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ABSTRACT. A three-dimensional pseudo-Riemannian manifold is called essen-

tially conformally symmetric (ECS) if its Cotton tensor is parallel but nowhere-

vanishing. In this note we prove that three-dimensional ECS manifolds must

be noncompact or, equivalently, that every compact three-dimensional Cotton-

parallel pseudo-Riemannian manifold must be conformally flat.

1. Introduction and main result

Pseudo-Riemannian manifolds of dimensions n ≥ 4 whose Weyl tensor is

parallel are called conformally symmetric [3]. Those which are not locally symmetric

or conformally flat are called essentially conformally symmetric (ECS, in short).

It has been shown by Roter in [9, Corollary 3] that ECS manifolds do exist in

all dimensions n ≥ 4, and in [4, Theorem 2] that they necessarily have indefinite

metric signature. The local isometry types of ECS manifolds were described by

Derdzinski and Roter in [6]. Compact ECS manifolds exist in all dimensions n ≥ 5

and realize all indefinite metric signatures – see [8] and [7]. It is not currently

known if compact four-dimensional ECS manifolds exist.

When the dimension of M is n ≤ 3, the Weyl tensor vanishes and this dis-

cussion becomes meaningless. In dimension n = 3, however, conformal flatness

is encoded in the Cotton tensor as opposed to the Weyl tensor, and so the fol-

lowing natural definition has been proposed in [1]: a three-dimensional pseudo-

Riemannian manifold is called conformally symmetric if its Cotton tensor is paral-

lel, and those which are not conformally flat are then called ECS (note that every

three-dimensional locally symmetric manifold is conformally flat). There, it is also
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shown [1, Theorem 1] that, reversing the metric if needed, any point in a three-

dimensional ECS manifold has a neighborhood isometric to an open subset of

(1.1) (M̂, ĝ) =
(
R3, (x3 + a(t)x)dt2 + dt ds + dx2),

for some suitable smooth function a : R → R. The coordinates t and s of M̂ are

called y and t in [1], respectively, but have been renamed here as to make (1.1)

directly resemble the corresponding local model given in [6, Section 4] for n ≥ 4.

The pursuit of compact three-dimensional ECS manifolds quickly comes to an

end in view of the following result, interesting on its own right without reference

to ECS geometry:

THEOREM A. A compact three-dimensional pseudo-Riemannian manifold with par-

allel Cotton tensor must be conformally flat.

While the compactness assumption here is crucial, Theorem A may be seen as

a close relative (in general signature) of [2, Theorem 1]: compact Riemannian Cot-

ton solitons are conformally flat, but nontrivial compact Lorentzian ones do exist.

Acknowledgments. I would like to thank Andrzej Derdzinski for all the com-

ments helping improve the presentation of the text.

2. Preliminaries

Throughout this paper, we work in the smooth category and all manifolds

considered are connected.

2.1. Symmetries of the Cotton tensor. The Cotton tensor of a n-dimensional

pseudo-Riemannian manifold (M, g) is the three-times covariant tensor field C on

M defined by

(2.1) C(X, Y, Z) = (∇XP)(Y, Z)− (∇YP)(X, Z), for X, Y, Z ∈ X(M).

Here, P is the Schouten tensor of (M, g), given by

(2.2) P = Ric− s
2(n− 1)

g,

where Ric and s stand for the Ricci tensor and scalar curvature of (M, g), respec-

tively. The Cotton tensor satisfies the following symmetries:

(2.3)

(i) C(X, Y, Z) + C(Y, X, Z) = 0

(ii) C(X, Y, Z) + C(Y, Z, X) + C(Z, X, Y) = 0

(iii) trg
(
(X, Z) 7→ C(X, Y, Z)

)
= 0

for all X, Y, Z ∈ X(M). Symmetry (i) is obvious, while (ii) follows from a straight-

forward computation (six terms cancel in pairs), and (iii) from div P = d(trg P)
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(which, in turn, is a consequence of the twice-contracted differential Bianchi iden-

tity div Ric = ds/2).

2.2. Algebraic structure in dimension 3. A routine computation shows that

(2.4)
the Ricci and Cotton tensors of (1.1) are given

by Ric = −3x dt⊗dt and C = 3 (dt∧dx)⊗dt.

The expression for C motivates the following result, analogous to [5, Lemma 17.1]:

THEOREM 2.1. Let (V, 〈·, ·〉) be a three-dimensional pseudo-Euclidean space, and C

be a nonzero Cotton-like tensor on V, i.e., a three-times covariant tensor on V which

formally satisfies (2.3), and consider D = {u ∈ V | C(u, ·, ·) = 0}. Then:

(a) D consists only of null vectors, and hence dimD ≤ 1.

