FINITENESS OF TOTALLY MAGNETIC HYPERSURFACES

JAMES MARSHALL REBER AND IVO TEREK

ABSTRACT. By introducing a dynamical version of the second funda-
mental form, we generalize a recent result of Filip—Fisher—Lowe to the
setting of magnetic systems. Namely, we show that a real-analytic neg-
atively s-curved magnetic system on a closed real-analytic manifold has
only finitely many closed totally s-magnetic hypersurfaces, unless the
magnetic 2-form is trivial and the underlying metric is hyperbolic.

1. INTRODUCTION

A magnetic system on closed manifold M is a pair (g,0), where g is a

Riemannian metric and o is a closed 2-form on M. Associated to such a pair

is a dynamical system on the tangent bundle T'M, called the magnetic flow,

which is given by the second-order nonhomogeneous differential equation
D~ .

(1.1) L) = Yo (i),

where D/dt denotes the covariant derivative operator along « induced by g,

and Y: TM — TM is the Lorentz force operator of (g,o), defined via the

condition

(1.2) 2:(Yz(v),w) = 04 (v,w) forall x € M and v,w e T, M.

It is straightforward to show that the magnetic flow o' : TM — TM given
by ¢! (7(0),%(0)) = (y(t),7(t)) preserves each s-sphere bundle

(1.3) Y = {(z,v) e TM : gz (v,v) = s°}, s> 0.

Unlike the geodesic flow, the dynamics of the magnetic flow can change
drastically as one varies s. For example, if (M,g) is a hyperbolic surface
and o is its area form, then for s > 1 the magnetic flow is continuously orbit-
equivalent to the underlying geodesic flow, for s = 1 it is minimal, and for
s < 1 every orbit is contractible (such example is well-known—see [Pat06]).
As a consequence, specifying the parameter s, we refer to the restriction of
the magnetic flow to X as the s-magnetic flow.

Let UM = ¥; be the unit-tangent bundle of (M,g) and, for (z,v) € UM,
let P, : T,M — Rv and P,. : T,M — v be the corresponding tangential
and orthogonal projections. We also consider the vector bundle £ — UM of
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orthogonal hyperplanes, whose fiber over an element (x,v) € UM is given by
Euw) = vt. For s > 0, we consider the endomorphisms A¥?) and R(9:7:%)
of E given by

. 3 1
ey AED) = YR ) — 3R (Vi)

RET () = 8 Ro(w, v) = (V) (0) + S P (VoY) (w)),

where V is the Levi-Civita connection of g and R its curvature tensor. The

s-magnetic curvature operator is then

(1.5) MET (w) = RET (w) + AL (w)

and, if Sta(M, g) denotes the Stiefel bundle of ordered orthonormal 2-frames

tangent to M, the s-magnetic sectional curvature Sec(9:99) . Ste(M,g) > R
(8,0,5)

is Secy” " (v, w) = gx(M((g’Z)’s) (w),w). See also [Ass24l, Section 1.2].

By design, the s-magnetic curvature captures relevant dynamical informa-
tion about the s-magnetic flow. For example,

(1.6) if Sec(97%) < 0, then the s-magnetic flow is Anosov,

cf. [AMRT25, Appendix A]. Moreover, the magnetic sectional curvature also
influences the underlying geometry. An example of this phenomenon is the
following: if o # 0 and dim(M) > 3, and for some s > 0 the s-magnetic sec-
tional curvature is everywhere constant, then o is parallel and J = ||[Y|~'Y
makes (M, g) a Kdhler manifold with constant holomorphic sectional curva-
ture equal to —|Y|?/s?> [AMRT25, Theorem D].

An immersed submanifold N © M is totally s-magnetic if every solution
to with speed s which starts tangent to N remains in N for small
time, cf. [ABM25al Definition 6.5]. In light of the recent work by Filip,
Fisher, and Lowe [FFL24, Theorem 1], we aim to show that real-analytic
magnetic systems of the form (g,0), where g is a hyperbolic metric on an
arithmetic manifold, are special in the sense that they are the only negatively
magnetically curved examples which have infinitely many totally s-magnetic
immersed hypersurfaces for any (and hence all) s > 0. As in [FFL24], a
metric g is hyperbolic if it has constant strictly negative sectional curvature,
a manifold is hyperbolic if it admits a hyperbolic metric, and a hyperbolic
manifold is arithmetic if it can be written as H"/T" where IT" is an arithmetic
lattice.

