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Abstract. We prove the existence of compact pseudo-Riemannian manifolds

with parallel Weyl tensor which are neither conformally flat nor locally sym-

metric, and represent all indefinite metric signatures in all dimensions n ≥ 5.

Until now such manifolds were only known to exist in dimensions n = 3j + 2,

where j is any positive integer [10]. As in [10], our examples are diffeomorphic

to nontrivial torus bundles over the circle and arise from a quotient-manifold

construction applied to suitably chosen discrete isometry groups of diffeomor-

phically-Euclidean ”model” manifolds.

Introduction

Essentially conformally symmetric (briefly, ECS ) manifolds [8] are those pseu-

do-Riemannian manifolds of dimensions n ≥ 4 which have parallel Weyl tensor

(∇W = 0) without being conformally flat (W = 0) or locally symmetric (∇R = 0).

Their existence, for every n ≥ 4, was established by Roter [25, Corollary 3], who

also showed that their metrics are all indefinite [7, Theorem 2]. A local description

of all ECS metrics is given in [9].

Manifolds with ∇W = 0 are often called conformally symmetric [6]. This class

represents one of the natural linear conditions imposed on ∇R, cf. [1, Chapter

16], and due to its naturality it attracted the attention of other authors, including

Cahen and Kerbrat [3], Hotloś [18], Mantica and Suh [22, Section 3], Schliebner

[26], and Deszcz et al. [16, Sect. 4], [15, Theorem 6.1]. Results on ECS manifolds,

as well as techniques used in obtaining them have been applied to more general

classes of manifolds [14, Example 2.2], [27], [2, Theorem 3], [4], [5, Theorem 3.9],

[23], [21, Lemma 3], [29, proofs of Theorems 1.1 and 4.5] and, most recently, [28].

Every ECS manifold M carries a distinguished null parallel distribution D

of dimension d ∈ {1, 2}, discovered by Olszak [24]. See also [9, p. 119]. We will

refer to d as the rank of M. Explicitly, the sections of D are the vector fields

corresponding via the metric to 1-forms ξ such that ξ ∧ [W (v, v′, · , · )] = 0 for all

vector fields v, v′.
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Compact rank-one ECS manifolds which are also geodesically complete and not

locally homogeneous are known to exist [10, Theorem 1.1] in all dimensions n ≥ 5

with n ≡ 5 (mod 3). Quite recently [12] we constructed geodesically incomplete

locally-homogeneous compact rank-one ECS manifolds of all odd dimensions n ≥ 5.

It still remains an open question whether a compact ECS manifold may be of

rank two, or of dimension four.

Our main result may be viewed as an improvement on [10, Theorem 1.1], since

it covers every dimension n ≥ 5, rather than just those congruent to 5 modulo 3.

Theorem A. There exist compact rank-one ECS manifolds of all dimensions

n ≥ 5 and all indefinite metric signatures, diffeomorphic to nontrivial torus bundles

over the circle, geodesically complete, and not locally homogeneous. Their local-

isometry types, in each fixed dimension and metric signature, form – in a natural

sense – an infinite-dimensional moduli space.

The significance of the “model” manifolds (see Section 2) used to produce our

compact examples is twofold: in addition to representing all rank-one local isometry

types, they constitute the universal coverings of a large class of compact rank-one

ECS manifolds [13, Corollary D].

Finally, the bundle structure in Theorem A reflects a general principle: in [11]

we show that a non-locally-homogeneous compact rank-one ECS manifold, replaced

if necessary by a two-fold isometric covering, must be a bundle over the circle, having

D⊥ as the vertical distribution.

Outline of the construction

The paper is structured as follows. After preliminaries comes Section 2, pre-

senting rank-one ECS model manifolds, which exist in all dimensions n ≥ 4 (even

though our construction of their compact quotients requires assuming that n ≥ 5).

The purpose of Section 3 is to show that the particular model manifolds which we

focus on are geodesically complete, but not locally homogeneous, so that the same

conclusion holds for our compact quotients. In Section 4 we observe (Lemma 4.1)

that, given an integer m ≥ 3, there exists a GL(m,ZZ) polynomial with m dis-

tinct real positive roots different from 1. The next two sections, crucial for our

existence argument, are devoted to proving, in Theorem 6.2, that all the m-el-

ement GL(m,ZZ)-spectra just mentioned – and even a wider class characterized

by condition (4.2) – arise via a specific integral formula from periodic curves

IR 3 t 7→ B = B(t) of diagonal m × m matrices satisfying an ordinary differ-

ential equation of the form Ḃ + B2 = f + A, with a function f and matrix A

appearing in a suitable rank-one ECS model manifold M̂ of dimension n = m+ 2.

