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Abstract. We show that if M is a closed, connected, oriented surface,
and two Anosov magnetic systems on M are conjugate by a volume-
preserving conjugacy isotopic to the identity, with their magnetic forms
in the same cohomology class, then the metrics are isometric. This
extends the recent result of Guillarmou, Lefeuvre, and Paternain to the
magnetic setting.

1. Introduction

LetM be a closed, connected, oriented manifold, and let g be a Riemannian
metric on M . Denoting the corresponding geodesic flow on its unit tangent
bundle by φt

g : SgM → SgM and denoting the infinitesimal generator of the

flow by Xg, we say that the metric g is Anosov if φt
g is an Anosov flow, i.e.,

there exists a φt
g-invariant splitting TSgM = E+⊕RXg⊕E− and constants

c, d > 0 so that for all t ≥ 0 and ξ ∈ E±(v), we have

(1.1) ∥dvφ∓t
g (ξ)∥ ≤ de−ct∥ξ∥,

where ∥ · ∥ denotes the norm coming from the Sasaki metric on SgM .

Anosov metrics can be seen as a generalization of negatively curved metrics
[1] and, as such, they share many common qualities. For example, observe
that if g is an Anosov metric, then for every non-trivial free homotopy class
ν ∈ π1(M), there is a unique closed g-geodesic γν ∈ ν [30]. The marked
length spectrum is defined to be the function MLS(g) : π1(M) → [0,∞) which
assigns to a non-trivial free homotopy class ν the length of its geodesic repre-
sentative γν , and 0 to the trivial free homotopy class. It is conjectured that
MLS(g) uniquely characterizes the Anosov metric g. More precisely:

Conjecture 1.1 ([27]). Let g1 and g2 be two Anosov metrics on M . If
MLS(g1) = MLS(g2), then g1 and g2 are isometric by an isometry which is
isotopic to the identity.

In the case where g1 and g2 are both negatively curved metrics, this is the
well-known Burns-Katok conjecture [9]. Using Livshits’ theorem [31] along
with an argument by Gromov [25], one can show that if MLS(g1) = MLS(g2),
then there is a C0-conjugacy between the corresponding geodesic flows which
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is isotopic to the identity. With this in mind, the conjecture broadly states
that dynamical invariants give rise to geometric rigidity. It is known that
Conjecture 1.1 holds for non-positively curved metrics on surfaces [13, 15,
37], and for negatively curved metrics in dimensions three and higher when
one of the metrics is locally symmetric [7, 28]. For Anosov metrics, the
conjecture has been recently proved for surfaces in [27]; a local version (i.e.
when the metrics are sufficiently close in an appropriate topology) holds
in arbitrary dimension, provided the metrics have non-positive sectional
curvature [26]. The conjecture is still open in general.

In this paper, we bring the above discussion to the context of magnetic
dynamics. Namely, we study marked length spectrum rigidity for Riemann-
ian metrics on surfaces in presence of a magnetic field. Magnetic dynamics
was formalized in [2, 3], and has been investigated in many works in the
last decades. For a general overview, we refer the reader to [4], and the
references therein.

From now on, let M be a closed, connected, orientable surface. A magnetic
system is a pair (g, b), with g a Riemannian metric on M and b a smooth
function (referred to as the magnetic intensity) on M . Denote by Ωg the
area form induced by g onM , and let i be the complex structure given by the
orientation of Ωg. More precisely, given a vector v ∈ TM , iv is the rotation
of v by the angle π/2 according to the orientation. A curve γ : R→M is a
(g, b)-geodesic if it satisfies the differential equation

(1.2)
Dγ̇

dt
(t) = b(γ(t))iγ̇(t),

where D/dt denotes the covariant derivative along γ induced by the Levi-
Civita connection of g. A (g, b)-geodesic describes the motion of a charged
particle on (M, g) under the influence of a magnetic force described by
b.

Observe that if b = 0, then (1.2) reduces to the standard equation for
g-geodesics on M . Also observe that while (g, b)-geodesics have constant
speed, they are not homogeneous if b ̸= 0. In particular, rescaling the ini-
tial speed vector or inverting the direction of the initial velocity vector may
drastically change the associated trajectory. Despite this, up to a time repa-
rameterization, one can recover the dynamics of unit speed (g, b)-geodesics
from the dynamics of (g, b)-geodesics with speed s > 0 by rescaling the
metric g by the factor 1/s2 and the magnetic intensity by the factor 1/s.
Without loss of generality, we restrict our perspective to unit speed solutions
of (1.2).

Themagnetic flow associated to the pair (g, b) is the flow φt
g,b : SgM → SgM

given by φt
g,b(γ(0), γ̇(0)) := (γ(t), γ̇(t)). The orbits of φt

g,b have a geometric
interpretation in terms of the geodesic curvature. The g-geodesic curvature
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associated to a curve γ : R→M is defined by

kg(t) := g

(
Dγ̇

dt
(t), iγ̇(t)

)
.

It is immediate from (1.2) that a unit speed curve γ is a (g, b)-geodesic if
and only if the g-geodesic curvature of γ satisfies kg(t) = b(γ(t)).

The magnetic system (g, b) is called an Anosov magnetic system if the flow
φt
g,b is Anosov. Similar to the geodesic scenario, the existence of an Anosov

magnetic system onM implies some restrictions on both the magnetic inten-
sity and the surface. By [34, Corollary C], the genus of M must be at least
two and, as pointed out in [10, Theorem B], the average of the magnetic
intensity cannot be larger than the so-called Mañé critical value.

An interesting problem is determining how to construct Anosov magnetic
systems. By the structural stability of Anosov flows, observe that if g is an
Anosov metric, then (g, b) is Anosov as long as b is uniformly small. On
the other hand, not every Anosov magnetic system comes from an Anosov
metric: in [10, Section 7], it was shown that one can start with a non-Anosov
metric on a higher genus surface and place a magnetic intensity b on M so
that (g, b) is Anosov. This shows that the set of metrics for which there is a
magnetic intensity b so that (g, b) is Anosov is larger than the set of Anosov
metrics.