(b) dimD = 1 if and only if C = (u ∧ v)⊗ u for some u ∈ Dr {0} and unit v ∈ D⊥.

(c) In (b), u is unique up to a sign, while v is unique modulo D.

Here, we identify V ∼= V∗ with the aid of 〈·, ·〉.

PROOF. For (a), assuming by contradiction the existence of a unit vector

e1 ∈ D, we will show that C = 0. Considering an orthonormal basis {e1, e2, e3}
for (V, 〈·, ·〉) and using (2.3-i) and (2.3-ii), we see that

(2.5) Cijk is only possibly nonzero when {i, j, k} = {2, 3} with i 6= j.

Now C322 = −C232 and C323 = −C233, while tr〈·,·〉
(
(w, w′) 7→ C(ej, w, w′)

)
= 0 for

j = 2 and j = 3 readily yields C233 = 0 and C322 = 0, respectively. Hence C = 0,

as claimed. As for (b), assume that dimD = 1, fix a null vector e1 ∈ Dr {0}, and

complete it to a basis {e1, e2, e3} of V satisfying the relations

(2.6) 〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e3〉 = 0 and 〈e1, e3〉 = 〈e2, e2〉 = (−1)q+1,

where q ∈ {1, 2} is the index of 〈·, ·〉. By the same argument as in (a), we again

obtain (2.5), but this time tr〈·,·〉
(
(w, w′) 7→ C(e3, w, w′)

)
= 0 reduces to C232 = 0 in

view of (2.6). Writing a = C323 6= 0 for the last essential component of C, it follows

that C = a(e3 ∧ e2) ⊗ e3, where {e1, e2, e3} is the basis of V∗ dual to {e1, e2, e3}.
Applying the isomorphism V ∼= V∗ and setting u = |a|1/2e1 and v = sgn(a)e2, we

obtain the required expression C = (u ∧ v)⊗ u. Conversely, it is straightforward

to verify that the tensor (u ∧ v)⊗ u with u null and v unit and orthogonal to u is

Cotton-like with D = Ru and D⊥ = Ru⊕Rv. Finally, (c) is clear from (b). �

As a consequence, whenever (M, g) is a three-dimensional pseudo-Riemannian

manifold, we may assign to each point x ∈ M the kernel Dx of Cx in (Tx M, gx). In
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the ECS case, we have that

(2.7)
D is a smooth rank-one parallel distribution on M, which

contains the image of the Ricci endomorphism of (M, g).

Indeed, we may note that (2.7) holds in the model (1.1) (as (2.4) gives us that D

is spanned by the coordinate vector field ∂s, ĝ-dual to dt up to a factor of 2), and

invoke [1, Theorem 1].

3. Proof of Theorem A

In this section, we fix a compact three-dimensional ECS manifold (M, g) and

its universal covering manifold π : M̃ → M, which equipped with the natural

pull-back metric g̃ = π∗g becomes an ECS manifold. We will use the same sym-

bols Ric, P, C, ∇, and D for the corresponding objects in both (M, g) and (M̃, g̃).

Observe that

(3.1)
the fundamental group Γ = π1(M) acts properly discontinu-

ously on (M̃, g̃) by deck isometries, with quotient M̃/Γ ∼= M.

As M̃ is simply connected, we may fix two globally defined smooth vector fields u

and v such that C = (u ∧ v)⊗ u on M̃. Now, as D is parallel, item (c) of Theorem

2.1 gives us that

(3.2)
(i) u is a null parallel vector field spanning D;

(ii) every γ ∈ Γ either pushes u forward onto itself or onto its opposite.

Next, as the Ricci endomorphism of (M̃, g̃) is self-adjoint, (2.7) allows us to write

(3.3) Ric = − f u⊗ u, for some smooth function f : M̃→ R.

By (3.3) and (3.2-i), (M̃, g̃) is scalar-flat, and so P = Ric. Combining this with (3.2-i)

again to compute C via (2.1), we obtain that

(3.4) C = (u ∧∇ f )⊗ u, where ∇ f is the g̃-gradient of f .

However, it follows from (3.2-ii) and (3.3) that f is Γ-invariant, and so it has a

critical point due to (3.1) and compactness of M. Such a critical point is in fact a

zero of C by (3.4), and therefore C = 0. This is the desired contradiction: (M, g)

must be either noncompact, or conformally flat.
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