Theorem A. Let (g,0) be a real-analytic magnetic system on a closed,
connected, real-analytic manifold M of dimension at least 3. If there exists
s > 0 such that the s-magnetic sectional curvature of (g, o) is everywhere
negative and M contains infinitely many closed totally s-magnetic hypersur-
faces, then o = 0 and (M, g) is isometric to a hyperbolic manifold. Moreover,
M is arithmetic.
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Our method of proof is dynamically motivated, and is similar in spirit to
the work of Foulon in [Fou86]. In view of , by suitably rescaling both g
and o if needed, we may assume that the 1-magnetic flow of (g, o) is Anosov
(see Lemma . With this perspective, we start by studying real-analytic
volume-preserving Anosov flows ¢! : UM — UM. We say that

a submanifold N of M is totally p-invariant if
UN is a p'-invariant subset of UM for all t € R.

In , N is equipped with its induced metric so that UN makes sense.
When ¢! is either the magnetic (or, geodesic) flow, we recover the usual
definition of totally magnetic (or, totally geodesic) submanifolds. In Section
we introduce a dynamical second fundamental form 1%, which precisely
captures what it means for a submanifold to be totally -invariant (see

Corollary .

We also define a dynamical exponential mapping expy in Section With
this, we say that the flow ¢! : UM — UM is without conjugate points if for
every x € M, the mapping expy is a local diffeomorphism. We will consider
Anosov flows which, on top of being without conjugate points, satisfy the
additional transversality property:

(1.8) V(z,v) nEY"(z,v) = {0} for all (z,v) € UM,

where V is the vertical distribution of the fibration UM — M and E®/*
are the stable and unstable distributions of the flow ¢! (see Section for
more details on Anosov flows). Condition is related to being without
conjugate points for a variety of flows, and generally comes for free from
the Anosov condition [PP94l [CGIP03]. As arbitrary flows in UM do not
come from Hamiltonian flows on T'M, it is not immediately clear whether
all Anosov semi-spray flows on UM are without conjugate points or satisfy
(1.8)) (see [ECMR25a] for some results in this direction on surfaces).

(1.7)

Both the dynamical exponential map and the dynamical second fundamental
form allow for us to follow the first part of the strategy in [FFL24) Section
3.1] for a special class of real-analytic volume-preserving Anosov flows.

Theorem B. Let (M, g) be a closed, connected, real-analytic Riemannian
manifold of dimension at least 3, and ¢!: UM — UM be a real-analytic
volume-preserving Anosov flow which is without conjugate points. If it also
satisfies and there are infinitely many closed totally ¢-invariant hyper-
surfaces in M, then every unit tangent vector lies in a totally w-invariant
hypersurface.

The next step in the strategy would be to show that every hyperplane tan-
gent to M can be realized by a totally p-invariant hypersurface. The argu-
ments in [FEL24] take advantage of both the Brin group and the dynamics
of the frame flow. In absence of a linear connection compatible with both
the metric and the flow, it is unclear how to define a frame flow from an
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arbitrary volume-preserving Anosov flow beyond the magnetic case. To that
end, we restrict to the magnetic setting in the following.

Theorem C. Let (g,0) be a real-analytic magnetic system on a closed,
connected, real-analytic manifold M of dimension at least 3 and s > 0. If
the s-magnetic flow is Anosov and there are infinitely many closed totally
s-magnetic hypersurfaces in M, then every hyperplane tangent to M is
realized as the tangent hyperplane to a totally s-magnetic hypersurface.

To conclude the proof of Theorem [A] we establish a dynamical version of
Cartan’s axiom of k-planes [DT19, Theorem 1.16], which is classically char-
acterized as follows: if (M, g) is a Riemannian manifold with dimension n > 3
and the property that, for some 1 < k < n, every k-plane tangent to M is re-
alized as the tangent space to a k-dimensional totally geodesic submanifold,
then (M, g) has constant sectional curvature. We generalize this by replac-
ing totally geodesic submanifolds with totally ¢-invariant submanifolds in
the setting where the flow is odd and without fized points in M, meaning
the horizontal and vertical components of its infinitesimal generator are odd,
and the former never vanishes (see and the discussion after).

Theorem D. Let (M,g) be a Riemannian manifold of dimension n > 3,
o't UM — UM be odd and without fixed points in M, and 1 < k < n be
an integer. If every k-plane tangent to M is realized as the tangent space to
a k-dimensional totally @-invariant submanifold, then (M, g) has constant
sectional curvature and ¢! is a smooth time-change of the geodesic flow.
Moreover, if ¢! is a semi-spray flow, then it is the geodesic flow of g.