Finally, Section 7 provides the existence proof: a curve t 7→ B(t) realizing, for any

given m ≥ 3, one of the GL(m,ZZ)-spectra of Lemma 4.1, is used to construct a
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group Γ acting on the corresponding model M̂ freely and properly discontinuously

by isometries, with a compact quotient manifold M = M̂/Γ.

The most important ingredient of the above argument is the GL(m,ZZ)-spec-

trum property of the curve t 7→ B(t).

1. Preliminaries

By a lattice in a real vector space L with dimL = m <∞ we mean, as usual,

an additive subgroup of L generated by some basis of L. Then

(1.1) Λ is a discrete subset of L,

as one sees identifying Λ and L with ZZm and IRm.

Suppose that a group Γ act on a manifold M̂ freely by diffeomorphisms. The

action of Γ on M̂ is called properly discontinuous if there exists a locally diffeo-

morphic surjective mapping M̂ → M onto some manifold M, the preimages of

points of M under which are precisely the orbits of the Γ action.

Remark 1.1. A free left action of a group Γ on a manifold M̂ is properly dis-

continuous if and only if for any sequences aj in Γ and yj in M̂, with j ranging

over positive integers, such that both yj and ajyj converge, the sequence aj is

constant except for finitely many j. See [20, Exercise 12-19 on p. 337].

Remark 1.2. Any smooth submersion from a compact manifold into a con-

nected manifold is a (surjective) bundle projection. This is the compact case of

Ehresmann’s fibration theorem [17, Corollary 8.5.13].

2. The model manifolds

Let f, p, n, V , 〈·, ·〉 and A denote a nonconstant C∞ function f : IR → IR,

periodic of period p > 0, an integer n ≥ 4, a pseudo-Euclidean inner product 〈·, ·〉
on a real vector space V of dimension n−2, and a nonzero, traceless, 〈·, ·〉-self-ad-

joint linear endomorphism A of V . Consider the pseudo-Riemannian metric [25]

(2.1) κ dt2 + dt ds + δ

on the manifold M̂ = IR2× V ≈ IRn. The products of differentials stand here for

symmetric products, t, s are the Cartesian coordinates on IR2 treated, with the aid

of the projection M̂ → IR2, as functions M̂ → IR, and δ is the pullback to M̂ of

the flat (constant) pseudo-Riemannian metric on V arising from the inner product

〈·, ·〉, while κ : M̂ → IR is the function given by κ(t, s, x) = f(t)〈x, x〉+ 〈Ax, x〉.
The metric (2.1) turns M̂ into a rank-one ECS manifold [9, Theorem 4.1].

We now define E to be the vector space of all C∞ solutions u : IR→ V to the

differential equation ü(t) = f(t)u(t) + Au(t), and set G = ZZ× IR × E. Whenever

u,w ∈ E, the function Ω(u,w) = 〈u̇, w〉 − 〈u, ẇ〉 : IR → IR is constant, giving rise

to a nondegenerate skew-symmetric bilinear form Ω on E. We also have a natural
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linear isomorphism T : E → E with (Tu)(t) = u(t − p). Next, we turn G into a

Lie group by declaring the group operation to be

(2.2) (k, q, u) · (`, r, w) = (k + `, q + r −Ω(u, T `w), T −`u+ w),

and introduce a left action of the Lie group G on the manifold M̂, with

(2.3) (k, q, u) · (t, s, v) = (t+ kp, s+ q − 〈u̇(t), 2v + u(t)〉, v + u(t)).

With all triples assumed to be elements of G, one then has

(2.4) (k, q, u) · (0, r, w) · (k, q, u)−1 = (0, r − 2Ω(u,w), T kw),

Our G also acts on the manifold IR2× E, diffeomorphic to IR2n−2, by

(2.5) (k, q, u) · (t, z, w) = (t+ kp, z + q −Ω(u,w), T k(w + u)),

and the following mapping is equivariant relative to the G-actions (2.5) and (2.3):

(2.6) IR2× E 3 (t, z, w) 7→ (t, s, v) = (t, z − 〈ẇ(t), w(t)〉, w(t)) ∈ M̂ .