As in the Riemannian setting, an important subset of the set of Anosov
magnetic systems consists of those which are negatively curved in a mag-
netic sense. The magnetic curvature associated to the system (g, b) is given
by

(1.3) Kg,b : SgM → R Kg,b(x, v) := Kg(x)− dxb(iv) + b2(x),

where Kg is the Gaussian curvature of (M, g). It was shown in [41] that if
Kg,b < 0, then the magnetic flow is Anosov.1 Under additional assumptions,
this result has been extended to non-positively curved magnetic flows in the
recent paper [34] of the third author in collaboration with Yumin Shen.

Given an Anosov magnetic system (g, b), it is still true that for each non-
trivial free homotopy class, there is a unique closed (g, b)-geodesic with unit
speed [12]. With this in mind, we define the magnetic marked length spec-
trum as the function MLS(g, b) : π1(M) → [0,+∞) which associates to a
non-trivial free homotopy class ν the length of the unique closed unit speed
(g, b)-geodesic γν in ν, and zero to the trivial free homotopy class.

Remark 1.2. Observe that in the Riemannian case, the traces of γν and γ−ν

always coincide. This is not necessarily the case for magnetic geodesics.
In particular, for some ν, it may be that MLS(g, b)(ν) ̸= MLS(g, b)(−ν),

1See also [23, 24] for earlier works in this direction, and [4, Appendix A] for the proof
in higher dimensions.
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although there are non-trivial examples where there is equality for every
choice of ν (e.g. Lemma 4.1).

Our main result shows that the magnetic marked length spectrum, the area,
and the cohomology class of [bΩg] determine the Riemannian metric and the
magnetic intensity, extending the result of the third author in [33] from the
deformative setting to the global setting.

Theorem 1.3. Let M be a closed, connected, oriented surface. Suppose
(g1, b1) and (g2, b2) are Anosov magnetic systems on M satisfying the fol-
lowing conditions:

MLS(g1, b1) = MLS(g2, b2), Area(g1) = Area(g2), and [b1Ωg1 ] = [b2Ωg2 ]

Then there exists a diffeomorphism f : M → M which is isotopic to the
identity and which satisfies f∗(g2) = g1 and f∗(b2) = b1.

It follows from Livshits’ theorem [31] along with a theorem of Ghys [20] that
equality of the marked length spectrum implies that there is a C0-conjugacy
between the corresponding magnetic flows which is isotopic to the identity.
In the case where the magnetic intensities are trivial, one can use the work of
Feldman-Ornstein [19] to deduce that the conjugacy is smooth. The recent
rigidity result by Gogolev-Rodriguez Hertz in [22, Theorem 1.1] extends this
work to a larger class of Anosov flows on three manifolds, and, in particular,
shows that equality of the magnetic marked length spectrum implies that
the flows φt

g1,b1
and φt

g2,b2
are C∞-conjugate by some h : Sg1M → Sg2M

which is isotopic to the identity (cf. [40]).

Let αg be the contact form associated to the geodesic flow φt
g. Recall that

the Liouville volume form on SgM associated to the metric g is the top-
degree form µg := −αg ∧ dαg. As we will see in Lemma 2.1, one can use the
area assumption to show that the conjugacy described above must pullback
the Liouville volume form for g2 to the Liouville volume form of g1, and thus
we can reduce Theorem 1.3 to the following.

Theorem 1.4. Let M be a closed, connected, oriented surface. Suppose
(g1, b1) and (g2, b2) are Anosov magnetic systems on M such that the corre-
sponding magnetic flows are smoothly conjugate by a conjugacy h which is
isotopic to the identity, the conjugacy h preserves the corresponding Liou-
ville volume forms, and [b1Ωg1 ] = [b2Ωg2 ]. Then there is a diffeomorphism
f :M →M which is isotopic to the identity and which satisfies f∗(g2) = g1
and f∗(b2) = b1.

The proof of Theorem 1.4 is as follows. First, we use a recent rigidity result
by Echevarŕıa Cuesta in [17, Theorem 1.1] to reduce the problem to the
setting where g1 and g2 are conformally related. Once in this setting, we
adapt the conformal argument of Katok in [29] in the magnetic setting. In
the case where [b1Ωg1 ] = [b2Ωg2 ] = 0, the argument follows by using the
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fact that magnetic geodesics are minimizers for a functional which we call
the magnetic length. In the non-exact setting, we use the fact that the flow
is homologically full to work on homologically trivial orbits, and then take
advantage of the fact that b1Ωg1 and b2Ωg2 are exact when pulled back to
the unit tangent bundle.

We note that the assumptions on the area and the cohomology class in
Theorem 1.3 are necessary via two examples in Section 4, which can also
be found in [38]. For the area assumption, we show in Lemma 4.1 that
for a hyperbolic metric g and a constant |b| < 1, we have MLS(g, b) =

(1− b2)−1/2MLS(g). By considering the homothetic metric gb := (1− b2)−1,
we see that MLS(g, b) = MLS(gb) while Area(g) ̸= Area(gb). It follows that
the marked length spectrum assumption alone is not enough to guarantee
that the underlying metrics are isometric.

We show in Lemma 2.2 that [b1Ωg1 ] = ±[b2Ωg2 ] (see also [38, Lemma 4.1]
and [17, Proposition 4.5]). Lemma 4.2 shows that this is actually realizable,
in the sense that for a hyperbolic metric g and a constant |b| < 1, the
magnetic systems (g, b) and (g,−b) are smoothly conjugate by a conjugacy
which is isotopic to the identity. In particular, this shows that the marked
length spectrum assumption alone is not sufficient to guarantee that the
cohomology class of b1Ωg1 and b2Ωg2 are the same.