In [FFL24, Section 4.2], the authors discuss whether an Anosov flow admit-
ting infinitely many flow-invariant submanifolds with dimension at least two
is necessarily algebraically defined. As pointed out to us by Fisher in pri-
vate communication, one can show that this is not the case for Anosov flows
on solvmanifolds. Either by perturbing an algebraic flow or by looking at
suspensions of products of Anosov toral automorphisms with Anosov diffeo-
morphisms that are not algebraic, it is not hard to produce examples where
there are infinitely many flow-invariant submanifolds of various dimensions,
but the flow is not smoothly conjugate to an algebraic flow.

Theorem [A] gives some evidence that such rigidity may hold once one leaves
the realm of solvmanifolds; in particular, one can widen the pool from the
Riemannian setting to the magnetic setting. It is an interesting question
whether one could further improve the result to all odd semi-spray flows on
UM. While many of the arguments carry over, the main issue lies within
the proof of Theorem [C} one would have to find an appropriate isometric
extension of the flow (see Remark for more details).
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Organization of the paper. In Section [2] we gather some preliminar-
ies about volume-preserving Anosov flows, principal isometric extensions of
such flows, and their Brin groups. Section |3| introduces the notions of the
dynamical second fundamental form and dynamical exponential map. Here,
we also prove Theorem [3.5] Finally, in Section [l we outline and adapt
the arguments given in [FFL24] in order to establish Theorems |B| and
Theorem [A] follows.
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well as for useful discussions. The authors would also like to thank Simion
Filip and Ben Lowe for explaining various parts of their proof as well as
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intuition for arithmetic manifolds. The first author was supported by the
National Science Foundation under award No. DMS-2503020.

2. PRELIMINARIES

In this section, we review some basics on the dynamics of Anosov flows as
well as the Brin group associated with an isometric extension of a volume-
preserving Anosov flow.

2.1. Volume-preserving Anosov flows. We follow [FFL24, Section 2.1]
as well as [FHI19]. Let N be a closed, connected Riemannian manifold and
let | - || denote the norm induced by the metric. A smooth flow ¢! : N — N
is Anosov if there exists a dyf-invariant splitting TN = E* @ E° @ E* and
constants C, A > 0 such that E€ is a one-dimensional distribution tangent to
the flow and for all t > 0, z € N, and v¥/% € Es/u(m), we have

(21) e’ (v*)pt(a) < Ce™ ™ 0°[e and [dap™ (") p1(a) < Ce™ 0" .

Note that since N is compact, is independent of the choice of metric,
after adjusting C and X if needed. We say that ¢! is volume-preserving if
there is a nowhere-vanishing top-degree form w which is invariant under the
flow. If the flow is volume-preserving, then we will denote by u the volume
measure associated to the invariant form.

Example 2.1. Let M be a smooth closed manifold of dimension n and
let (g,0) be a magnetic system on M. The tautological 1-form « on T'M
associated with g is given by a(y4)(§) = gz(d(zm7(§),v). For any s > 0,
the restriction of o to 3, (cf. (1.3])) is a contact form [Pat99], allowing us
to define the Liouville volume form w on ¥s by w = a A (da)"?™ # 0. It is
well-known that, for any o, the s-magnetic flow of (g, o) preserves w.

The flow ¢’ gives rise to the stable and unstable foliations on N, which
we denote by W9/*. Their leaves are smooth immersed submanifolds of N,
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called stable and unstable manifolds, respectively. In particular, it holds that
T, W5(z) = E*(x) and T,W"(z) = E¥(x) for each x € N. Furthermore,

59 there is also € > 0 such that the local stable and unstable manifolds
(2:2) Ws/u(z:) = W#/%(x) n B(z, ) are embedded submanifolds of N.

loc

A defining property of the stable and unstable manifolds is that

W (z) = {y e N : d(¢!(z),¢'(y)) =2 0},

(2.3) . L, L, A

WH(z) ={y e N :d(¢™"(2), 9" (y)) — 0},
where d is the distance function induced by the metric on N. We also define
the center-stable and center-unstable manifolds by

(24) We(z) = W (¢'(x)) and W(z) = [ JW"(¢' (@),
teR teR

and call a subset X N n-saturated if for any x € X, we have W"(z) < X,
where 1 € {s, u, cs, cu}.