All the above facts are established in [10, p. 77], where it is also shown that

(2.7) the group G acts on M̂ by isometries of the metric (2.1).

Remark 2.1. If, at the beginning of this section, f : I → IR is just a noncon-

stant C∞ function on an open interval I ⊆ IR, rather than being defined on IR

and periodic, while the remaining data n, V , 〈·, ·〉 and A are as before, I× IR× V
with the metric (2.1) will still be a rank-one ECS manifold; conversely, in any n-

dimensional rank-one ECS manifold, every point at which the covariant derivative

of the Ricci tensor is nonzero has a neighborhood isometric to an open subset of a

manifold of this type [9, Theorem 4.1].

3. Geodesic completeness

Later in this section, showing that local homogeneity implies relation (3.3), we

use much weaker assumptions than necessary for the purposes of the present paper.

The reason is that we need to cite such a general conclusion when proving a result

in another paper, namely, [11, Theorem 6.3].

For the manifold M̂ = IR2× V ≈ IRn with the metric (2.1),

(3.1) M̂ is geodesically complete, but not locally homogeneous.

To see this, we let i, j range over 2, . . . , n − 1, fix linear coordinates xi on V

which, along with x1 = t and xn = s/2, form a global coordinate system on M̂.

The possibly-nonzero components of (2.1), its reciprocal metric, and the Levi-Civita

connection ∇ then are those algebraically related to

(3.2)
g11 = κ, g1n = 1, g1n = 1, gnn = −κ, (constants) gij and gij ,

Γ n11 = ∂1κ/2, Γ i11 = −gij∂jκ/2, Γ n1i = ∂iκ/2.
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See [25, p. 93]. With ( )̇ referring to the geodesic parameter, the geodesic equations

read ẍ1 = 0 (and so c = ẋ1 is constant), ẍi = −c2Γ i11 and ẍn = −c2Γ n11 − 2cΓ n1i ẋ
i.

Note that κ has the form κ = f(t)gijx
ixj + aijx

ixj, with constants gij and aij .

Being linear in the parameter of a maximal geodesic, x1 is defined on IR, and

the same follows for all xi (as they now satisfy a system of linear second-order

equations) and for xn (which then has a prescribed second derivative). Thus,

completeness follows. The second claim of (3.1) is a consequence of what we show

later in this section: namely, more generally, for any metric on I × IR × V as in

Remark 2.1, with an open interval I ⊆ IR, if (t, s, x) ∈ I × IR× V has a product-

type neighborhood U involving a subinterval I′ of I with a Killing field v on U

such that dv t 6= 0 everywhere in U (or, equivalently, v1 6= 0 everywhere in U for

the above coordinates x1, . . . , xn), then

(3.3) (|f |−1/2)̇ is constant on every subinterval of I′ on which |f | > 0,

( )̇ this time denoting d/dt, and (3.3) in turn easily yields

(3.4) positivity of |f | and constancy of (|f |−1/2)̇ on I′,

since a maximal open subinterval I′′ of I′ with |f | > 0 on I′′ must equal I′ (or else

I′′ would have a finite endpoint lying in I′, at which |f |−1/2, being a linear function,

would have a finite limit, contrary to maximality of I′′). Local homogeneity of (2.1)

on M̂ = IR2× V would, by (3.4) for I′ = IR, imply that the nonconstant periodic

function |f |−1/2 is linear. This contradiction proves (3.1).

We now establish (3.3), assuming what is stated in the five lines preceding

(3.3), and using the coordinates x1, . . . , xn on I× IR× V mentioned there. (Thus

– cf. Remark 2.1 – we are looking at an arbitrary n-dimensional rank-one ECS

manifold, rather than just M̂ with the metric (2.1), where f is periodic.) First,

(3.5)

the function t = x1 is determined, uniquely up to affine substitu

tions, by the local geometry of the metric (2.1), while the assign

ment t 7→ f(t),modulo its replacements by t 7→ q2f(qt+ p), with

q, p ∈ IR and q 6= 0, is a local geometric invariant of (2.1) as well.

