
portant to understand how free variables work and how to describe your solution
set in a “parametric form”: it will carry all the information you need in a succint
way.
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8 October 11th

We continue to explore linear systems and the RREF of matrices.

Exercise 10

Consider the following linear system:
x1 + x2 + x3 − x4 = 1
−x1 + x2 − x3 + x4 = 3
−2x1 + x2 + x3 − x4 = 2

(a) Determine if (2, 1, 3, 3) is a solution of the system. Explain.

(b) Determine if
(
−1

3
, 2, 0,

2
3

)
is a solution of the system. Explain.

(c) Solve the system and describe its solution set.

What does it mean for something to be a solution of a system? It means that if we
substitute it on the left-hand side of all equations in the system, we must obtain
the results on the right-hand sides. If even one equation does not work out, the
proposed point is not a solution. For item (a), (2, 1, 3, 3) is not a solution since (for
example) the first equation does not work: 2 + 1 + 3− 3 = 3 6= 1. For item (b), a
straightforward calculation shows that we do have a solution. Finally, for item (c),
we proceed with the usual program: write the augmented matrix for the system,
put it into RREF, read of the reduced system, and recognize its solutions and free
variables.
The augmented matrix is:  1 1 1 −1 1

−1 1 −1 1 3
−2 1 1 −1 2

 .

The first 1 in the first row is the pivot, so we must eliminate the −1 and −2 below
it. This is done as follows:

R2 := R2 + R1
R3 := R3 + 2R1

∼

1 1 1 −1 1
0 2 0 0 4
0 3 3 −3 4

 .

Moving on to the second row, we have that 2 is the pivot. We normalize this row
(by dividing it by 2), and the eliminate the 3 below the pivot:

R2 := 1
2 R2

R3 := R3 − 3R2
∼

1 1 1 −1 1
0 1 0 0 2
0 0 3 −3 −2

 .
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As for the final row, we have that 3 is the pivot. Normalize it:

R3 :=
1
3

R3 ∼

1 1 1 −1 1
0 1 0 0 2
0 0 1 −1 −2/3

 .

Now, our matrix is in echelon form, but not RREF yet. It remains to clean up
what’s above the pivots. This is done from left to right.

R1 := R1 − R2 ∼

1 0 1 −1 −1
0 1 0 0 2
0 0 1 −1 −2/3

 .

Next, we clean up what’s above the third pivot, to finally obtain the RREF of the
original augmented matrix:

R1 := R1 − R3 ∼

1 0 0 0 −1/3
0 1 0 0 2
0 0 1 −1 −2/3

 .

Observe that the fourth column does not contain a pivot, and therefore corre-
sponds to a free variable. This automatically means that the system has infinitely
many solutions. You are not expected to write all of them one by one, so we need
an intelligent way of conveying this information at once. This is done by sim-
ply writing out the solution set S. And saying that x4 is a free variable means
we should write all the other remaining variables (called dependent variables) in
terms of x4. The reduced system is:

x1 = −1/3
x2 = 2

x3 − x4 = −2/3

Letting t = x4 be the free variable (changing the kernel letter from x to t is just
a device to remind you that free variables play a different role than dependent
variables, revisit the solution for Exercise 9, p. 43), we have that the solution set
here is

S =

{(
−1

3
, 2,−2

3
+ t, t

)
∈ R4 | t ∈ R

}
.

Since we have only one free variable, the “dimension” of S (whatever that means)
ought to be 1. Indeed, writing things in vector form as

−1/3
2

−2/3 + t
t

 =


−1/3

2
−2/3

0

+ t


0
0
1
1

 ,
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we see that S is a line in R4, passing through the point (−1/3, 2,−2/3, 0), with
direction given by the vector (0, 0, 1, 1). This is just a parametric equation for a
line inside a four-dimensional space.

For the next problem, recall that a linear system is called compatible if it has solu-
tions, and incompatible if it has no solutions. A compatible linear system always has
either a unique solution, of infinitely many solutions (there is no other possibility).

Exercise 11

For each system, find the value(s) of c for which they have no solution:

(a)

{
x1 + 3x2 = 4
2x1 + 6x2 = c

(b)

{
3x1 + cx2 = 3
cx1 + 3x2 = 5

Hint: Try to solve them and see which values of c threaten a division by zero.

Let’s treat both systems separately.

(a) Set up the augmented matrix and put it into RREF, by doing R2 := R2 − 2R1:[
1 3 4
2 6 c

]
=⇒

[
1 3 4
0 0 c− 8

]
.

If c− 8 = 0 (i.e., if c = 8), the last matrix is already in RREF, and we have that
the second column does not contain a pivot, meaning that x2 is a free variable,
and the system is compatible (having infinitely many solutions). If c− 8 6= 0
(i.e., if c 6= 8), we’ll have a row of the form

[
0 0 nonzero

]
, which says that

the system is incompatible. Geometrically, what happens is that in the x1x2-
plane, the lines described by the equations x1 + 3x2 = 4 and 2x1 + 6x2 = c are
always parallel, and hence equal or disjoint. They are equal precisely when
c = 8, and disjoint otherwise. The solutions of the system are the intersections
between the lines. See the following figure.

Play around with the values of c yourself at

https://www.desmos.com/calculator/vxqc7v8lf2.
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(b) Again, start setting up the augmented matrix as[
3 c 3
c 3 5

]
.

Normalize the first row to obtain a pivot of 1, and then eliminate the c below
it by doing R2 := R2 − cR1:[

1 c/3 1
c 3 5

]
=⇒

[
1 c/3 1
0 3− c2

3 5− c

]
.

Now, there are cases to look at. Observe that 3− c3/3 = 0 is equivalent to hav-
ing c = ±3. But for those values of c, we have that 5− c 6= 0, and so the system
is incompatible due to the presence of a row of the form

[
0 0 nonzero

]
(as

in the previous item). It is worth pointing out that if, instead of 5− c, we had
some function of c whose value were equal to zero for c = 3 (resp. c = −3),
then c = 3 (resp. c = −3) would not make the system incompatible – to wit,
the last matrix above would be in RREF, with the second column correspond-
ing to a free variable. And if c 6= ±3, one may proceed to normalize the second
row as to obtain something of the form[

1 ∗ ∗
0 1 ∗

]
,

which always corresponds to a compatible system (why?).

Geometrically, we observe that the lines in the x1x2-plane whose equations are
3x1 + cx2 = 3 and cx1 + 3x2 = 5 are parallel precisely when c = ±3 and, in
this case, they are disjoint. It’s Desmos time again:

https://www.desmos.com/calculator/4ls7umhvtj.

Exercise 12

Consider the three lines whose equations are

x1 + 2x2 = 1, 2x1 + 4x2 = 2, and − x1 − 2x2 = −1.

Determine algebraically the number of points of intersection, without actually
plotting the lines.

Recall yet again that a point lies on a line if its coordinates satisfy the line equation.
Asking for a point lying in the intersection of the three lines is asking for a point
whose coordinates satisfy all three line equations. So this is just a geometric way
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of asking how many solutions does the system
x1 + 2x2 = 1
2x1 + 4x2 = 2
−x1 − 2x2 = −1

have. Set up the augmented matrix 1 2 1
2 4 2
−1 −2 −1


and, eliminating what’s below the pivot 1 in the first row, we may see the miracle
happen:

R2 := R2 − 2R1
R3 := R3 + R1

∼

1 2 1
0 0 0
0 0 0

 .

The above matrix is immediately in RREF and has not only one, but two free
variables! Therefore we have infinitely many solutions. This means that we have
infinitely many intersection points. It turns out that the three given equations
describe the same line (or, alternatively, they describe three lines which happen to
all overlap one on top of the other).

Before moving on, here’s a quick review on matrix algebra. Namely, the question
is “what can we do with matrices?”. We can:

• add two matrices of the same size, as in[
1 2
3 4

]
+

[
5 6
7 8

]
=

[
6 8

10 12

]
,

entrywise.

• multiply a matrix (of any size) by a real number, as in

3
[

1 −1
0 2

]
=

[
3 −3
0 6

]
,

again entrywise.

• take transposes of matrices, which means that rows become columns and vice-
versa, as in

A =

[
1 2 3
4 5 6

]
=⇒ A> =

1 4
2 5
3 6

 .

• multiply a n × m matrix A by a m × k matrix B, to obtain a n × k matrix AB,
whose (i, j)-entry equals the dot product between the i-th row of A and the j-th
column of B. Idea: (n×m)(m× k) = n× k.
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Here’s a reason about why matrix multiplication is like that: it all comes back to
the big idea of representing a given linear system with a matrix, studying the matrix
instead, and drawing conclusions about the original system from, for example, the
reduced row echelon form of the obtained matrix. More precisely, think of the silliest
case possible, where we have only one equation and one variable: ax = b. If we want
to study linear systems (say, with n variables and m equations) with sort of the same
notation, Ax = b, we need to make sense of what does it mean to multiply the m× n
matrix A with the n× 1 column vector x, to obtain the m× 1 column vector b. Write
the system explicitly: 

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2
...

am1x1 + · · ·+ amnxn = bm

The entries of the product Ax should be the entries of b, but the system itself gives the
expression fot the entries of b in terms of A and x. The definition a11 · · · a1n

... . . . ...
am1 · · · amn


x1

...
xn

 :=

 a11x1 + · · ·+ a1nxn
...

am1x1 + · · ·+ amnxn


is thus forced upon us, in the sense that if we want to make sense of the system in
the form Ax = b, there is only one possible choice for what the vector Ax must be. To
multiply A by a second matrix B which is n× k, one applies the above for each column
of B — and this is the matrix multiplication you have first seen in class. In particular,
this should justify why the number of columns of A must equal the number of rows
of B for this product to make sense.