We now give some applications of Theorem 1.3. First, we observe that
Theorem 1.3 extends [26, Theorem 1.1] to the case of exact magnetic systems,
i.e., magnetic systems where [bΩg] = 0. Using Lemma 2.2, it can be shown
that if (g1, b1) and (g2, b2) are exact Anosov magnetic systems which are
smoothly conjugate, then Area(g1) = Area(g2). In fact, this also extends
to (g1, b1 + δ) and (g2, b2 + δ), provided that δ ∈ R is sufficiently small so
that the marked length spectrum still makes sense. With this in mind, the
following is immediate.

Corollary 1.5. Let M be a closed, connected, orientable surface, and let
(g1, b1) and (g2, b2) be exact Anosov magnetic systems on M . If δ ∈ R

is sufficiently small so that (g1, b1 + δ) and (g2, b2 + δ) are still Anosov
and MLS(g1, b1 + δ) = MLS(g2, b2 + δ), then there exists a diffeomorphism
f :M →M which is isotopic to the identity and which satisfies f∗(g2) = g1
and b2 ◦ f = b1.

Notice that there is no assumption on the metric in Corollary 1.5 – as long
as the exact magnetic systems (gi, bi + δ) share the same marked length
spectrum, then the underlying metrics are isometric. As previously men-
tioned, notice that MLS(g, b) encodes the length of the unique closed curve
γ in each non-trivial free homotopy class of M with prescribed g-geodesic
curvature equal to b ◦ γ. The above result can then be interpreted as saying
that the unit speed curves with g-geodesic curvature equal to b completely
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determine the underlying metric, provided the set of these curves is “dy-
namically rich.” In Section 4, we modify the example in [10, Section 7]
to construct an example of a metric g which is not Anosov, but for which
there exists an magnetic intensity b so that [bΩg] = 0 and the magnetic
system (g, b) is Anosov. Thus, Corollary 1.5 along with this example shows
that marked length spectrum rigidity can be extended beyond the setting
of Anosov metrics and non-positively curved metrics.

Next, we see how the magnetic marked length spectra uniquely charac-
terizes geodesic flows, provided the area is fixed. Using the arguments
in [24, Théorème 7.3], one can show that if (g1, b) and g2 both satisfy
Kg1,b,Kg2 < 0, MLS(g1, b) = MLS(g2), and Area(g1) = Area(g2), then
b ≡ 0 and g1 and g2 are isometric. One can also deduce from Lemma 2.2
that if MLS(g1, b) = MLS(g2) and Area(g1) = Area(g2), then [bΩg] = 0.
This shows that Corollary 1.5 extends [24, Théorème 7.3] from negatively
curved magnetic systems to Anosov magnetic systems.

Corollary 1.6. Let (g1, b) be an Anosov magnetic system. If g2 is an Anosov
metric such that MLS(g1, b) = MLS(g2) and Area(g1) = Area(g2), then
b ≡ 0 and there is an isometry between g1 and g2 which is isotopic to the
identity.

Finally, we introduce the magnetic marked length spectrum rigidity problem
in higher dimensions. Let M be a closed, connected manifold of arbitrary
dimension. A magnetic system is a pair (g, σ), where g is a Riemannian
metric and σ is a closed 2-form (referred to as the magnetic form). Note
that the magnetic form generalizes the magnetic intensity b introduced for
surfaces: if σ is a closed 2-form on a surface, then the magnetic intensity
is precisely the unique smooth function b on M for which σ = bΩg. A
(g, σ)-geodesic is a curve γ : R→M which satisfies the equation

(1.4)
Dγ̇

dt
(t) = Y (γ̇(t)),

where Y : TM → TM is the Lorentz operator defined by the relation
g(Y (v), w) = σ(v, w) for all v, w ∈ TM. As in the surface case, solutions
of (1.4) have constant speed, and the magnetic flow φt

g,σ : SgM → SgM
associated to (g, σ) is the flow on SgM induced by (1.4). A pair (g, σ) is
Anosov if the flow φt

g,σ is Anosov, and as before the magnetic marked length
spectrum naturally generalies to Anosov pairs (g, σ). With this in mind, a
natural question is the following.

Question 1.7. Let (g1, σ1) and (g2, σ2) be two Anosov magnetic systems on
a closed, connected, oriented manifold M . If MLS(g1, σ1) = MLS(g2, σ2),
Vol(g1) = Vol(g2), and [σ1] = [σ2], is it true that g1 and g2 must be isomet-
ric?
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As evidence towards a positive answer for this question, suppose that g1
and g2 are two Anosov metrics with non-positive sectional curvature. If
(g1, σ1) is an Anosov magnetic system satisfying MLS(g1, σ1) = MLS(g2) and
Vol(g1) = Vol(g2), then it follows from the fact that geodesics are the unique
length minimizers in their free homotopy class that MLS(g1) ≤ MLS(g2).
As long as the metrics are sufficiently close according to [26, Theorem 2],
we have that g1 and g2 are isometric and σ1 ≡ 0.2

Acknowledgments. The authors would like to thank Andrey Gogolev,
Javier Echevarŕıa Cuesta, Gabriel Paternain, and Gabrielle Benedetti for
many useful discussions throughout this project.

2. Preliminaries

Throughout, let M be a closed, connected, oriented surface, let (g, b) be a
magnetic system on M , and let πg : SgM → M be the footprint map for
the unit tangent bundle. The geodesic vector field Xg is the infinitesimal
generator of the geodesic flow φt

g on SgM . Since M is oriented, we may

consider the rotation flow ρtg : SgM → SgM , given by ρtg(x, v) := (x, eitv).
Its infinitesimal generator is the vertical vector field, which we denote by
V g. Finally, the horizontal vector field on SgM is the vector field given by
Hg := [V g, Xg]. Observe that the vector fields Xg, Hg, and V g form a global
frame on SgM , which we refer to as Cartan’s moving frame. They satisfy
the relations

(2.1) [V g, Hg] = −Xg, [V g, Xg] = Hg, [Xg, Hg] = π∗g(K
g)V g,

where Kg is the Gaussian curvature on M . Dual to these vector fields are
the 1-forms αg, βg, and ψg on SgM , which we refer to as Cartan’s moving
coframe. Using (2.1), one can show that they satisfy the relations

(2.2) dαg = ψg ∧ βg, dβg = −ψg ∧ αg, dψg = −π∗g(Kg)αg ∧ βg.