In fact, by (3.2), the coordinate vector field ∂n is parallel. Hence so is the 1-form

dt = dx1 corresponding to ∂n via the metric (2.1). According to [25, p. 93], where

the convention about the sign of the curvature tensor is the opposite of ours,

(3.6) the metric (2.1) has the Ricci tensor Ric = (2− n)f(t) dt⊗ dt,

and the only possibly-nonzero components of its Weyl tensor W are those alge-

braically related to W1i1j . Thus, for any vector fields v, v′, the 2-form W (v, v′, · , · )
is ∧-divisible by dt = dx1 and, consequently, the parallel gradient ∂n = ∇t spans

the Olszak distribution D described in the Introduction. This yields the first claim

of (3.5), while the second one is then obvious from (3.6). By (3.5), the local flow

of our Killing field v on U, with dv t 6= 0, sends t to affine functions of t, and so
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dv t = £v t = at+ b, where a, b ∈ IR and (a, b) 6= (0, 0). Thus, £vdt = d£v t = adt

and £v[f(t)] = dv[f(t)] = ḟ(t) dv t = (at+ b)ḟ(t). From (3.6) and the Leibniz rule,

0 = £v[f(t) dt⊗dt] = [(at+ b)ḟ(t)+2af(t)] dt⊗dt. As (a, b) 6= (0, 0), (3.3) follows.

Remark 3.1. Let G be the group defined in Section 2, acting on M̂ via

(2.3). Due to (3.5), if a family of metrics arises from (2.1) on quotient manifolds

M = M̂/Γ of a fixed dimension n ≥ 5, for subgroups Γ ⊆ G acting on M̂ freely

and properly discontinuously, where f used in (2.1) ranges over an infinite-dimen-

sional manifold of C∞ functions of a given period p, then such a family of metrics

forms an infinite-dimensional moduli space of local-isometry types.

4. GL(m,ZZ) polynomials

By a GL(m,ZZ) polynomial we mean here any degree m polynomial with

integer coefficients, leading coefficient (−1)m, and constant term 1 or −1. It is

well known, cf. [10, p. 75], that these are precisely the characteristic polynomials

of matrices in GL(m,ZZ), the group of invertible elements in the ring of m × m
matrices with integer entries. Equivalently, the GL(m,ZZ) polynomials are

(4.1)
the characteristic polynomials of endomorphisms of an m dimen

sional real vector space V sending some lattice Λ in V onto itself.

On (λ1, . . . , λm) ∈ IRm one may impose the following condition:

(4.2)
{λ1, . . . , λm} is a subset of (0,∞) r {1}, not

of the form {λ} or {λ, λ−1} with any λ > 0.

This amounts to requiring that λ1, . . . , λm ∈ (0,∞) and the absolute values

| log λ1|, . . . , | log λm| be all positive, but not all equal. Clearly,

(4.3) if {λ1, . . . , λm} ⊆ (0,∞) r {1} has more than two elements, (4.2) follows.

Lemma 4.1. For every integer m ≥ 3 there exists a GL(m,ZZ) polynomial,

the roots λ1, . . . , λm of which are all real, positive, distinct, and different from 1.

Proof. For m = 3, according to [10, Lemma 2.1], whenever k, ` ∈ ZZ and

2 ≤ k < ` ≤ k2/4, the polynomial λ 7→ −λ3 + kλ2 − `λ + 1 has three distinct

real roots λ, µ, ν with 1/` < λ < 1 < µ < k/2 < ν < k, as required. Since the

quadratic polynomial λ 7→ λ2 + kλ + 1 with any integer k < −2 has one root

in (0, 1) and another in (0,∞), both of them depending on k via an injective

function, products of such quadratic polynomials with different values of k realize

our claim for all even m, while the case of odd m is settled by the same products,

further multiplied by the above cubic polynomial. �

The quartic polynomials obtained in the above proof have very special sets

of roots, of the form {λ, λ−1, µ, µ−1}. To obtain more diverse spectra, consider
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λ 7→ P (λ) = λ4−mλ3 + `λ2− kλ+ 1, with k, `,m ∈ ZZ. The inequalities

P (2) ≤ 16P (1/2) < 0 < P (1)

sufficient for our conclusion will follow once k ≥ 7, as we may then choose m with

k ≤ m ≤ 2k − 7 (and so 16P (1/2) − P (2) = 6(m − k) ≥ 0). This also gives

2(k +m)− 2 < 4k +m− 8, and hence 2(k +m)− 4 < 2` < 4k +m− 8 for some

`, which amounts to P (1) > 0 > 16P (1/2).

5. Smoothness-preserving retractions

The following fact will be needed in Section 6. A retraction from a set onto

a subset is, as usual, a mapping equal to the identity on the subset, and by the

function component of a pair (f,A) we mean the Ck function f.