Here are some pitfalls to avoid, regarding matrix multiplication:

• matrix multiplication is non-commutative, i.e., AB is not equal to BA, in general;
one way to convince yourself quickly of this is that unless both A and B are
square matrices of the same size, in general only one of the products AB or BA
is well-defined, while the other is not, so it doesn’t even make sense to compare
them (and to make it worse, there are examples of square matrices A and B for
which AB 6= BA). This means that while one does (a + b)2 = a2 + 2ab + b2 for
real numbers a and b, one must write (A + B)2 = A2 + AB + BA + B2 in full,
with no further simplifications available.

• one cannot “cancel” non-zero matrices like real numbers: if AB = AC and A 6= 0,
we cannot conclude that B = C. In fact, this only works provided that A is non-
singular!

• the identity matrix (which plays the role of 1 for real numbers) is not the matrix
full of 1’s, but instead the matrix with 1’s in the diagonal and zeros everywhere
else.
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Exercise 13

If A is a 2× 2 matrix, we consider

B =

[
1 3
1 4

]
and C =

[
2 3
4 5

]
,

and A> + B = C, what is A?

If we were dealing with real numbers, the first natural step to solve for A would
be to subtract B on both sides, leading to A> = C − B. Now, observe that doing
a transposition twice in a row returns a matrix to its original state. This means
that we can apply > on both sides of A> = C− B to obtain A = (C− B)>. Now,
once we have used as much matrix algebra as possible, we substitute the actual
matrices. We obtain

A =

[
1 3
0 1

]
.
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9 October 18th

We’ll start with a follow-up from Exercise 9 (p. 43) to emphasize one last time how
to express solutions of (often homogeneous) systems in vector form. The advantage of
doing this is recognizing a “basis” for the solution set and writing arbitrary solutions
are linear combinations of such “basis vectors”. The free variables appear as the coeffi-
cients in such linear combination, and the number of free variables is the “dimension”
of the solution set.

Exercise 14

The following matrix is the augmented matrix for a system of linear equations:1 −1 0 −2 0 0
0 0 1 2 0 0
0 0 0 0 1 0


Give the vector form for the general solution.

The usual strategy is to start with a system, set up its augmented matrix, put
it into RREF, and read off the solutions directly from the simpler system. In this
case, note that the given matrix is already in RREF (there is a staircase pattern, all
the pivots are equal to 1, and all entries above the pivots are equal to 0). Since
the second and fourth columns contain no pivots, we know that x2 and x4 are free
variables (and therefore the system has infinitely many solutions). Observe that
the last column of the augmented matrix consisting only of zeros says that the
linear system in question is homogeneous (and hence automatically consistent,
even if we knew nothing about free variables). We simply write

x1
x2
x3
x4
x5

 =


x2 + 2x4

x2
−2x4

x4
0

 =


x2
x2
0
0
0

+


2x4
0
−2x4

x4
0

 = x2


1
1
0
0
0

+ x4


2
0
−2
1
0

 .

With this in place, we may (renaming t1 = x2 and t2 = x4) express the solution set
in a more concise way:

S =

t1


1
1
0
0
0

+ t2


2
0
−2
1
0

 | t1, t2 ∈ R

 .

The solution set S is a 2-dimensional plane, spanned by the vectors (1, 1, 0, 0, 0)
and (2, 0,−2, 1, 0), inside 5-dimensional Euclidean space R5.

We move on to discuss some matrix algebra in more detail.
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Exercise 15

(a) Find, if possible, the values of x, y, and z for which the matrix

A =

7 x + y x + z
1 8 2
3 y + z 9


is symmetric (i.e., satisfies A = A>).

(b) Do the same for when A is skew-symmetric (i.e., satisfies A = −A>) instead.

(a) “Symmetry” of a (square!) matrix really means “symmetry about its diago-
nal”. So, we must set x + y = 1, y + z = 2, and x + z = 3. It is worth noting
that all three ways of expressing this system convey exactly the same informa-
tion:

(i)


x + y = 1

y + z = 2
x + z = 3

, (ii)

1 1 0 1
0 1 1 2
1 0 1 3

 , (iii)

1 1 0
0 1 1
1 0 1

x
y
z

 =

1
2
3

 .

The third way (i.e., the vector form Ax = b of a system) makes it apparent that,
once it is known that the coefficient matrix has an inverse (or, in other words,
is nonsingular), the solution to the system exists and is unique. Namely, equal
to x

y
z

 =

1 1 0
0 1 1
1 0 1

−1 1
2
3

 .

Finding inverses of square matrices, whenever they exist, can also be done
with the use of Gaussian Elimination (i.e., the algorithm we run to put a matrix
into RREF) – it is called Gauss-Jordan inversion. See the worksheet from the
previous week and practice sheet for the second midterm for more details on
that. It doesn’t really matter which way you choose to solve this system, one
eventually finds that x = 1, y = 0, and z = 2.

(b) There is something rather subtle going on here. If the matrix A were to be
skew-symmetric, we would necessarily have that x + y = −1, y + z = −2,
and x + z = −3. The solutions, based on item (a), are immediately equal to
x = −1, y = 0, and z = −2. But for such values, we have that

A =

7 −1 −3
1 8 2
3 −2 9

 and − A> =

−7 −1 −3
1 −8 2
3 −2 −9

 .

They are not equal! So, what went wrong here? All entries match, except for
the diagonal ones. And that’s where the problem lies: all the diagonal entries
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of a skew-symmetric matrix must necessarily be equal to zero. Making j = i
in the relation aji = −aij (which means “look at the diagonal”) leads to the
equality aii = −aii, and so aii = 0. To summarize the conclusion: since the
diagonal entries of A are not all equal to zero, there are no values of x, y and
z for which A is skew-symmetric. If the diagonal entries of A were all equal
to zero, however, the suggested strategy would work and x = −1, y = 0, and
z = −2 would be the only answer.

Now, recall that it is not always true that any two matrices may be multiplied.
Namely, the (i, j)-th entry of a product AB, whenever it makes sense, must be equal to
the dot product between the i-th entry of A and the j-th column of B. For this to make
sense, such rows and columns must have the same size. Therefore, only products like
(n×m)(m× k) make sense, with output having size n× k. Let’s drill all of this with
the next problem.

Exercise 16 (Matrix multiplications may not “compile”)

Consider the three matrices

A =

3 1
4 7
2 6

 , B =

1 2 1
7 4 3
6 0 1

 , and C =

2 1 4 0
6 1 3 5
2 4 2 0

 .

(a) Among all 32 = 9 products A2, AB, BA, AC, CA, B2, BC, CB, and C2, decide
which ones are well-defined and which ones are not. Evaluate the ones which
are well-defined.

(b) If the transposes A>, B>, and C>, enter the fray, there are a priori 62 = 36
products to form. Are the products A>B, BC>, C>A, and CA> well-defined?
Evaluate those which are.

(a) Let’s look at it systematically, thinking that A has size 3× 2, B has size 3× 3,
and C has size 3× 4.

• A2: we have (3× 2)(3× 2), so it’s undefined.

• AB: we have (3× 2)(3× 3), so it’s undefined.

• AC: we have (3× 2)(3× 4), so it’s undefined.

• BA: we have (3× 3)(3× 2), so BA is defined and has size 3× 2. We have
that

BA =

1 2 1
7 4 3
6 0 1

3 1
4 7
2 6

 =

13 21
43 53
20 12

 .

• CA: we have (3× 4)(3× 2), so it’s undefined.
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• B2: we have (3× 3)(3× 3), so B2 is defined and has size 3× 3. We have
that

B2 =

1 2 1
7 4 3
6 0 1

1 2 1
7 4 3
6 0 1

 =

21 10 8
53 30 22
12 12 7

 .

• BC: we have that (3× 3)(3× 4), so BC is defined and has size 3× 4. We
have that

BC =

1 2 1
7 4 3
6 0 1

2 1 4 0
6 1 3 5
2 4 2 0

 =

16 7 12 10
44 23 46 20
14 10 26 0

 .

• CB: we have (3× 4)(3× 3), so it’s undefined.

• C2: we have (3× 4)(3× 4), so it’s undefined.

(b) · ·^

We conclude today’s discussion with the next problem, trying to lose the fear of
doing analytic geometry with vectors in Rn for n > 3.

Exercise 17

Consider in R4 the vectors

x =


1
−1
2
3

 and y =


2
0
−3
2

 .

(a) Compute the norms (i.e., lengths) ‖x‖, ‖y‖, and ‖x + y‖.

(b) Is it true that ‖x + y‖2 = ‖x‖2 + ‖y‖2? Try to give a geometric explanation.

(c) Compute the “inner product” x>y and the “outer product” xy>. What is the
sum of the diagonal termsa of the matrix xy>?