Notice that π∗g(Ωg) = αg∧βg, hence we can rewrite the last relation as

(2.3) dψg = −π∗g(KgΩg).

Moreover, the Liouville volume form µg satisfies µg = αg ∧ βg ∧ ψg.

Next, observe that the flow φt
g,b is a Hamiltonian flow, induced by the func-

tion H : TM → R given by H(x, v) := 1
2gx(v, v) and the symplectic form

given by

(2.4) ωg,b := −dαg + π∗g(bΩg).

With this, we now have the tools to prove the following.

2Note that one can also use this argument along with [14, Theorem 1.1] to deduce
Corollary 1.6 in the case where g1 and g2 are negatively curved metrics.
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Lemma 2.1. Let (g1, b1) and (g2, b2) be Anosov magnetic systems on M ,
smoothly conjugate via h : Sg1M → Sg2M ; then:

h∗(µg2) =
Area(g2)

Area(g1)
µg1 .

Proof. Notice that there exists Jh ∈ C∞(Sg1M) so that h∗(µg2) = Jhµ
g1 .

Since the magnetic flow is Hamiltonian, it preserves the Liouville volume
form, and thus

Jhµ
g1 = h∗(µg2) = h∗((φt

g2,b2)
∗(µg2)) = (φt

g1,b1)
∗(h∗(µg2)) = (Jh ◦ φt

g1,b1)µ
g1 .

We deduce that Jh is constant along orbits. Since the magnetic flow is
Anosov, it admits a dense orbit, and thus Jh must be constant everywhere.
Next, recall that ∫

SgiM
µgi = 2πArea(gi).

Using a change of variables, we have

Jh

∫
Sg1M

µg1 =

∫
Sg1M

h∗(µg2) =

∫
Sg2M

µg2 .

Thus, Jh is the ratio of the areas. □

Using the Hamiltonian property, we can also deduce that the infinitesimal
generator of the magnetic flow can be written as Xg,b = Xg + π∗g(b)Vg,
implying that

(2.5) ιXg,b
µg = ωg,b.

Next, since bΩg is a closed 2-form on M , we may use the isomorphism
H2(M,R) ∼= R to get

(2.6) bΩg = cg,bK
gΩg + dθ,

where θ is a 1-form on M and

(2.7) cg,b :=
1

2πχ(M)

∫
M
bΩg

In particular, we see that π∗g(bΩg) = d(−cg,bψg + π∗g(θ)), and thus if

(2.8) τg,b := −αg − cg,bψg + π∗g(θ),

then ωg,b = dτg,b on SgM . Using [11, Lemma 7.1], this shows that the
magnetic flow is homologically full, meaning that every integral homology
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class on SgM has a closed (g, b)-geodesic representative (γ, γ̇).3 It is well-
known that this implies that for all closed 1-forms η on Sg1M , we have

(2.9)

∫
Sg1M

η(Xg1,b1)µ
g1 = 0;

see, for instance, [39] and [21, Theorem 2.4]. Furthermore, this primitive is
a useful tool in showing that the existence of a smooth volume preserving
conjugacy implies that [b1Ωg1 ] = ±[b2Ωg2 ].

Lemma 2.2 ([17, Proposition 4.5], [38, Lemma 4.1]). Let (g1, b1) and (g2, b2)
be Anosov magnetic systems on M which are smoothly conjugate; then

A1

[
1 +

2πχ(M)c2g2,b2
A2

]
= A2

[
1 +

2πχ(M)c2g1,b1
A1

]

Proof. As before, let h : Sg1M → Sg2M denote the smooth conjugacy of
magnetic flows, and introduce the notation Ai = Area(gi). Lemma 2.1 and
(2.5) imply that h∗(ωg2,b2) = (A2/A1)ωg1,b1 , hence h

∗(τg2,b2)− (A2/A1)τg1,b1
is a closed 1-form on Sg1M . Thus, using (2.9), we have

A1

A2

∫
Sg2M

τg2,b2(Xg2,b2)µ
g2 =

A2

A1

∫
Sg1M

τg1,b1(Xg1,b1)µ
g1 .

Let θi be 1-forms on M satisfying (2.8) for biΩgi . Notice that we have
τgi,bi(Xgi,bi) = −1− cgi,biπ

∗
gi(bi) + θi, and thus

A1

A2

[
−A2 − cg2,b2

∫
M
b2Ωg2

]
=
A2

A1

[
−A1 − cg1,b1

∫
M
b1Ωg1

]
.

Applying (2.7) yields the desired result. □

This primitive is also a useful tool for establishing the following relation.

Lemma 2.3. Let (g1, b1) and (g2, b2) be Anosov magnetic systems on M
which are smoothly conjugate via the map h : Sg1M → Sg2M and which
satisfy Area(g1) = Area(g2). There is a closed 1-form ω on M such that if
γ1 is a closed orbit for (g1, b1) and γ2 is the corresponding closed orbit for
(g2, b2) under h, then we have

±cg2,b2
∫
γ2

b2 +

∫
γ2

θ2 = −cg1,b1
∫
γ1

b1 +

∫
γ1

[θ1 + ω].