Lemma 5.1. Let there be given an integer k ≥ 0, a compact smooth manifold

Q, finite-dimensional real vector spaces X and Z, an open set U′ ⊆ Ck(Q, IR)×X,

a smooth mapping Φ : U′ → Z, and a point y ∈ U′. If the differential dΦy is

surjective, and z = Φ(y), then there exist a neighborhood U of y in U′ and a

smooth retraction π : U→ U∩Φ−1(z) such that, for every x ∈ U having a smooth

function component, the function component of π(x) is smooth as well.

Proof. Let x1, . . . , xm ∈ Ck(Q, IR) × X be representatives of a basis of the

quotient space [Ck(Q, IR)×X]/Ker dΦy ≈ Z, having smooth function components.

The smooth mapping F : Ck(Q, IR) × X × IRm → Z sending (x, a1, . . . , am) to

Φ(x + aixi ), with x ∈ Ck(Q, IR) × X and summation over i = 1, . . . ,m, has the

value z at (y, 0, . . . , 0), while the differential at (y, 0, . . . , 0) of the restriction of

F to {y} × IRm, given by (a1, . . . , am) 7→ dΦy(aixi ), is an isomorphism due to our

choice of x1, . . . , xm as a quotient basis. The implicit mapping theorem [19, p. 18]

thus provides neighborhoods U of y in U′ and U′′ of 0 in IRm such that every

x ∈ U has F (x, a1(x), . . . , am(x)) = z with a unique (a1(x), . . . , am(x)) ∈ U′′,

which also depends smoothly on x. We may now set π(x) = x+ ai(x)xi. �

6. Nearly-arbitrary positive spectra

Given p ∈ (0,∞) and an integer m ≥ 3, we denote by ∆m the space of all

diagonal m×m matrices with real entries. Let us consider the set Xm of all ordered

(m + 1)-tuples (f, λ1, . . . , λm) formed by a nonconstant periodic C∞ function

f : IR→ IR of period p and positive real numbers λ1, . . . , λm such that, for some

nonzero traceless matrix A ∈ ∆m and some C∞ curve IR 3 t 7→ B = B(t) ∈ ∆m,

periodic of period p, one has

(6.1) Ḃ + B2 = f + A and diag(log λ1, . . . , log λm) = −
∫ p

0

B(t) dt,

where ( )̇ = d/dt and f stands for f times Id or, equivalently, for diag(f, . . . , f).



8 A. Derdzinski & I. Terek

In the remainder of this section, we fix an integer k ≥ 1 and treat real or

matrix-valued functions of period p as mappings with the domain S1.

Remark 6.1. If c ∈ IR r {0}, the linear operator Ck(S1, IR) → Ck−1(S1, IR)

sending y to ẏ+ cy is an isomorphism: its kernel consists of multiples of t 7→ e−ct,

while solving the equation ẏ+ cy = u with u ∈ Ck−1(S1, IR) for y : IR→ IR gives

us y(t+ p) = y(t) + ae−ct, where a ∈ IR. Now t 7→ y(t) + (1− e−pc)−1ae−ct is the

unique periodic solution to ẏ + cy = u.

Theorem 6.2. If λ1, . . . , λm satisfy (4.2), then (f, λ1, . . . , λm) ∈ Xm for all

f from some infinite-dimensional manifold of C∞ functions.

Proof. At any nonsingular C = diag(c1, . . . , cm) ∈ ∆m such that |c1|, . . . , |cm|
are not all equal, viewed as a constant mapping C : S1 → ∆m, the C∞ mapping

S : Ck(S1,∆m)→ Ck−1(S1,∆m) with S(B) = Ḃ+B2 has the differential given by

dSCY = Ẏ +2CY , which is an isomorphism (Remark 6.1). Let C2 = h+A, with h

a (constant) multiple of Id and (nonzero) traceless A. Due to the inverse mapping

theorem [19, p. 13], S has a local C∞ inverse from a Ck−1-neighborhood of h+A

onto a Ck-neighborhood of C. If f ∈ Ck−1(S1, IR) is Ck−1-close to the constant

h, and E ∈ ∆m constant, traceless as well as close to A, applying to f + E this

local inverse followed by the mapping B 7→ (λ1, . . . , λm) ∈ IRm characterized by the

second part of (6.1), we get the composite f +E 7→ Φ(f +E) = (λ1, . . . , λm) ∈ IRm

of three mappings: first, the above local inverse of S (restricted to the set U′ of

f +E with f near h and constant traceless E near A), then the linear operator

B 7→ −
∫ p
0
B(t) dt ∈ ∆m and, finally, the entrywise exponentiation of diagonal

m×m matrices. The differential dΦh+A is thus the composite

(6.2) f + E 7→ Y 7→ Z = −
∫ p

0

Y (t) dt 7→ e−pCZ

of the differentials of our three mappings, at the points h+A, C and −
∫ p
0
C dt =