(a) Computing “magnitudes” of vectors in Rn works just like what we had in R2

and R3. We have that

‖x‖ =
√

12 + (−1)2 + 22 + 32 =
√

15,

‖y‖ =
√

22 + 02 + (−3)2 + 22 =
√

17,

‖x + y‖ =
√

32 + (−1)2 + (−1)2 + 52 = 6.
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(b) It is not true, since 17 + 15 = 32 6= 36. You should think of the proposed
equality ‖x + y‖2 = ‖x‖2 + ‖y‖2 as a Pythagorean identity, which is not
satisfied by the given vectors x and y because they are not orthogonal. To wit,
we have that their dot product is nonzero:

x · y = 1 · 2 + (−1) · 0 + 2 · (−3) + 3 · 2 = 2.

It is worthwhile to note that the correct equality would be given by the Law
of Cosines (as a consequence of x · y = ‖x‖‖y‖ cos θ, where θ is the angle
between x and y), since

‖x + y‖2 = (x + y) · (x + y)
= x · x + x · y + y · x + y · y
= ‖x‖2 + 2x · y + ‖y‖2

= ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ cos θ.

The above reduces to the proposed Pythagorean identity when cos θ = 0
(which is equivalent to x and y being orthogonal.

(c) In general, x>y = x · y (since a 1× 1 matrix is nothing more than just a num-
ber), so that x>y = 2 was already shown when explaining the previous item.
As for the outer product, just note that its (i, j)-entry is xiyj, so that

xy> =


1
−1
2
3

 [2 0 −3 2
]
=


2 0 −3 2
−2 0 3 −2
4 0 −6 4
6 0 −9 6

 .

Then we have that tr(xy>) = 2 as well. That tr(xy>) = x>y is true for any
vectors x and y in any dimension.

aThis is called the trace of a (square) matrix.
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10 October 25th

The last concept we need to discuss in this part of the course is the one of linear
independence. Geometrically in low dimensions, we have that:

• Two vectors in the plane R2 are linearly independent if they are not collinear.

• Two vectors in space R3 are linearly independent if they are not collinear.

• Three vectors in space R3 are linearly independent if they are not coplanar, or
not all collinear.

How to make sense of this in higher dimensions, where pictures are no longer
available?

Definition 4

Let u1, . . . , uk ∈ Rn be vectors. We say that they are linearly independent if when-
ever a1u1 + · · ·+ akuk = 0 (here, a1, . . . , ak are real numbers), we must necessarily
have a1 = · · · = ak = 0. If they are not linearly independent, we call them linearly
dependent.

Briefly, saying that a collection of vectors is linearly independent is saying that
none of the vectors considered is a linear combination of the others. Similarly, saying
that a collection of vectors is linearly dependent is saying that there is at least one of
them which may be expressed as a linear combination of the others.

How to make sense of the condition a1u1 + · · ·+ akuk = 0 =⇒ a1 = . . . = ak = 0
in terms of what we already know? Note that a1u1 + · · ·+ akuk = 0 is, in disguise, a
homogeneous linear system for the unknowns a1, . . . , ak! Linear independence means
that such system has only the trivial solution. More precisely, this system can be writ-
ten in vector form as

[u1| · · · |uk]

a1
...

ak

 =

0
...
0

 ,

where [u1| · · · |uk] is the matrix whose columns are u1, . . . , uk. This suggests the follow-
ing algorithm for deciding when a given collection of vectors is linearly independent:

1. Set the given vectors as columns of a matrix.

2. Put it into RREF, or at least reduce it to “triangular” form, to identify the rank (i.e.,
the number of pivots).

3. If the number of pivots is less than the number of vectors considered (which hap-
pens whenever you get a row of zeros), they are linearly dependent3. If the number
of pivots equals the number of vectors considered, they are linearly independent.
You don’t have to worry about the number of pivots being greater than the number
of vectors considered, since this is impossible to happen (why?).
3In more detail: since there is a free variable, you get nontrivial solutions for a1, . . . , ak, which corre-

spond to a nontrivial linear combination of u1, . . . , uk resulting in 0.
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Before moving on, we might as well register the following definition:

Definition 5

A square matrix A is called nonsingular if the only solution to the system Ax = 0
is the trivial solution x = 0. We call A singular if it is not nonsingular.

There are several equivalences regarding the notion of “nonsingular matrix”:

Theorem 4

For a given square matrix A, the following conditions are equivalent:

(i) A is nonsingular.

(ii) The columns of A are linearly independent.

(iii) det A 6= 0.

(iv) The inverse matrix A−1 exists.

One usually uses the word “singular” to refer to something bad4. Not having
unique solutions to systems is something “bad”, as well as having vectors being lin-
early dependent. This should help you not confuse the meanings of “singular” versus
“nonsingular” while keeping item (ii) – the most useful one for us here – of the above
Theorem in mind.

With this in place, let’s put the algorithm in practice with the next:

Exercise 18

Consider the (column) vectors

u1 =

 1
2
−1

 , u2 =

 2
1
−3

 , u3 =

−1
4
3

 , u4 =

1
1
0

 .

(a) Are u1, u2, and u3 linearly independent?

(b) Are u2, u3, and u4 linearly independent?

We start with (a). Applying the algorithm described above. Namely, we con-
sider the matrix

[u1|u2|u3] =

 1 2 −1
2 1 4
−1 −3 3

 .

4For example, a singularity in a spacetime is a region on which the laws of Physics break down.
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Then

R2 := R2 − 2R1
R3 := R3 + R1

∼

1 2 −1
0 −3 6
0 −1 2

 .

Now

R2 := R2 − 3R1 ∼

1 2 −1
0 0 0
0 −1 2

 .

having a row full of zeros says that u1, u2 and u3 are linearly dependent.
For item (b), the same idea works. To make the calculations a bit easier, we

note that the order of the vectors is completely irrelevant in the definition of linear
independence (which makes perfect sense, as the rank of a matrix is not affected
by permuting columns), so we may just as well place u4 as the first vector and set
up

[u4|u2|u3] =

1 2 −1
1 1 4
0 −3 3

 .

Then

R2 = R2 − R1 ∼

1 2 −1
0 −1 −3
0 −3 3

 ,

and next

R3 := R3 − 3R2 ∼

1 2 −1
0 −1 −3
0 0 12

 .

This last matrix is in triangular form, and has three pivots (not all equal to 1,
though). This means that the matrix has full rank, and so u2, u3 and u4 are linearly
independent.

Remark. In the above problem, it follows from item (ii) of Theorem (p. 59), together
with the fact that elementary row operations do not change whether a matrix is singu-
lar or nonsingular, that the matrices 1 2 −1

2 1 4
−1 −3 3

 ,

1 2 −1
0 −3 6
0 −1 2

 , and

1 2 −1
0 0 0
0 −1 2


are all singular, while1 2 −1

1 1 4
0 −3 3

 ,

1 2 −1
0 −1 −3
0 −3 3

 , and

1 2 −1
0 −1 −3
0 0 12


are all nonsingular. It is also worth pointing out that while here all matrices were
square, this is not important for applying the algorithm. For instance, if one has 7 vec-
tors in R10, one would set up a 10× 7 matrix and reduce it to the point where the rank
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could be identified – if the rank equals 7, the vectors would be linearly independent,
while rank less than 6 would mean that the vectors are linearly dependent.

Exercise 19

Consider in R4 the vectors

v1 =


1
2
−1
1

 , v2 =


0
−1
3
0

 , and w =


1
−1
c
1


Determine the value of c for which w may be written as a linear combination of
v1 and v2. What is the combination?

Note that w being a linear combination of v1 and v2 is equivalent to saying
that v1. v2, and w are linearly dependenta. Then, we would like to find the value
of c for which the matrix 

1 0 1
2 −1 −1
−1 3 c
1 0 1


has rank less than 3. In fact, since v1 and v2 are not multiples of each other, we
can immediately say that this rank has to be equal to 2. In other words, no matter
what we do to the above matrix, we will end up with at least two pivots. But what
is the value of c for which the third “pivot” is not actually a pivot? Go on:

R2 := R2 − 2R1
R3 := R3 + R2
R4 := R4 − R1

∼


1 0 1
0 −1 −3
0 3 c + 1
0 0 0

 .

The normalize the second row and eliminate the 3 below the pivot:

R2 := −R2
R3 := −3R2

∼


1 0 1
0 1 3
0 0 c− 8
0 0 0

 .

The conclusions so far are:

• If c 6= 8, the matrix has rank 3, and v1, v2 and w are linearly independent.
In this case, it is impossible to write w as a linear combination of v1 and v2.
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• If c = 8, the matrix has rank 2, and v1, v2 and w are linearly dependent.
Since v1 and v2 are not multiples of each other, it is possible to write w as a
linear combination of v1 and v2.

So, assume that c = 8, and write w = av1 + bv2 for real number a and b to be
found. Explicitly, this means that

1
−1
8
1

 = a


1
2
−1
1

+ b


0
−1
3
0

 =⇒


1
−1
8
1

 =


a

2a− b
−a + 3b

a

 ,

but a system with 4 equations and 2 variables, generally speaking, does not want
to have any solutions. By setting c = 8, however, we ensure that such a solution
will exist. It should be clear that a = 1 and b = 3 does the job here, so w =
1v1 + 3v2.

aIn fact, this is related to a more general phenomenon. If you have a collection v1, . . . , vk which
is linearly independent and there is a vector w which is not a linear combination of them, then the
new collection v1, . . . , vk, w is again linearly independent.