Proof. Using the Gysin sequence (see [8]), one can show that the pullback
π∗g1 : H1(M,R) → H1(Sg1M,R) is an isomorphism [36, Corollary 8.10]. As
a consequence, there is a smooth function u : Sg1M → R and a closed 1-form
ω on M so that h∗(τg2,b2) − τg1,b1 = π∗g1(ω) + du. Contracting both sides

3There are many other ways to deduce this result. As an alternative, one can use [20]
to deduce that the magnetic flow is orbit equivalent to an Anosov geodesic flow, hence it
is homologically full.
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of this equation against Xg1,b1 and integrating over the orbit γ1, the result
follows from (2.9). □

Another characterization of (g, b)-geodesics is that they are minimizers of a
functional that behaves like the length functional. More precisely, let (g, b)
now be an Anosov magnetic system on M . Inside of every non-trivial free
homotopy class ν ∈ π1(M) there exists a unique (g, b)-geodesic γν ∈ ν [12].
Given a closed curve γ : S1 → M in the free homotopy class ν, we define
Σg,b(γ) to be a 2-chain on M with boundary given by γ− γν . With this, we
can define the magnetic length of an arbitrary closed curve γ to be

(2.10) Lg,b(γ) := ℓg(γ) +

∫
Σg,b(γ)

bΩg,

where ℓg denotes the (Riemannian) length of the curve with respect to the
metric g. Notice that Lg,b is well-defined by [35, Lemma 2.2] and, in partic-
ular, we have the following.

Lemma 2.4 ([5, 35]). Let (g, b) be an Anosov magnetic system on M . If
γ : S1 → M is an arbitrary closed curve inside of a free homotopy class ν,
then

Lg,b(γν) ≤ Lg,b(γ).

Finally, it will be convenient to work with an abstract circle bundle which is
independent of the choice of metric. Namely, let SM be the principal circle
bundle over M with p : SM →M is the projection map, and the fibers are
given by SxM = (TxM ∖ {0})/ ∼, where v ∼ w if and only if v = Cw with
C > 0. Given any Riemannian metric g on M , we can identify SgM with
SM by sending vectors to their equivalence classes. When working on SM ,
we will use the same symbol to identify all objects from SgM identified in
SM .

3. Proof of Theorem 1.3

The goal of this section is to prove the following theorem.

Theorem 3.1. Let M be a closed, connected, oriented surface, and let
ρ ∈ C∞(M,R+). Suppose (g, b1) and (ρg, b2) are two Anosov magnetic sys-
tems on M satisfying the following conditions:

MLS(g, b1) = MLS(ρg, b2), Area(g) = Area(ρg), and [b1Ωg] = [b2Ωg].

Then ρ ≡ 1 and b1 = b2.

Observe that [17, Theorem 1.1] reduces Theorem 1.3 to this setting, and thus
it is sufficient to work in this conformal setting. The proof that we present
below follows, to some extent, the strategy of the proof in [29, Theorem 2]
for Riemanian geodesics. In order to adapt the argument presented there
to our setting, we need to compare the magnetic length functional defined
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above with the Riemannian length functional. This comparison requires
the lemma below, which allows us to bound the difference between the two
functionals. Let h : SM → SM denote the conjugacy described in the
Introduction on the level of SM , and note that if [b1Ωg1 ] = [b2Ωg2 ], then
b2Ωg2 − b1Ωg1 = dζ for some 1-form ζ on M .

Lemma 3.2. Let M be a closed, connected, oriented surface. Suppose
(g1, b1) and (g2, b2) are two Anosov magnetic systems on M satisfying the
following properties:

MLS(g1, b1) = MLS(g2, b2), Area(g1) = Area(g2), and [b1Ωg1 ] = [b2Ωg2 ]

Then for every homologically trivial closed (g1, b1)-geodesic γ1, we have

(3.1)

∫
Σg2,b2

(γ1)
b2Ωg2 =

∫
γ1

ζ.

Proof. As in (2.8), write b1Ωg1 = cg1,b1K
g1Ωg1 + dθ1, and define the 1-form

κ := −cg1,b1ψg1 + p∗(θ1) on SM . Observe that p∗(b2Ωg2) = d(κ+ p∗(ζ)). In

particular, if γ1 is a closed (g1, b1)-geodesic and Σ̃g2,b2(γ1) is the lift of the
2-chain Σg2,b2(γ1) from M to SM , then Stokes’ theorem yields∫

Σg2,b2
(γ1)

b2Ωg2 =

∫
Σ̃g2,b2

(γ1)
p∗(b2Ωg2)

=

[∫
γ1

κ(Xg1,b1)−
∫
γ2

κ(Xg2,b2)

]
+

[∫
γ1

ζ −
∫
γ2

ζ

]
,

where γ2 is the image of γ1 by h, i.e. the (g1, b1)-geodesic in the same ho-
motopy class as γ2. We can then rewrite this as

(3.2)

∫
Σg2,b2

(γ1)
b2Ωg2 =

∫
γ2

[h∗(κ)(Xg2,b2)− κ(Xg2,b2)] +

[∫
γ1

ζ −
∫
γ2

ζ

]
.

Next, using Lemma 2.1 and (2.5), we deduce that h∗(ωg1,b1) = ωg2,b2 .
Since, by definition, ωgi,bi = −dαgi + p∗(biΩgi), we observe that the 1-form
−αg2 + κ+ p∗(ζ)− h∗(−αg1 + κ) on SM is closed. Using the fact that h is
a conjugacy, so h∗(Xg1,b1) = Xg2,b2 , it follows that

ιXg2,b2
(−αg2 + κ+ p∗(ζ)− h∗(−αg1 + κ)) = ιXg2,b2

(κ− h∗(κ)) + ζ.

Since γ2 is also homologically trivial, the integral of the left hand side over
the lift of γ2 is zero, hence

0 =

∫
γ2

[κ(Xg2,b2)− h∗(κ)(Xg2,b2)] +

∫
γ2

ζ.(3.3)

Substituting (3.3) into (3.2), the result follows. □

Remark 3.3. Notice that if we have [b1Ωg1 ] = −[b2Ωg2 ], so b2Ωg2 + b1Ωg1 = dζ,
then (3.3) becomes

0 = −
∫
γ2

[κ(Xg2,b2) + h∗(κ)(Xg2,b2)] +

∫
γ2

ζ.
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Substituting this into (3.2) yields∫
Σg2,b2

(γ1)
b2Ωg2 = −2

∫
γ2

κ(Xg2,b2) +

∫
γ1

ζ.