−pC. Note that the first arrow in (6.2) sends f + E to Y with Ẏ + 2CY =

f+E, while the entrywise exponentiation has at −pC the differential Z 7→ e−pCZ.

Integrating Ẏ+2CY = f+E from 0 to p, we obtain 2C
∫ p
0
Y (t) dt =

∫ p
0
f(t) dt+pE

due to periodicity of Y and constancy of both C and E, so that the second arrow

in (6.2) takes Y to Z = −(2C)−1[
∫ p
0
f(t) dt + pE]. Applying to this Z the last

arrow of (6.2), we see that dΦh+A(f + E) = −e−pC(2C)−1[
∫ p
0
f(t) dt + pE], and

so dΦh+A is manifestly surjective onto ∆m. The preimage Φ−1(e−pC) is thus an

infinite-dimensional submanifold of the manifold formed by our f + E, with the

tangent space at h + A equal to Ker dΦh+A, and hence consisting of all f + E

with E = 0 and
∫ p
0
f(t) dt = 0. See [19, p. 30].

The hypotheses of Lemma 5.1 are now satisfied by the circle Q = S1, the space

Z of all diagonal m×m matrices, its subspace X consisting of traceless ones, the

points y = h+A and z = e−pC, and our Φ along with its domain U′, treated as a
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subset of Ck(S1, IR)×X via the identification of each f +E with the pair (f,E).

For the smooth retraction π arising from Lemma 5.1, ε near 0 in IR, and any

given f ∈ C∞(S1, IR) with
∫ p
0
f(t) dt = 0, the curve ε 7→ π(h + εf,A) lies in the

preimage Φ−1(e−pC), consists of function-matrix pairs having a smooth function

component, and its velocity vector at ε = 0 is f (as one sees applying d/dε and

noting that the differential of π at y = h+A equals the identity when restricted to

the tangent space of Φ−1(e−pC)). Since f was just any smooth function S1 → IR

with
∫ p
0
f(t) dt = 0, such curves realize the infinite-dimensional manifold of C∞

functions named in our assertion. In addition, the curve ε 7→ S−1(π(h + εf,A))

consists of smooth matrix-valued functions B due to regularity of solutions for the

differential equation Ḃ+B2 = f +E. Since (λ1, . . . , λm) = e−pC was an arbitrary

m-tuple with (4.2), this completes the proof. �

While, as we just showed, condition (4.2) is sufficient for (λ1, . . . , λm) to lie

in the image of Xm under the mapping (f, λ1, . . . , λm) 7→ (λ1, . . . , λm), a weaker

version of (4.2) is also necessary for it: this version, allowing some λi to equal 1,

states that {λ1, . . . , λm} ⊆ (0,∞) does not have the form {λ} or {λ, λ−1} with

any λ > 0. To see its necessity, write B = (b1, . . . , bm) and A = (a1, . . . , am), so

that the first equality in (6.1) amounts to ḃi + b2i = f + ai for i = 1, . . . ,m. Next,

(6.3) if λi equals λj or λ−1j for some distinct i, j, then ai = aj .

Namely, were this not the case, so that ai 6= aj , while the integrals from 0 to p

of bi and bj are equal (or, opposite), cf. (6.1), the difference bi− bj (or, the sum

bi + bj) would be the derivative χ̇ of some periodic function χ and the equality

(bi− bj )̇ + (bi + bj)(bi− bj) = ai − aj would give χ̈ = ai − aj wherever χ̇ = 0 or,

respectively, [(bi−bj)eχ ]̇ = (ai−aj)eχ. As ai−aj is now a nonzero constant, in the

former case the critical points of χ would all be strict local maxima, or strict local

minima, and in the latter (bi − bj)eχ would be strictly monotone, both of which

contradict periodicity, thus proving (6.3). Combining (6.3) with second equality in

(6.1), we now see that | log λ1|, . . . , | log λm| cannot be all equal, as that would give

a1 = . . . = am, whereas A in (6.1) is nonzero and traceless.