Let’s conclude today’s discussion with a review:

Exercise 20

True or False?

(a) (T/F) If a linear system of equations has more than one solution, then it has
infinitely many.

(b) (T/F) If A has size 3× 5 matrix and B has size 3× 4, then AB is defined and
has size 5× 4.

(c) (T/F) We have that AB = AC =⇒ B = C, whenever A, B and C are square
matrices and A 6= 0.

(d) (T/F) If the augmented matrix of the linear system Ax = b has a pivot in its
last column, the given system has no solution.

(e) (T/F) If {v1, v2, v3, v4} is linearly independent, so is {v1, v2, v3}.

(f) (T/F) For any square matrices A and B, we have that (AB)> = A>B>.

(g) (T/F) If a linear system has more variables than equations, then it must be
consistent.

(h) (T/F) If A is a matrix with orthogonal columns, then A>A is a diagonal matrix.

(i) (T/F) If A is a n×m matrix and B is the m×m square matrix consisting only
of 1’s, then AB = A.
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(j) (T/F) A non-homogeneous linear system with 3 equations and 4 variables
having (2, 0, 2, 2) as a solution has infinitely many solutions.

(a) True. Any linear system has either no solutions, one solution, or infinitely
many. If you know the system has more than one solution, the only option
left is that is has infinitely many solutions.

(b) False. The product is undefined, since (3× 5)(3× 4) doesn’t “compile”.

(c) False. It is not enough to have that A 6= 0, we need A to be nonsingular (and
this is the main reason people care about nonsingular matrices). Namely, the
correct statement is: if A, B and C are square matrices and A is nonsingular,
then AB = AC =⇒ B = C.

(d) True. If the augmented matrix [A|b] has a pivot in its last column, it means
that in the row where such pivot appears, all entries before it must be zeros.
And we have seen that a row of the form

[
0 · · · 0 ∗

]
with ∗ 6= 0 indicates

that the system is incompatible.

(e) True. Imagine that the RREF of the matrix [v1|v2|v3|v4] has rank 4, and looks
like 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
...

...
...

...
0 0 0 0


.

Then the RREF of the submatrix [v1|v2|v3] is indicated in red:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
...

...
...

...
0 0 0 0


.

It has rank 3, so we are done.

(f) False. The correct formula is (AB)> = B>A>, in the reverse order. By the
way, this is not something particular for transpositions, it works for inverses
too. Namely, if A and B are both invertible (square) matrices, then AB is also
invertible and (AB)−1 = B−1A−1.
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(g) False. It would be true, however, if the system considered were homogeneous
(because then we would have a free variable). There are several nonhomoge-
neous counter-examples, such as

{
x + y + z = 0
x + y + z = 1,

or


2x + 3y− 4z− w = 1
x− 4y + 3x + 2w = 2,
0x + 0y + 0z + 0w = 1

etc.

(h) True. Recall that computing matrix products boils down to computing dot
products between rows of the first matrix and columns of the second. But the
rows of A> are the columns of A, so that

A>A =

a1 · a1 · · · a1 · an
... . . . ...

an · a1 · · · an · an


If the columns a1, . . . , an of A are orthogonal, all off-diagonal entries in the
above matrix are zero, so A>A is diagonal.

(i) False. The identity matrix has 1’s in the diagonal and 0’s everywhere else,
not 1’s everywhere. Almost any matrix A you choose will work as a counter-
example, such as [

1 2
3 4

] [
1 1
1 1

]
=

[
3 ∗
∗ ∗

]
.

(j) True. Provided a nonhomogeneous system has at least one solution, it will
have the same number of solutions as the associated homogeneous system.
Since we know that a homogeneous system with 3 equations and 4 variables
has infinitely many solutions (since there is a free variable), so does the origi-
nal given system.
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11 November 1st

We now start with the third part of this course: Ordinary Differential Equations
(“ODE”s, for short). The idea is simple: we have equations involving derivatives, but
instead of solving for a number or vector, we solve for a function instead. Consider
a simple example: y′(t) = 2t, and imagine you want to solve for y. Integrating, we
obtain that y(t) = t2 + c for some constant of integration c ∈ R. Keeping track of
such constants is now crucial (and perhaps the reason why you kept losing points in
Calculus 1 for forgetting the +c; it was all a prelude to this moment), for different
choices of c lead to different solutions. As we have infinitely many choices of c, we see
that even the simplest differential equation will have infinitely many solutions.

The adjective “ordinary” refers to the fact that all the functions involved are func-
tions of a single variable, and that there are no partial derivatives of anything in play.
If this were to be the case, we would be dealing with Partial Differential Equations
(“PDE”s, for short) instead.

In any case, the point remains that solving ODEs can be very hard and one usually
resorts to softwares or numerical methods to understand the behavior of solutions to
an ODE. We will focus on very specific types of ODEs which we can indeed solve. To
understand when this is the case, some vocabulary is useful. Let’s always organize
our equations by placing in the left side all the terms involving y, and on the right side
all the terms not involving y.

• order: the order of a differential equation is the highest derivative that appears.

• linearity: a differential equation is linear if its left side is a linear combination
(with function coefficients) of y, y′, y′′, etc.

• homogeneity: a differential equation is homogeneous if its right side equals zero.

We care about this because: the higher the order, the harder the equation should be
to solve; we like linear things better than non-linear things, and homogeneous equa-
tions are generally easier to deal with (because we like zeros).

Let’s practice the terminology:

Exercise 21

Classify the following differential equations (order/linearity/homogeneity):

(a) y′′ − 4y′ + 2y = 10t2.

(b) y′ − 2y3 = −4t.

(c) y′′′ − cos(t)y′′ + ety = 0.

(a) It’s a second order equation because the term with the highest derivative is
y′′. It is linear because the left side is a linear combination of y, y′ and y′′ (with
coefficients 2, −4 and 1, respectively). It is non-homogeneous as the right side
does not equal the zero function.
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(b) It’s a first order equation because the term with the highest derivative is y′.
It is non-linear because of the y3 term (the non-linear operation of taking a
cube is being applied to the function variable y). It is non-homogeneous for
hopefully obvious reasons.

(c) It’s a third order equation because the term with the highest derivative is y′′′.
It is linear because the left side is a linear combination of y, y′, y′′ and y′′′ (with
coefficients et, 0,− cos(t) and 1, respectively). It is clearly homogeneous. Note
here that the functions cos(t) and et are nonlinear functions, but of the variable
t, not the variable y (which is what we care about when deciding whether a
given differential equation is linear or not).

Remark. Warning: choosing particular values of t does not tell you anything about the
nature of the differential equation. For example, saying that the equation in item (a) is
homogeneous for t = 0 and nonhomogeneous for t 6= 0 is nonsense. What matters is
if what’s on the right side is the zero function or not.

Next, we will focus on second order linear homogeneous ODEs, with constant
coefficients. This means, for instance, that the ideas we will present next are good for
trying to solve an equation whose left side looks like the one in item (a) of the previous
exercise, but not something like in item (c) (which, as a matter of fact, is very difficult
to solve). The reason why we are going straight to second order equations, as opposed
to first order ones, is that first order equations are “easy”, in the sense that morally,
all one has to do is one integration. And this is not enough when dealing with second
order equations.

To further motivate what will come next, consider the simplest equation ever:
y′(t) = y(t). The solutions are clearly y(t) = cet, for some constant c ∈ R. If we
considered y′(t) = ry(t) instead, the solutions would be y(t) = cert. There is no rea-
son for us to expect exponentials to come again to the rescue in the second order case,
so we will think backwards. The idea is to try an exponential y = ert, and find the
values of r for which this is indeed a solution. Namely, y′ = rert and y′′ = r2ert, so

0 = ay′′ + by′ + cy = ar2ert + brert + cert = (ar2 + br + c)ert =⇒ ar2 + br + c = 0,

as ert 6= 0 may be cancelled.
So, we can solve the differential equation provided we can solve the characteristic

equation ar2 + br + c = 0. Note that this idea works even if the order of the differen-
tial equation is bigger than two, but then solving the characteristic equation may be
difficult. When solving a quadratic equation, only three possibilities may happen:

Theorem 5

Consider the differential equation ay′′ + by′ + cy = 0, with a, b, c ∈ R, and a 6= 0.
If r1 and r2 are the solutions of the characteristic equation ar2 + br + c = 0, then:

(i) if r1 and r2 are both real and distinct, the general solution of the given ODE
is y = c1er1t + c2er2t, with c1, c2 ∈ R.

(ii) if r := r1 = r2 is a real double root, the general solution of the given ODE is
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y = c1ert + c2tert, with c1, c2 ∈ R.

(iii) if r1 and r2 are complex (and hence conjugate to each othera), the general
solution of the given ODE is y = c1eαt cos(βt) + c2eαt sin(βt), with c1, c2 ∈ R,
where r1 = α + iβ.

aComplex roots of a real polynomial always come in conjugate pairs.

Of course, memorizing the above is a waste of time. Working case by case from here
on saves you brain power. On the following examples, we will simultaneously explore
this idea, as well as the fact that once suitable initial conditions have been imposed,
the solution to the so-called Initial Value Problem (“IVP”, for short) becomes unique.

Exercise 22 (Two distinct real roots)

(a) Find the general solution of y′′ − 3y′ − 18y = 0.