The term κ(Xg2,b2) presents a challenge in applying the upcoming ergodic
arguments, and is why we need our cohomology class assumption.

With Lemma 3.2 in hand, we can now prove the result.

Proof of Theorem 3.1. To ease our notation, let A := Area(g) = Area(ρg),
and let g1 := g and g2 := ρg1. Jensen’s inequality yields:

1

A

∫
M
ρ1/2Ωg1 ≤

[
1

A

∫
M
ρΩg1

]1/2
= 1,

with equality if and only if ρ ≡ 1. Suppose for contradiction that ρ ̸= 1 and
let ϵ > 0 be small enough so that

1

A

∫
M
ρ1/2Ωg1 + ϵ < 1.

Let dλgi be the normalized Liouville measure associated to the Liouville
volume form µgi . Since the flow φt

g1,b1
is ergodic with respect to this measure,

Birkhoff’s Ergodic Theorem implies that there exists v ∈ Sg1M so that for
every continuous function f ∈ C0(Sg1M),

lim
T→∞

1

T

∫ T

0
f(φt

g1,b1(v))dt =

∫
Sg1M

fdλg1 .

We apply the above to f = (π∗g1ρ)
1/2; thus, there exists a T0 > 0 so that for

all T ≥ T0, we have

1

T

∫ T

0
(π∗g1ρ)

1/2(φt
g1,b1(v))dt <

1

A

∫
M
ρ1/2Ωg1 +

ϵ

2
.

Furthermore, taking T0 larger if necessary, we may also assume that for all
T ≥ T0 we have

1

T

∫ T

0
ζ(φt

g1,b1(v))dt <

∫
Sg2M

ζdλg2 +
ϵ

2
=
ϵ

2
.

Since the orbit of v is dense, we can pick T to be large enough so that
φT
g1,b1

is arbitrarily close to v. Using density of homologically trivial orbits

[21, Lemma 2.7], this implies that there exists a closed homologically trivial
(g1, b1)-geodesic γ1 such that

(3.4)
1

ℓg1(γ1)

∫
γ1

ρ1/2 <
1

A

∫
M
ρ1/2Ωg1 +

ϵ

2
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and

(3.5)

∣∣∣∣ 1

ℓg1(γ1)

∫
γ1

ζ

∣∣∣∣ < ϵ

2
.

Rewriting (3.4) using the fact that the metrics are conformally related, we
see that

(3.6)
ℓg2(γ1)

ℓg1(γ1)
<

1

A

∫
M
ρ1/2Ωg1 +

ϵ

2
.

Let γ2 be the corresponding closed (g2, b2)-geodesic in the same free homo-
topy class as γ1. Utilizing Lemma 2.4, we observe

ℓg2(γ2) ≤ ℓg2(γ1) +

∫
Σg2,b2

(γ1)
b2Ωg2 .

This, along with Lemma 3.2, (3.4), and (3.5), implies that

1 =
ℓg2(γ2)

ℓg1(γ1)
≤ ℓg2(γ1)

ℓg1(γ1)
+

1

ℓg1(γ1)

∫
Σg2,b2

(γ1)
b2Ωg2

≤ ℓg2(γ1)

ℓg1(γ1)
+

1

ℓg1(γ1)

∫
γ1

ζ

<
1

A

∫
M
ρ1/2Ωg1 + ϵ

< 1.

We have reached a contradiction, and thus ρ ≡ 1.

Given g1 = g2 =: g, we now need to show that b1 = b2. Let γ1 be a closed
(g1, b1)-geodesic, and let γ2 be the corresponding (g2, b2)-geodesic in the
same free homotopy class. Lemma 2.4 yields ℓg2(γ2) = Lg2,b2(γ2) ≤ Lg1,b1(γ1),
and the marked length spectrum assumption implies

0 ≤
∫
Σg2,b2

(γ1)
b2Ωg2 .

Using the Gauss-Bonnet theorem along with Stokes’ theorem and (2.8), we
can rewrite this as

0 ≤ cg2,b2

∫
γ2

b2 − cg2,b2

∫
γ1

b1 +

∫
γ1

θ2 −
∫
γ2

θ2.

Lemma 2.3 along with the cohomology class assumption implies that there
is a closed 1-form ω on M such that

0 ≤
∫
γ1

[θ2 − θ1 − ω].

The choice of γ1 was arbitrary, hence this hold for all closed (g1, b1)-geodesics.
The non-positive Livshits theorem [32, Theorem 1] implies that there are
Hölder continuous functions F : Sg1M → [0,∞) and V : Sg1M → R such
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that θ2 − θ1 − ω = Xg1,b1(V ) + F . Integrating this over Sg1M with respect
to the normalized Liouville measure, we have

0 =

∫
Sg1M

[θ2 − θ1 − ω]dλg1 =

∫
Sg1M

Fdλg1 .

Thus, F ≡ 0. Using [16, Theorem B], we see that θ2 − θ1 − ω is an exact
1-form on M , hence θ2 − θ1 is closed. Finally, observe that (b2 − b1)Ωg =
d(θ2 − θ1) = 0 by (2.8), hence b2 = b1. □

4. Examples

The goal of this section is to construct a series of examples in order to better
understand the assumptions in Theorem 1.3, as well as to understand how
Corollary 1.5 compares to known results on marked length spectrum rigidity.
As a first step, we show how the area assumption cannot be removed.

Lemma 4.1. Let M be a closed, connected, oriented surface, and let g be
a hyperbolic metric on M . We have MLS(g, b) = (1− b2)−1/2MLS(g) for
every constant |b| < 1.

In particular, consider the homothetic metric gb := (1− b2)−1g. Lemma 4.1
shows that MLS(gb) = MLS(g, b) and Area(g) ̸= Area(gb), and thus the area
assumption in Theorem 1.3 is necessary.