7. Proof of Theorem A: existence

The argument presented in this section proves a special case of an assertion

established in [10, Section 9]. For the reader’s convenience we chose to proceed as

below, rather than cite [10], since this simplifies the exposition.

Existence in Theorem A will follow once we show that, for suitable f, p, n,

V , 〈·, ·〉, A with the properties listed at the beginning of Section 2, where n ≥ 5

and the metric signature of 〈·, ·〉 are arbitrary, and for G, M̂ appearing in (2.7),

(7.1)
some subgroup Γ ⊆ G acts on M̂ freely and properly dis

continuously with a compact quotient manifold M = M̂/Γ.
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To choose f, p, n, V , 〈·, ·〉, A satisfying the conditions named in Section 2, along

with additional objects θ,B,L,Λ,Σ,Γ needed for our argument, we let n ≥ 5 and

p, θ ∈ (0,∞) be completely arbitrary, and denote by 〈·, ·〉 a pseudo-Euclidean in-

ner product of any signature in V = IRn−2, making the standard basis orthonormal.

Lemma 4.1 allows us to fix a GL(m,ZZ) polynomial P, where m = n−2, the com-

plex roots λ1, . . . , λm of which are all real, distinct, and satisfy (4.2). Theorem 6.2,

for these λ1, . . . , λm, yields f,A and a curve t 7→ B(t) ∈ ∆m ⊆ End(V ), with

(7.2) infinite dimensional freedom of choosing f.

Next, we let L be the (n−2)-dimensional vector space of all solutions u : IR→ V to

the differential equation u̇(t) = B(t)u(t), with the translation operator T : L→ L

given by (Tu)(t) = u(t−p). Note that L ⊆ E for E which was defined in Section 2

along with a linear isomorphism T : E→ E, and our T is the restriction of that one

to L. According to [10, Remark 4.2] and (6.1), our T : L → L has the spectrum

λ1, . . . , λm, so that P is its characteristic polynomial and, by (4.1), T (Λ) = Λ for

some lattice Λ in L. (As λ1, . . . , λm are all distinct, they uniquely determine the

algebraic equivalence type of T.) For later reference, let us also note that

(7.3) T k 6= Id for all k ∈ ZZr {0},

for T : L → L, as its spectrum {λ1, . . . , λm} is contained in (0,∞) r {1}. Now

Σ = {0} × ZZθ × Λ is both a subset of G = ZZ× IR× E and a lattice in the vector

space {0} × IR× L while, due to self-adjointness of each B(t),

(7.4) Ω(u,w) = 0 whenever u,w ∈ L.

Finally, we denote by Γ the subgroup of G generated by Σ and the element

(1, 0, 0). Then Γ, as a subset of G = ZZ× IR× E, equals ZZ× ZZθ × Λ, and

(7.5)
each (k, `θ, u) ∈ Γ = ZZ× ZZθ × Λ acts on M̂ = IR2× V by

(k, `θ, u) · (t, s, v) = (t+ kp, s+ `θ − 〈u̇(t), 2v + u(t)〉, v + u(t)).

In fact, due to (2.4) and T -invariance of Λ, the conjugation by (1, 0, 0) maps

Σ onto itself, and any element of Γ, being a finite product of factors from the

set Σ ∪ {(1, 0, 0), (1, 0, 0)−1}, equals a power of (1, 0, 0) times an element of Σ.

However, by (2.2), (k, 0, 0) · (`, 0, 0) = (k + `, 0, 0), and so (1, 0, 0)k = (k, 0, 0) if

k ∈ ZZ. The last italicized phrase, combined with (2.2) and (2.3), now yields (7.5).

The action (7.5) is free: if (k, `θ, u) · (t, s, v) = (t, s, v), the resulting equalities

kp = `θ−〈u̇(t), 2v+u(t)〉 = 0 and u(t) = 0 give k = 0, while the first-order linear

differential equation u̇ = Bu implies that u = 0, and so ` = 0 as well.