(b) Find the unique solution with initial conditions y(0) = 0 and y′(0) = 4.

For item (a), we start setting up the characteristic equation r2 − 3r − 18 = 0.
It may be factored as (r − 6)(r + 3) = 0, which says that the characteristic roots
are r1 = 6 and r2 = −3. Therefore, we know that y1 = e6t and y2 = e−3t are
two solutions. They are linearly independent because one is not a (real) multiple
of the other. However, since the given ODE is linear and homogeneous, the
dimension of the space of solutions equals the order of the equation. This says
that taking linear combinations of y1 and y2 does, in fact, produce all solutions of
this ODE. In other words, the general solution is

y = c1e6t + c2e−3t, with c1, c2 ∈ R.

For item (b), imposing two initial conditions (at the same point) allows us to solve
for the two coefficients c1 and c2. The relations y(0) = 0 and y′(0) = 4 becomes
the linear system{

c1 + c2 = 0
6c1 − 3c2 = 4

=⇒ c1 =
4
9

and c2 = −4
9

.

The solution of the given IVP is

y =
4
9

e6t − 4
9

e−3t.

Let’s see next what happens in the case where two complex conjugate roots appear.
Two additional facts are crucial to understand this case:
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Theorem 6

Real and imaginary parts of a complex solution to a real linear homogeneous
ODE are real solutions.

Theorem 7 (Euler’s Formula)

For any real number θ, we have eiθ = cos θ + i sin θ.

We move on (phrasing things in a lazier way, but with the same content as in Ex-
ample 22):

Exercise 23 (Complex conjugate roots)

Solve the IVP: {
y′′ + 9y = 0
y(0) = 8, y′(0) = −8

The strategy will always be the same: first find the general solution of the
differential equation alone, and then use the given initial conditions to solve for c1
and c2. The characteristic equation is simply r2 + 9 = 0, whose roots are ±3i. We
may just focus on one of thema, say 3i. This says that e3it is a complex solution.
By Euler’s Formula,

e3it = cos(3t) + i sin(3t),

so Theorem 6 says that y1 = cos(3t) and y2 = sin(3t) are real solutions. They’re
clearly linearly independent, so the general solution of the differential equation is

y = c1 cos(3t) + c2 sin(3t), c1, c2 ∈ R.

With this in place, we move on to impose the initial conditions. Computing the
derivative as y′ = −3c1 sin(3t) + 3c2 cos(3t), we see that y(0) = 8 and y′(0) = −8
together give us

c1 = 8 and 3c2 = −8,

so the unique solution to the IVP is

y = 8 cos(3t)− 8
3

sin(3t).

aBecause complex roots of a real polynomial always come in conjugate pairs. So 3i and −3i
carry the same amount of information about the original differential equation.

There is one last case to study.
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Exercise 24 (Real double root)

Solve the IVP: {
y′′ − 2y′ + y = 0
y(0) = 4, y′(0) = 0

The characteristic equation of the given ODE in this case is just r2− 2r + 1 = 0,
so that (r − 1)2 = 0 says that r = 1 is a real double root. Hence y1 = et is one
solution, but since the equation has order 2, we need a second solution y2, linearly
independent from y1, to span the whole solution space via linear combinations.
Indeed, repeating y1 and writing c1et + c2et just leads to (c1 + c2)et, but c1 + c2 is
as arbitrary as c1 and c2, so it really counts as one single degree of freedom. One
attempt to create linear independence is to replace c1 + c2 with c1 + c2t, which
suggests that y2 = tet works as a second solution independent from y1 and that
the general solution is

y = c1et + c2tet, c1, c2 ∈ R.

This is indeed the case by Theorem 5. Imposing initial conditions works the same
as the other cases, so we may compute y′ = c1et + c2et + c2tet by the product rule.
Thus, y(0) = 4 and y′(0) = 0 together read as the system{

c1 = 4
c1 + c2 = 0

=⇒ c1 = 4 and c2 = −4,

and the unique solution to the IVP is

y = 4et − 4tet.

As mentioned before, this mechanism can be used to solve linear homogeneous
ODEs with constant coefficients of any order, say

any(n) + an−1y(n−1) + · · ·+ a1y′ + a0y = 0, with a1, . . . , an ∈ R, an 6= 0,

provided one can solve the characteristic equation

anrn + an−1rn−1 + · · ·+ a1r + a0 = 0

instead. Once this equation has been completely factored, one builds the general so-
lution from the factors obtained, using what has been discussed so far. Let’s illustrate
this with one more complicated last example.

Page 68



MATH2177 – AU22 – RECITATION DIARY Ivo Terek

Exercise 25 (Dealing with higher order)

Determine the general solution of a 5th order linear homogeneous ordinary differential
equation whose characteristic equation is factored as

(r− 2)(r− 3)2(r− (4 + 5i))(r− (4− 5i)) = 0.

Let’s understand each factor separately:

• The term (r− 2) provides y1 = e2t.

• The term (r− 3)2 provides y2 = e3t and y3 = te3t.

• The term (r− (4 + 5i)) provides the complex solution e(4+5i)t, so using Eu-
ler’s formula to write

e(4+5i)t = e4te5it = e4t(cos(5t) + i sin(5t)) = e4t cos(5t) + ie4t sin(5t)

gives us the real solutions y4 = e4t cos(5t) and y5 = e4t sin(5t).

We conclude that the general solution is

y = c1e2t + c2e3t + c3te3t + c4e4t cos(5t) + c5e4t sin(5t),

with c1, c2, c3, c4, c5 ∈ R.

If you want an extra reference for these things, I particularly like Chapters 3 and 4
of [2].
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12 November 8th

As a follow up from last class, we now move on to discuss non-homogeneous
second order linear ODE’s with constant coefficients. Namely, we consider

ay′′ + by′ + cy = f ,

where a, b, c ∈ R with a 6= 0 (or else the equation would be of first order instead), but
with the right side being equal to some arbitrary function f . Here’s what we need to
know about it:

Theorem 8

The general solution of ay′′ + by′ + cy = f is y = yp + yh, where yh is the general
solution of the associated homogeneous equation ay′′ + by′ + cy = 0, and yp is
any particular solution of the original non-homogeneous equation.

In other words, to solve such a non-homogeneous equation, we first consider its
homogeneous version and find yh, by methods already studied. As for finding yp,
however, the answer is dissapointing: we have to guess it. Of course, by “guess” we
mean a “reasonable” guess, in the sense that if f is a polynomial, trigonometric func-
tion, exponential, etc., we’ll try to find yp of the same type. This method of guessing
almost always works. We will explore this in the next examples, and also see how
could guessing could go wrong.

Exercise 26

Determine the general solution of the non-homogeneous linear differential equa-
tion y′′ − 9y = 2t + 1.

We will always proceed with two steps, first finding the general solution yh of
the associated homogeneous equation y′′ − 9y = 0. The characteristic equation is
simply r2 − 9 = 0, which may be factored as (r− 3)(r + 3) = 0. As this character-
istic equation appeared by looking for the values of r for which ert was actually a
solution of the homogeneous equation, we obtain two linearly independent solu-
tions e3t and e−3t, so that yh = c1e3t + c2e−3t, with c1, c2 ∈ R. It remains to find yp.
As 2t + 1 is a polynomial of degree 1, we try to make yp = At + B a polynomial
of degree 1 as well. The goal is to find A and B for which yp is actually a solution
of the original non-homogeneous equation. Plugging it into the differential equa-
tion, we have that y′′p − 9yp = −9yp = −9At − 9B = 2t + 1, so that A = −2/9
and B = −1/9. So, the particular solution is yp = −2t/9− 1/9, and the general
solution to the original non-homogeneous is

y = −2
9

t− 1
9
+ c1e3t + c2e−3t, c1, c2 ∈ R.
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Exercise 27

Determine the general solution of the non-homogeneous linear differential equa-
tion y′′ − 4y′ − 32y = 6e−3t.

Let’s start by finding the general solution yh of the associated homogeneous
equation y′′ − 4y′ − 32y = 0 first. Its characteristic equation is r2 − 4r − 32 = 0,
which may be factored as (r− 8)(r + 4) = 0. This implies, as usual, that we have
yh = c1e8t + c2e−4t, with c1, c2 ∈ R. As the non-homogeneous term in the original
equation is an exponential, we try yp = Ae−3t, and substitute it together with its
derivatives y′p = −3Ae−3t and y′′p = 9Ae−3t into the original equation to find the
value of A which makes yp into a solution. We have that

9Ae−3t − 4(−3Ae−3t)− 32Ae−3t = 6e−3t =⇒ 9A + 12A− 32A = 6,

so A = −6/11, since e−3t may be cancelled everywhere. Therefore, the partic-
ular solution is yp = (−6/11)e−3t, and the general solution of the original non-
homogeneous equation is

y = − 6
11

e−3t + c1e8t + c2e−4t,

with c1, c2 ∈ R.

Exercise 28

Determine the general solution of the following non-homogeneous linear differ-
ential equations:

(a) y′′ − y = 3 sin(2t).

(b) y′′ + y = 3 cos t.