Proof of Lemma 4.1. We lift the magnetic system to the universal cover
H = {(x, y) ∈ R2, y > 0}. Denote the lifted magnetic system on H by
(g̃, b), where g̃ is given by g̃ = y−1(dx2 +dy2). In particular, M can viewed
as the quotient of H under the action of a cocompact lattice Γ in PSL(2,R).

Let ν ∈ π1(M), and let γ : R → M the unique closed g-geodesic represen-
tative. Without loss of generality we can assume that the lifted geodesic
γ̃ is of the form γ̃(R) = {(0, r) ∈ R2 | r > 0}. In particular, there exists
an isometry f ∈ Γ so that f(γ̃(t)) = γ̃(t + ℓ) for every t ∈ R (see, for ex-
ample, [18]). Since f fixes (0, 1) and the point at infinity, we deduce that

f(x, y) = eℓg(γ)(x, y), thus

ℓg(γ) =

∫ eℓg(γ)

1

dy

y
.

Let γb : R → M be the unique closed (g, b)-geodesic with free homo-
topy class ν. Notice that we have γ̃b(R) = {

(
rb, r(1− b2)

)
| r > 0} and

f(b, 1− b2) =
(
eℓg(γ)b, eℓg(γ)(1− b2)

)
, hence

ℓg(γb) =

∫ eℓg(γ)

1

dy

y
√
1− b2

=
ℓg(γ)√
1− b2

.

The result follows. □
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H2

γ̃

1

γ̃b

eℓg(γ)

Figure 1. An example showing how γ̃ moves as b changes.

Next, we show how the assumption on the cohomology classes in Theo-
rem 1.3 cannot be removed.

Lemma 4.2. Let M be a closed, connected, oriented surface, and let g
be a hyperbolic metric on M . We have MLS(g, b) = MLS(g,−b) for every
constant |b| < 1.

Proof of Lemma 4.2. Define

Xg,b :=
1

2

(
1 b
−b −1

)
.

It is well-known that there is a cocompact lattice Γ in PSL(2,R) such that
the magnetic flow associated to (g, b) on SgM can be interpreted as the

flow on Γ\PSL(2,R) given by φg,b
t (Γq) := ΓqetX

b
(see, for example, [38]).

Observe that the matrix c ∈ SL(2,R) given by

c :=
1

1− b2

(
1 −b
−b 1

)
satisfies the condition that Xg,bc = cXg,−b. Thus, an easy argument using
induction and the definition of the exponential map tells us that if we define
the map h : Γ\PSL(2,R) → Γ\PSL(2,R) by h(Γq) := Γqc, then we have
h ◦ φt

g,b = φt
g,−b ◦ h. This is a smooth conjugacy between the magnetic

flows for (g, b) and (g,−b). Furthermore, if we define a family of matrices
cs ∈ SL(2,R) by

cs :=
1

1− sb2

(
1 −sb

−sb 1

)
,

then we have an associated family of maps hs : Γ\PSL(2,R) → Γ\PSL(2,R)
given by hs(Γq) := Γqcs. Observe that the family is continuous in s and
satisfies h0 = Id and h1 = h, so h is homotopic to the identity. As discussed
in [9, Section 10.3] and [13, Section 3], the subgroup of π1(SM) generated
by the kernel of the footprint map equals the center of π1(SM). Since h is
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invertible, we have that h∗ is an isomorphism on the level of the fundamental
groups, hence induces an isomorphism on the level of π1(M). This shows
that MLS(g, b) = MLS(g,−b). □

Finally, we construct an example of a closed, oriented, connected surface
such that there exists an exact Anosov magnetic system (g, b) where the
metric g is not Anosov by modifying the arguments in [10, Section 7]. This
shows that it is not necessary to assume that g is Anosov in Corollary 1.5.
We recall the following lemma, and briefly sketch its proof. For more details,
we point the reader to [10, Sections 6 and 7].

Lemma 4.3. There exists a closed, connected, orientable surface M and
an Anosov magnetic system (g, b) on M with b constant such that g is not
Anosov.

Sketch of Proof. We will need the following.

Lemma 4.4 ([10, Lemma 6.1]). Let (g, b) be a magnetic system on M . If
there are constants T > 0 and H > 1 such that for any (g, b)-geodesic γ and
any solution u to the magnetic Riccati equation

(4.1) u̇(t) + u2(t) +Kg,b(γ(t), γ̇(t)) = 0

with u(0) ≥ 0, we have 1/H ≤ u(T ) ≤ H, then the magnetic system is
Anosov.

Consider a rotationally symmetric surface N = R × S1 with coordinates
(s, θ). For a smooth function u : R → R, equip N with the following
Riemannian metric:

gu = ds2 + exp

(∫ s

0
u(τ)dτ

)2

dθ2.

Note that the Gaussian curvature is given by the formula

Kgu(s, θ) = −u′(s)− u2(s),

where ′ denotes the derivative with respect to the s coordinate. For s ∈ R
the unit speed parallel

α±
s (t) =

(
s,±exp

(∫ s

0
u(τ)dτ

)−1

t

)
has gu-geodesic curvature kgu(t) = ±u(s). In particular, α±

s is a closed gu-
geodesic if and only if u(s) = 0 [10, Lemma 6.2]. For δ > 0 small, consider
the interval [−δ, δ] ⊂ [−1/4, 1/4]. Let u(s) = tanh(s), except for a small
C0 perturbation in the interval [−δ, δ] where the function u satisfies the
following:

• |u(s)| < tanh(1/4) and Kgu(s) < 1/4, ∀s ∈ [−δ, δ].

• u(0) = 0 and u′(0) < 0.
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With this choice of u, we can immediately deduce that α±
0 (t) = (0, t) is a

closed gu-geodesic and Kgu(γ0(t)) > 0.