In view of the regular-dependence theorem for ordinary differential equationsrr,

(7.6) IR× L 3 (t, w) 7→ (t, w(t)) ∈ IR× V is a diffeomorphism,

since that theorem guarantees smoothness of the inverse of (7.6). We now use

Remark 1.1 to conclude that (7.5) is properly discontinuous: if the sequences
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(tj , sj , vj) and (kj , j̀θ, uj) · (tj , sj , vj) both converge, (7.5) gives convergence of

kj and uj(tj) . The former makes kj eventually constant, the latter leads, by (7.6),

to convergence of uj , and hence its ultimate constancy (implying via (7.5) the same

for j̀), as uj ∈ Λ and the lattice Λ ⊆ L is discrete, cf. (1.1).

Finally, compactness of the quotient manifold M = M̂/Γ in (7.1) follows since

M̂ has a compact subset K intersecting every orbit of Γ. Namely, we may set

K = {(t, s, v) : s ∈ [0, θ ] and (t, v) ∈ K ′}, where K ′ is the image under (7.6)

of [0, p] × K̂, with a compact set K̂ ⊆ L chosen so as to intersect every orbit of

the lattice Λ acting on L by vector-space translations. Any (t, s, v) ∈ M̂ can be

successively modified by elements of Γ acting on it, so as to eventually end up in

K. First, (k, 0, 0) ∈ Γ with kp ∈ [−t, p− t], applied to (t, s, v), allows us to assume

that t ∈ [0, p]. For the pair (t, w) arising as the preimage under (7.6) of the (t, v)

component of this new (t, s, v), and suitably selected u ∈ Λ, one has w + u ∈ K̂,

due to our choice of K̂. Now, by (7.5) with v = w(t),

(0, 0, u) · (t, s, v) = (t, s− 〈u̇(t), 2v + u(t)〉, w(t) + u(t)),

that is, (0, 0, u) · (t, s, v) = (t′, s′, v′) for some (t′, v′) ∈ K ′ and s′ ∈ IR. Choosing

` ∈ ZZ such that s′+ `θ ∈ [0, θ ], we obtain (0, `θ, 0) · (t′, s′, v′) ∈ K.

8. Proof of Theorem A: further conclusions

For M̂, p and Γ = ZZ × ZZθ × Λ as in the last section, the surjective submer-

sion M̂ = IR2× V → IR sending (t, s, v) to t/p is, by (7.5), equivariant relative

to the homomorphism Γ = ZZ × ZZθ × Λ 3 (k, `θ, u) → k ∈ ZZ along with the

actions of Γ on M̂ and ZZ on IR, so that it descends to a surjective submersion

M = M̂/Γ → IR/ZZ = S1 which, according to Remark 1.2, is a bundle projection.

Since the homomorphism Γ→ ZZ has the kernel Σ = {0}×ZZθ×Λ, the fibre of this

projection M → S1 over the ZZ-coset of t/p may be identified with the quotient

M̂t/Σ, where M̂t = {t} × IR× V . Restricted to Σ and M̂t, (7.5) is given by

(8.1) (0, `θ, u) · (t, s, v) = (t, s+ `θ − 〈u̇(t), 2v + u(t)〉, v + u(t)),

with fixed t ∈ IR. By (7.6), the restriction of (2.6) to {t} × IR × L is a diffeo-

morphism onto M̂t, and so its Σ-equivariance, immediate from G-equivariance,

means that, when we use it to identify M̂t with {t} × IR×L, and hence also with

H′ = {0}×IR×L (a subgroup of G containing Σ), the restriction of (2.3) to H′×M̂t

becomes the action of H′ on itself via left translations. By (2.2) with k = ` = 0

and (7.4), H′ is an Abelian subgroup of G, and the resulting group operation in H′

coincides with addition in the vector space {0} × IR×L. Since Σ = {0} × ZZθ×Λ

is a lattice in {0} × IR × L, cf. the lines preceding (7.4), this shows that the fibre

M̂t/Σ is a torus, which makes M, with the projection M → S1 described above, a

torus bundle over the circle.
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The torus bundle M → S1 is nontrivial: (7.3) combined with [10, Theorem

5.1(f)], implies that Γ has no Abelian subgroup of finite index, so that M cannot

be diffeomorphic to a torus, or even covered by a torus.

Geodesic completeness of M, and its lack of local homogeneity, are immediate

from (3.1), while the claim about an infinite-dimensional moduli space of the local-

isometry types is an obvious consequence of Remark 3.1 and (7.2).
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[14] R. Deszcz and M. Hotloś, On a certain subclass of pseudosymmetric manifolds, Publ. Math.

Debrecen 53 (1998), 29–48.
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