(a) We start considering the associated homogeneous equation y′′− y = 0, whose
characteristic equation r2− 1 = 0 has roots 1 and−1, to obtain that its general
solution is yh = c1et + c2e−t, with c1, c2 ∈ R. Now, as the non-homogeneous
term is trigonometric, we may try yp = A sin(2t) + B cos(2t). Of course one
might expect that B = 0 as the right side of the equation doesn’t have any y′

term, but for more complicated equations it is safer to keep both the sin and
cos terms, as the derivative of each of them equals the other, and things bal-
ance themselves out (this is not a formal argument, but just a rough intuition).
Anyway, we have that y′′p = −4A sin(2t)− 4A cos(2t), and thus

y′′p − yp = 3 sin(2t) =⇒ −5A sin(2t)− 5B cos(2t) = 3 sin(2t),
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so that A = −3/5 and B = 0 (as expected). We conclude that the solution of
the original non-homogeneous equation is

y = −3
5

sin(2t) + c1et + c2e−t,

with c1, c2 ∈ R.

(b) To find yh, we consider y′′ + y = 0 instead, whose characteristic equation is
r2 + 1 = 0, with roots r = ±i. This says that eit is a complex solution, but we
would like to have two linearly independent real solutions instead. They are
obtained by using Euler’s formula to write eit = cos t + i sin t, and using that
the real and imaginary parts will be real solutions (as the equation is linear;
revisit Theorem 6, p. 67). So, yh = c1 cos t + c2 sin t, with c1, c2 ∈ R. As for
yp, the obvious guess is yp = A sin t + B cos t. Plugging this into the original
non-homogeneous equation leads to a disaster: 0 = 3 cos t, which is complete
nonsense.

This disaster, however, is known as resonance. Namely, the reason why the
initial guess has failed is because the right hand side (which in this case is
3 cos t) was already a solution of the associated homogeneous equation (choose
c1 = 0 and c2 = 3 in the formula for yh). In vague terms, this creates an “ar-
tificial double-root effect” on the homogeneous equation, so in the same way
that when r was a double root of the characteristic equation ar2 + br + c = 0
we had to, in addition to the solution ert, consider a second solution tert, we
multiply our old guess for yp by t and try again.

Take two: let yp = At sin t + Bt cos t. Plugging this into the original non-
homogeneous equation leads (after 30 seconds or so of calculations) to

2A cos t− 2B sin t = 3 cos t =⇒ A =
3
2

and B = 0.

It was to be expected that terms with t cos t and t sin t should completely dis-
sapear: the introduction of the extra factors of t was just meant to kill the
resonance, but the original right side did not have any such terms. In any
case, we conclude that the general solution of the original non-homogeneous
equation is

y =
3t
2

sin t + c1 cos t + c2 sin t,

with c1, c2 ∈ R.

Remark. At this point, it is worth pointing out that if you were asked to solve an
Initial Value Problem (IVP) with non-homogeneous ODE, you would have to, on top
of everything already done, use the given initial conditions to find c1 and c2 (by solving
a linear system). It works exactly the same as in the examples done in last recitation.

Let’s conclude with one final practice for guesses:
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Exercise 29

What are the correct trial solutions for the following non-homogeneous linear dif-
ferential equations? Is there resonance happening? Do not solve the equations.

(a) y′′ + 2y′ + 2y = 5e−2t cos t.

(b) y′′ + y′ − y = 3t4 − 3t3 + t.

(c) y′′ − y = 25te−t sin(3t).

(d) y(3) − 3y′′ + 3y′ − y = 2022et.

(a) Here, we have that 5e−2t cos t has the form “polynomial of degree 0” times
“exponential” times “trigonometric function”. So the first guess ought to be

yp = Ae−2t cos t + Be−2t sin t.

The paranoia created by the previous exercise now dictates that we should ask
ourselves whether resonance happens. The trick here is to think of the term
e−2t cos t as a single block, coming from the complex pair r = −2± i. Is−2+ i
a root of the associated characteristic equation r2 + 2r + 2 = 0? If yes, there is
resonance. If not, there is no resonance. In this case, there is no resonance.

(b) Since 3t4 − 3t3 + t is a polynomial of degree 4, the guess is that the trial solu-
tion should also be a polynomial of degree 4, namely,

yp = At4 + Bt3 + Ct2 + Dt + E.

If resonance were to happen, part of this trial solution should be a solution
of the associated homogeneous equation. The only terms under this risk are
Dt and E, in case 0 were a root or double root of the characteristic equation
r2 + r− 1 = 0. Since it is not, there is no resonance.

(c) This is similar to item (a), in that 25te−t sin(3t) has the form “polynomial of
degree 0” times “exponential” times “trigonometric function”. So the first
guess ought to be

yp = (At + B)e−t cos(3t) + (Ct + D)e−t sin(3t).

We can think of the terms e−t cos(3t) and e−t sin(3t) as coming from the com-
plex pair −1± 3i. Since −1 + 3i is not a root of the associated characteristic
equation r2 − 1 = 0, there is no resonance.
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(d) The first guess here is yp = Aet. The exponential et comes from the character-
istic root r = 1. Is r = 1 a root of the characteristic equation r3− 3r2 + 3r− 1 =
0? Yes, there is resonance! In fact, it is a triple root (as the equation factors as
(r− 1)3 = 0), so we multiply the initial guess by t3 to obtain the correct guess
yp = At3et.
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13 November 15th

We had a free review before the third midterm, answering questions at random.
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14 November 22nd

Back in August 23rd, we introduced the Heat Flow Problem as an attempt to moti-
vate everything else that was going to happen in this class. It is a particular case of a
Partial Differential Equation (“PDE”, for short). They are considerably harder to deal
with than everything we have seen so far. The time has come to solve it.

Recall the setup: 
∂u
∂t

(x, t) = β
∂2u
∂x2 (x, t), 0 < x < L, t > 0

u(0, t) = u(L, t) = 0, t > 0

u(x, 0) = f (x), 0 < x < L

• Given: a wire of length L with diffusivity constant β and initial temperature
distribution f (x);

• Assumption: the temperature of the wire at its endpoints – located at x = 0 and
x = L – will remain fixed (and equal to, say, 0◦C);

• Goal: predict future temperature distributions.

The strategy for solving such a starts with a simple technique, called separation of
variables. Namely, we write u(x, t) = X(x)T(t) for some single-variable functions X
and T, and see what the PDE says about X and T. More precisely, we want to replace
the PDE for u with ODEs for X and T. We will illustrate the procedure with a concrete
heat flow problem.

Example 23

Solve the following heat flow problem:
∂u
∂t

(x, t) = 3
∂2u
∂x2 (x, t), 0 < x < π, t > 0

u(0, t) = u(π, t) = 0

u(x, 0) = sin x− 6 sin(4x), 0 < x < π

We start making a separation of variables, u(x, t) = X(x)T(t). The PDE itself
becomes X(x)T′(t) = 3X′′(x)T(t). We then have that

X′′(x)
X(x)

=
T′(t)
3T(t)

= −λ ∈ R,

as the left side doesn’t depend on t and the right side doesn’t depend on x. The
reason for the negative sign on λ is a matter of convenience (as to make plus signs
appear next and create “positive eigenvalues” for the boundary value problem
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involving X). In any case, we have the equations

X′′(x) + λX(x) = 0 and T′(t) + 3λT(t) = 0,

and we’ll use the first one to find out which values of λ may actually occur when
looking for nontrivial solutions. To do so, we also need to see what the initial
condition u(0, t) = u(π, t) = 0 means in terms of X and T. But this is easy: it
becomes just the initial condition X(0) = X(π) = 0 (or else T(t) = 0 and thus
u(x, t) = 0, which makes no physical sense). So:

• If λ < 0, then X(x) = c1e
√
−λt + c2e−

√
λt, so X(0) = X(π) = 0 gives us that

c1 = c2 = 0, and so X = 0, which is no good.

• If λ = 0, then we have X(x) = c1 + c2x, so X(0) = X(π) = 0 gives us that
c1 = c2 = 0, and so X = 0, which is again no good.

• If λ > 0, then X(x) = c1 cos(
√

λt) + c2 sin(
√

λt). Now X(0) = 0 means that
c1 = 0, while X(π) = 0 says that sin(π

√
λ) = 0 (provided c2 6= 0). This can

only occur if π
√

λ = nπ for some integer n, meaning that we must have that
λ = n2.

So, for each integer n, we have found a solution Xn(x) = an sin(nx), where an
is a real number (we will keep relabeling constants as needed). With this in place,
what is the corresponding Tn(t)? Solving the first order ODE T′n(t) = −3n2Tn(t)
leads to Tn(t) = bne−3n2t for some second real constant bn. With this in place,
setting cn = anbn, we have that

un(x, t) = Xn(t)Tn(t) = cne−3n2t sin(nx).

For each n, this function un satisfies almost everything required to solve the heat
flow problem, except for the initial distribution condition u(x, 0) = sin x− 6 sin(4x).
To achieve this, we consider the series u = ∑n≥1 un and find the cn’s to make this
work (as the PDE itself and the endpoint conditions are homogeneous, any linear
combination – finite or infinite – of un’s will also result in a solution). Namely,
setting

∑
n≥1

cne−3n2t sin(nx)
∣∣∣∣
t=0

= ∑
n≥1

cn sin(nx) = sin x− 6 sin(4x)

tells us that c1 = 1 and c4 = −6 does the trick (with cn = 0 for every n not equal
to 1 or 4). The desired solution is

u(x, t) = e−3t sin x− 6e−48t sin(4x).