Denote by (M, ḡu) the Riemannian surface obtained through a standard
compactification of (N, gu) – see, for instance, [6]. By construction, the
metric ḡu carries a closed geodesic contained in a region with positive curva-
ture, hence the geodesic flow cannot be Anosov. Consider now the magnetic
system (gu, 1/2) on N , and observe that the magnetic curvature is given by

Kgu,1/2(s) = Kgu(s)+1/4. In particular, note that Kgu,1/2 is at most 1/2 in
the region Cδ = [−δ, δ]×S1, and at most−3/4 outside Cδ. Observe also that,
due to the choice of u, for s ∈ [−1/4, 1/4] the gu-geodesic curvature of a par-
allel is bounded in absolute value by 1/4 and unit speed (gu, 1/2)-geodesics
have prescribed gu-geodesic curvature equal to 1/2. Thus, each unit speed
(gu, 1/2)-geodesic connected segment in the region C1/4 = [−1/4, 1/4]× S1

can be tangent to a parallel α±
s at most once, and cannot be asymptotic

to α±
s . Moreover, [10, Lemma 7.1] establishes that the amount of time

unit speed (gu, 1/2)-geodesics spend in Cδ is bounded by 2tδ for a constant
tδ > 0. Therefore, every (ḡu, 1/2)-geodesic on M is contained in a region
with negative magnetic curvature equal to −3/4, except on intervals with
length bounded by 2tδ where the curvature is bounded by 1/2. Consider the
magnetic Jacobi equation along a (ḡu, 1/2)-geodesic γ:

(4.2) ÿ +Kgu,1/2y = 0.

Functions of the form u(t) = ẏ(t)/y(t), where y(t) is the unique solution of
(4.2) with initial condition y(0) ̸= 0, are examples of solutions to (4.1) along
γ. It is easy to check that for this choice of parameters, the assumptions of
Lemma 4.4 are satisfied for T = 1/8 and H > 0 depending on tδ, hence the
magnetic flow associated to (ḡu, 1/2) is Anosov. □

The goal is to now modify this argument in order to derive the follow-
ing.

Lemma 4.5. There exists a closed, connected, orientable surface M and an
exact Anosov magnetic system (g, b) on M such that g is not Anosov.

We briefly sketch the idea of the proof. The first step is to modify Lemma 4.3
in order to allow a magnetic intensity b+ which is a small positive bump
function. In particular, this will show that any (g, b+)-geodesic must spend
a small amount of time in the “bad region,” and we can shrink this amount
of time as necessary. A symmetric argument will also show that one can use
the magnetic intensity b− = −b+, and any (g, b−) geodesic will also spend
the same amount of time in the “bad region.” By gluing together these
examples and taking the magnetic intensity b := b+ + b− (note that these
are supported on two disjoint regions), we see that any magnetic geodesic
can only spend a small amount of time in the “bad regions,” and adjusting
parameters can shrink this amount of time to be arbitrarily small. As long
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as we take T sufficiently large depending on the distance between the “bad
regions,” as well as their size, then we can find an H where Lemma 4.4
applies. Moreover, since these “bad regions,” have the same size, we see
that the average of b with respect to the area is zero, and hence this gives
an example of an exact Anosov magnetic system whose underlying metric is
not Anosov. We now present the details.

Proof of Lemma 4.5. We use the same notation as in the sketch of Lemma 4.3.
The goal is to construct a magnetic intensity which is compactly supported
on N , and whose growth is small. This will allow us to control the magnetic
curvature as in the previous argument. Fix ϵ > 0 sufficiently small, and let
δ2 > δ1 ≫ 1/4. Let v be a C0 perturbation of u such that v coincides with u
on the interval [−δ1, δ1], Kgv(s) ≤ 1 for |δ1| ≤ |s| ≤ |δ2| and Kgv(s) = −1−ϵ
for |s| > δ2.

0 δ1 δ2δ−δ−δ2 −δ1 δ20 δ1δ−δ−δ2 −δ1

Figure 2. The graphs of the functions u and v, each
sketched against the graph of tanh.

Let δ4 ≫ δ3 ≫ δ2. Let b+ be a bump function with the following properties:

• b+ is supported in [−δ4, δ4]

• 0 ≤ b+ ≤ 1/2 and b+ ≡ 1/2 on [−δ2, δ2],

• ∥db+∥∞ + b2+ < 1/4 + ϵ.

0 δ3 δ4−δ3−δ4

1/2

Figure 3. An example of b+.

The magnetic curvature associated to (gv, b+) satisfies the property that

Kg,b+(s) = Kg,1/2 ≤ 1/2 for s ∈ [−δ, δ], and Kg,b+(s) ≤ −3/4 otherwise. By
construction, the dynamics of (gv, b+) restricted on C1/4 coincides with the
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dynamics of (g, 1/2). Involving the same argument as in Lemma 4.3, we can
conclude that the time any (gv, b+)-geodesic spends in Cδ is bounded above
by 2tδ for a constant tδ > 0 depending on the parameters. Let b− := −b+.
By symmetry, the time any (gv, b−)-geodesic spends in Cδ is bounded above
by 2tδ for the same constant tδ > 0. For both of these examples, preform
the same compactification procedure to get a closed, connected, oriented
surface, and two magnetic systems (ḡv, b±).

Away from the neighborhoods Cδ, we take two open sets and glue together
two copies of (M, ḡv) along these open sets to get M̄ = [M ∪M ]gv . Equip

this new surface M̄ with the magnetic system (ḡv, b), where b := b+ + b−.
By construction, the time each unit speed (g, b)-geodesic connected segment
spends in the region corresponding through the glue to Cδ is still bounded
by tδ. Outside those regions, the magnetic curvature is negative and still
bounded by −3/4, and thus by taking T sufficiently large depending on the
distance between the regions Cδ, and taking H depending on tδ and this
distance, one can conclude from Lemma 4.4 that the corresponding flow is
Anosov. Moreover, we have∫

M̄
bΩg = 2π

[∫ δ4

−δ4

b+ds+

∫ δ4

−δ4

b−ds

]
= 0,

hence the system is exact. □
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