A few comments are in order.
First, when looking at possibilities for λ we will always have that λ ≤ 0 leads to

X = 0. When solving concrete problems, one could directly jump to the case where
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λ > 0, but it is still instructive to eliminate λ ≤ 0 to keep track of what’s going on in
each step of the solution.

Second, abstractly solving the Heat Flow Problem carrying the abstract parameters
β and L, one arrives at what we’ll call a prototype solution to the Heat Flow Problem:

u(x, t) = ∑
n≥1

cne−β(nπ/L)2t sin
(nπx

L

)
.

You have a choice to make now: remember all the several little steps described in the
example above, or memorize this very unpleasant formula.

Third, if f (x) is not a linear combination of sines, finding cn’s may be tricky. Here’s
where Fourier series come in: almost all functions f (x) may be expressed as an infinite
linear combination of sines and, once this is done, reading the coefficients cn becomes
much easier. More precisely, a function f (x) on an interval 0 < x < L may be written
as

f (x) = ∑
n≥1

bn sin
(nπx

L

)
,

where the coefficients bn are given by

bn =
2
L

∫ L

0
f (x) sin

(nπx
L

)
dx.

Solving such integrals almost always requires integration by parts (and this is why I
keep insisting for you to review it). In this case, it will turn out that

u(x, 0) = f (x) =⇒ ∑
n≥1

cn sin
(nπx

L

)
= ∑

n≥1
bn sin

(nπx
L

)
=⇒ cn = bn.

The same strategy works to solve, for example, a vibrating string problem:

∂2u
∂t2 (x, t) = α2 ∂2u

∂x2 (x, t), 0 < x < L, t > 0

u(0, t) = u(L, t) = 0, t > 0

u(x, 0) = f (x), 0 < x < L,
∂u
∂t

(x, 0) = g(x), 0 < x < L,

With the only difference being that now the ODE for Tn(t) has order 2 instead of 1,
and thus there are two sequences of coefficients to solve for (as opposed to just cn’s),
and those are found by looking at the Fourier series of both f (x) and g(x).
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15 November 29th

We finally explore a bit of Fourier series here. To get some first intuition, let’s
compare it with a type of series we have already studied before:

• Taylor series: its partial sums (Taylor polynomials) approximate a function, near
a given point, with higher and higher degree polynomial expressions.

• Fourier series: its partial sums (trigonometric polynomials) approximate a func-
tion by superposing more and more “waves” of various frequencies.

Imagine something like the following picture5:

In the above picture, the indicated waves correspond to partial sums of a Fourier
series. But how to actually compute them? The Fourier expansion6 of a function f (x)
on a symmetric interval [−L, L] is given by

f (x) ∼ a0

2
+ ∑

n≥1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

where

an =
1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx and bn =

1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx.

Here, the formula for an holds for n = 0, 1, 2, . . ., while the formula for bn holds for
n = 1, 2, . . .. There are many things to unpack here. First, there’s no b0 terms because
trying to plug n = 0 into the formula for bn gives just 0. Second, the coefficient a0
plays a different role than the coefficients an for n ≥ 1, and must always be addressed
separately. One reason for this is that their “qualitative” behavior is very distinct.

5Taken from https://mathworld.wolfram.com/FourierSeriesSquareWave.html.
6“Fourier series” and “Fourier expansion” are used interchangeably. “Fourier transform” is some-

thing completely different, though.
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For example, the constant function 1 regarded as a wave has no amplitude, and its
usual antiderivative, x, is a polynomial, while cos(nπx/L) has varying amplitute and
its usual antiderivative is trigonometric. The factor of 2 simply makes things work
and is explained by general symmetry reasons we’ll have opportunity to explore in
detail soon. Lastly, when expressing the Fourier series of a function, one uses the
approximate sign ∼ instead of an equality sign, as a reminder that convergence issues
of Fourier series are more subtle than convergence issues for, say, Taylor series.

It’s also convenient to note that while the argument nπx/L doesn’t look exactly
friendly, in most problems we have to deal with, the number L will be an integer
multiple of π, which makes things more tractable.

Example 24

Compute the Fourier expansion of the piecewise function f given by

f (x) =

{
x, if 0 ≤ x ≤ π,
x + π, if −π ≤ x < 0.

We may start trying to get some intution for what the graph of this function
looks like. See the next figure.

We must simply compute a0, an, and bn, and insert the results in a series. From
the figure, we immediately have that

a0 =
1
π

∫ π

−π
f (x)dx =

1
π
· π2

2
· 2 = π,

as we know that integrals of positive functions compute areas under graphs, and
we have two triangles with both base and height equal to π. As for an and bn with
n ≥ 1, we must break the integral from −π to π into two integrals, so we can
actually use the concrete expressions for f (x) (on each subinterval) given to us.
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For example:

an =
1
π

∫ π

−π
f (x) cos(nx)dx

=
1
π

(∫ 0

−π
f (x) cos(nx)dx +

∫ π

0
f (x) cos(nx)dx

)
=

1
π

(∫ 0

−π
(x + π) cos(nx)dx +

∫ π

0
x cos(nx)dx

)
=

1
π

(∫ 0

−π
π cos(nx)dx +

��
���

���
��:0∫ π

−π
x cos(nx)dx

)

=
∫ 0

−π
cos(nx)dx

=
sin(nx)

n

∣∣∣∣0
−π

= 0.

Again, breaking the original integral into two was needed so we could use the
concrete expressions given for f (x) on each interval. Being able to join things
back together on the

∫ π
−π x cos(nx)dx was a convenient coincidence due to the

fact that x appeared in both expressions defining f (x). This integral is zero for
symmetry reasons: the integral of an odd function over a symmetric interval
vanishes (namely, x is odd and cos(nx) is even, so the product x cos(nx) is odd).
Dealing with bn’s is similar, this time using that the integral of an even function
over a symmetric interval equals twice the integral over the right (or left) half
of the interval. We have that:

bn =
1
π

∫ π

−π
f (x) sin(nx)dx

=
1
π

(∫ 0

−π
f (x) sin(nx)dx +

∫ π

0
f (x) sin(nx)dx

)
=

1
π

(∫ 0

−π
(x + π) sin(nx)dx +

∫ π

0
x sin(nx)dx

)
=

1
π

(∫ 0

−π
π sin(nx)dx +

∫ π

−π
x sin(nx)dx

)
=

1
π

(∫ 0

−π
π sin(nx)dx + 2

∫ π

0
x sin(nx)dx

)
=

1
π

(
−π

n
cos(nx)

∣∣∣∣0
−π

+ 2

(
− x

n
cos(nx)

∣∣∣∣π
0
+

1
n

∫ π

0
cos(nx)dx

))

=
1
π

−π

n
(1− (−1)n) + 2

−π

n
(−1)n +

��
�
��
�*0

sin(nx)
n2

∣∣∣∣π
0


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= − 1
n
(1− (−1)n + 2(−1)n)

= − (1 + (−1)n)

n

by using that cos(nπ) = (−1)n for any integer n. In green, we have also used
integration by parts with

u = x dv = sin(nx)dx

v = − 1
n

cos(nx) du = dx

In any case, we have obtained the Fourier expansion

f (x) ∼ π

2
− ∑

n≥1

1 + (−1)n

n
sin(nx) on [−π, π],

as desired. Since 1 + (−1)n equals 0 when n is odd and 2 when n is even, we may
set n = 2k and rewrite our answer as

f (x) ∼ π

2
− ∑

k≥1

1
k

sin(2kx) on [−π, π],

after simplifying 2/(2k) = 1/k.

In the above example, we were able to find the Fourier expansion of a function
f (x) which was not continuous (namely, the figure shows a jump discontinuity at
x = 0). This is another important difference between Taylor series and Fourier series.
For Taylor series, the function must have all derivatives existing at the chosen center
point, while a Fourier series does not require the choice of a center point (although
one could reasonably argue that the center in this case is 0) or derivatives to exist. The
only thing we must be able to do is to compute the relevant integrals, but integrals are
insentitive to a countable number of discontinuities.
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16 December 6th

Let’s start by recalling the different types of Fourier expansions.

• “Full” Fourier series: This is done for a function f (x) defined on a symmetric
interval [−L, L], and we have

f (x) ∼ a0

2
+ ∑

n≥1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
,

where

an =
1
L

∫ L

−L
f (x) cos

(nπx
L

)
dx and bn =

1
L

∫ L

−L
f (x) sin

(nπx
L

)
dx.

The formula for an is good for n = 0, 1, 2... and the one for bn is good for n =
1, 2, .... Computing all these coefficients is generally time-consuming, so you
should always look for symmetries. Namely, if f (x) is even, then bn = 0 for
all n, since the full Fourier series of an even function should not have odd/sin
terms. Similarly, if f (x) is odd, then an = 0 for all n, since the full Fourier series
of an odd function should not have even/cos terms. In other words, symmetries
of a function reflect into symmetries of its Fourier series.

• Sine series: This is done for a function f (x) defined on a half-interval [0, L], and
we have

f (x) ∼ ∑
n≥1

bn sin
(nπx

L

)
,

where

bn =
2
L

∫ L

0
f (x) sin

(nπx
L

)
dx, n = 1, 2, ...

This is important when dealing with heat flow problems, as the initial tempera-
ture distribution is defined on an interval [0, L], and not [−L, L].

• Cosine series: This is done for a function f (x) defined on a half-interval [0, L],
and we have

f (x) ∼ a0

2
+ ∼ ∑

n≥1
an cos

(nπx
L

)
,

where

an =
2
L

∫ L

0
f (x) cos

(nπx
L

)
dx, n = 0, 1, 2, ...

This sort of expansion is useful for solving problems similar to heat flow prob-
lems, but on which the boundary condition u(0, t) = u(L, t) = 0 is replaced7

with (∂u/∂x)(0, t) = (∂u/∂x)(L, t) = 0 – the resulting prototype solution has
cosines instead of sines, and the rest is history.

7Exercise: what are the eigenvalues λ and eigenfunctions X to the equation X′′(x) + λX(x) = 0
subject to X′(0) = X′(L) = 0 instead of X(0) = X(π) = 0?
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Note that asking yourself whether a function defined on a half-interval [0, L] is
even or odd makes no sense: it would have to be defined on a symmetric interval
[−L, L] to begin with. There is no way to simplify the (already adjusted!) formulas for
sine series and cosine series. The sine series and cosine series of a function f (x) on
[0, L] are essentially restrictions of the full Fourier series of the odd or even extensions
of f (x) to [−L, L]. For example:

• Periodic extension. Copy and paste the function defined on [0, L] to the interval
[−L, 0]:

• Even extension. Flip it across the y-axis:

• Odd extension. Reflect the function across the origin:
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With this in place, let’s see what happens with a concrete example:

Example 25

Determine the Fourier sine-expansion of cos x on [0, π].

Let’s start by understanding what is the odd extension c̃os x of cos x looks like
(and noting that the fact that cos x, when considered on the full interval [−π, π]
to begin with, was already even, is irrelevant):
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In this particular case, the periodic extension and the odd extension agree. We
already know that an = 0 for all n by symmetry reasons. As for the coefficients bn,
we have that

bn =
1
π

∫ π

−π
c̃os x sin(nx)dx =

2
π

∫ π

0
c̃os x sin(nx)dx =

2
π

∫ π

0
cos x sin(nx)dx,

since c̃os x sin(nx) is even (as the product of the two odd functions c̃os x and
sin(nx)), and c̃os x = cos x for x in the right interval [0, π] (this is what it means
to say that c̃os x is an extension of cos x). Of course, when solving problems like
this, you don’t have to go and write the above step carrying the extension of the
given function: go ahead and compute bn (or an, for even extensions) with the
extra coefficient of 2 and the integral being carried only over the “right” interval.
The point of doing this step here is illustrating that while the textbook [1] presents
different formulas for Fourier expansions, Fourier sine-expansions, and Fourier-
cosine expansion, they’re really the same thing, and no extra effort on memorizing
things should be made.

In any case, it remains to compute this integral. For that, we must rely on
product-to-sum trigonometric identities:

bn =
2
π

∫ π

0
cos x sin(nx)dx

=
2
π

∫ π

0

1
2
(sin((n + 1)x) + sin((n− 1)x))dx

=
1
π

∫ π

0
sin((n + 1)x) + sin((n− 1)x)dx

= − 1
π

(
cos((n + 1)x)

n + 1
+

cos((n− 1)x)
n− 1

) ∣∣∣∣π
0

= − 1
π

(
(−1)n+1 − 1

n + 1
+

(−1)n−1 − 1
n− 1

)
(∗)
=

1 + (−1)n

π

(
1

n + 1
+

1
n− 1

)
=

2n(1 + (−1)n)

π(n2 − 1)
,

where in (∗) we have used that (−1)n+1 = (−1)n−1 (as the powers differ by an
even number) and distributed the negative sign to carry the simplification. This
means that we have

cos x ∼ ∑
n≥1

2n(1 + (−1)n)

π(n2 − 1)
sin(nx) on [0, π].

We conclude this course by seeing how things come full circle:
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Example 26

Solve the following heat flow problem:
∂u
∂t

(x, t) = 10
∂2u
∂x2 (x, t), 0 < x < π, t > 0

u(0, t) = u(π, t) = 0,

u(x, 0) = cos x, 0 < x < π

We start making a separation of variables, u(x, t) = X(x)T(t). The PDE itself
becomes X(x)T′(t) = 10X′′(x)T(t). We then have that

X′′(x)
X(x)

=
T′(t)

10T(t)
= −λ ∈ R,

as the left side doesn’t depend on t and the right side doesn’t depend on x. We
obtain

X′′(x) + λX(x) = 0 and T′(t) + 3λT(t) = 0,

and the endpoint conditions on u read X(0) = X(π) = 0. From here, it follows
that λ = n2 for some natural number n ≥ 1, and Xn(x) = an sin(nx) for some real
number an. Finding the corresponding Tn(t), we solve the first order ODE T′n(t) =
−10n2Tn(t): the solution is Tn(t) = bne−10n2t for some second real constant bn.
With this in place, setting cn = anbn, we have that

un(x, t) = Xn(t)Tn(t) = cne−10n2t sin(nx).

For each n, this function un satisfies almost everything required to solve the heat
flow problem, except for the initial distribution condition u(x, 0) = cos x. To
achieve this, we consider the series u = ∑n≥1 un and find the cn’s to make this
work. In other words, we have that

∑
n≥1

cne−10n2t sin(nx)
∣∣∣∣
t=0

= ∑
n≥1

cn sin(nx) = cos x.

We have already seen that

cos x ∼ ∑
n≥1

2(1 + (−1)n)n
π(n2 − 1)

sin(nx) on [0, π],

so that

cn =
2(1 + (−1)n)n

π(n2 − 1)
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for every n ≥ 1, and we conclude that the solution to the given heat flow problem
is

u(x, t) = ∑
n≥1

2n(1 + (−1)n)

π(n2 − 1)
e−10n2t sin(nx).

The remainder of our time together was spent discussing a couple of the homework
problems.

Exercise 30

Find the eigenvalues and eigenfunctions of{
y′′ + λy = 0
y(0) = y(2π), y′(0) = y′(2π)

The question we should always be asking ourselves is: for which values of λ
will we get nonzero solutions y? How this is done? We always look at three cases:
λ < 0, λ = 0, and λ > 0, and we ask ourselves if, given the form of the general
solution in this case, the conditions y(0) = y(2π) and y′(0) = y′(2π) are strong
enough to force c1 = c2 = 0. If not, we get an eigenvalue, and such conditions
will say something about λ itself.

• If λ < 0, the solutions of the characteristic equation are r = ±
√
−λ (note

that if λ < 0, then −λ > 0 being inside the root is no problem), so we have
y = c1e

√
−λx + c2e−

√
−λx. The boundary conditions read{

c1 + c2 = c1e2π
√
−λ + c2e−2π

√
−λ

√
−λc1 −

√
−λc2 =

√
−λc1e2π

√
−λ −

√
−λc2e−2π

√
−λ

Simplifying
√
−λ in the second equation (as λ 6= 0 in this case) and adding

the equations gives us that 2c1 = 2c1e2π
√
−λ, so λ 6= 0 says that this expo-

nential is not equal to 1, and so c1 = 0. Rinse and repeat to get c2 = 0.
Therefore, we have no negative eigenvalues.

• If λ = 0, the general solution is y = c1 + c2x. The boundary conditions read
c1 = c1 + 2πc2 and c2 = c2, so that c2 = 0 and we cannot determine c1:
it is a free variable. Therefore λ = 0 is an eigenvalue, with corresponding
eigenfunctions y0 = a0 (constant).

• If λ > 0, the solutions of the characteristic equation are r = ±i
√

λ, so we
have that y = c1 cos(

√
λx) + c2 sin(

√
λx). The boundary conditions read{

c1 = c1 cos(2π
√

λ) + c2 sin(2π
√

λ)√
λc2 = −

√
λc1 sin(2π

√
λ) +

√
λc2 cos(2π

√
λ)

Page 88



MATH2177 – AU22 – RECITATION DIARY Ivo Terek

Simplifying
√

λ in the second equation (as λ 6= 0 in this case), we may look
at the coefficient matrix for this homogeneous linear system for c1 and c2.
Namely, it equals [

cos(2π
√

λ)− 1 sin(2π
√

λ)

− sin(2π
√

λ) cos(2π
√

λ)− 1

]
The only chance for us to obtain a nontrivial solution for c1 and c2 is if this
matrix is singular (or, equivalently, its columns or rows are linearly depen-
dent, or yet its determinant is equal to zero). Argue however you want,
the conclusion is that we must have sin(2π

√
λ) = 0 and cos(2π

√
λ) = 1,

and so we must have 2π
√

λ = 2πn for some integer n. So, λ = n2 are
the positive eigenvalues, and the corresponding eigenfunctions are given
by yn = an cos(nx) + bn sin(nx), where an, bn ∈ R are completely arbitrary
(namely, the coefficient matrix becomes the zero matrix for such values of λ,
and so both c1 and c2 are free variables – hence renamed as to be indexed by
n as well).

“When you feel like giving up - persevere
When faced with challenges - persevere
When you’re tired and feel like no more - persevere
When others say stop - persevere.

Set your eyes on your goal and persevere.
Don’t be discouraged but persevere.
The one who keeps going, who perseveres
Is the one that will reach their goals long before there peers.”

CATHERINE PULSIFER — “PERSEVERE”
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