Asin (2.2)), we may also consider W% (x) and W (x). Given a second point

loc oc

y € N, we define their Bowen bracket to be [z,y] = Wi (z) n W (y). As
W and W* are everywhere transverse, there is a neighborhood of U for

which [z, y] consists of a single point z whenever y € U, and
(2.5)  the resulting map 7<° on U, given by 75°(y) = z, is continuous.

The classical Hopf argument yields that all volume-preserving Anosov flows
are ergodic with respect to their volume measure p [Lef23, Lemma A.1]. The
forward- and backward-orbits of a point x € N are respectively denoted by
OF(x) = {¢t(x) : t = 0} and O (z) = {p!(x) : t < 0}. We say that x € N
is forward-generic (or, backward-generic) if OF (z) (or, O~ (z)) is dense in
N; it is generic if it is either forward- or backward-generic, and two-sided
generic if the full orbit O(z) = O~ (x) U O (z) is dense in M.

As a consequence of Birkhoff’s ergodic theorem, the subset D < N con-
sisting of all two-sided generic points has full y-measure. Furthermore, the
subsets DT, D~ < N consisting of all forward- and backward-generic points
are dense in N, with D™ and D~ being s-saturated and u-saturated, respec-
tively. As D* are invariant under the flow, we also conclude that they are
cs/cu-saturated sets of full y-measure. We record the following lemma, to
be used in Section [l

Lemma 2.2 ([FFL24, Corollary 2.1.6]). Let @' : N — N be a volume-
preserving Anosov flow. For any x € N and any open subset V' < W (x)
(respectively V < W (z)), we have VD™ # & (respectively VnD~ # &),
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2.2. Principal isometric extensions. We follow [Lef23] Section 2]. Let
o' : N — N be a volume-preserving Anosov flow. By a Riemannian fiber
bundle over N with typical fiber a closed Riemannian manifold (F, gp), we
mean a smooth fiber bundle p : E — N with typical fiber F' which admits
a reduction of its structure group to Iso(F,gr). In particular, this implies
that for each x € N, the fiber E, has a Riemannian metric which makes it
isometric to (F,gr). A flow ®': E — FE is called an isometric extension of ¢°
if, for each t € R and = € N, we have that po®’ = ¢'op and ®': E, — Et(y
is an isometry. If p: E — N also happens to be a principal bundle, we call
@t a principal isometric extension of .

The principal isometric extension ®' of a volume-preserving Anosov flow ¢!
is a partially hyperbolic flow on E. Namely, we have a direct-sum decomposi-
tion TE = ESPQ(VOE-F)PE“F, where V is the vertical distribution of the
fibration p: E — N, the distribution E“¥ is one-dimensional and tangent to
the flow ®¢, and the stable and unstable bundles E¥/*¥ of ®! on E are lifts
of the stable and unstable bundles E%/* of ¢! on N (i.e., dp(E¥/%F) = Es/*).
As in Section these bundles are all uniquely integrable, and we denote
the corresponding stable and unstable foliations on E by W% In partic-
ular, with and suggestive notation, we may also consider local stable
and unstable manifolds on the level of E.

Given x € N and y € I/Vlz/cu (x) it holds that, for each v € E,, the intersection

I/Vlz/CUE(v) N E, consists of a single point w, characterized by the property

that d(®!(v), ®*(w)) — 0 as t — +oo. This allows us to consider

(2.6) the holonomy mapping H{z/;E E, — E,, given by H;j/;E(v) = w,
which is continuous and may be naturally extended to the entire stable/un-
stable leaf. We may also consider holonomy mappings built with the local
center-stable and center-unstable manifolds instead.

For any closed subset X < E and generic point x € DT U D~ < N, we let
the generic part of X be defined as

(2.7) xgm = JoU(X,),  where X, = X 0 E,.
teR
In [FEL24], Proposition 2.2.10] it is established that if X is ®!-invariant, then

X2 is independent of the choice of generic point x and invariant under the
holonomy mappings (2.6)). Hereafter, we denote Xg™ simply by X80,

We may now consider

the collection T of all closed and ®t-invariant subsets of £

2.
(2:8) which are mapped surjectively onto N under p: £ — N.

An element X € I is called relatively minimal if it is a minimal element of
I' relative to the inclusion order, and we let I'i;n © I' denote the subcol-
lection of all relatively minimal subsets. The reason for this terminology is
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that in the case where p: E — N is a principal G-bundle, with G being a
compact Lie group, it holds that 'y, # @ and X = X8 for all X € I'yin.
Furthermore, if = is generic, any v € X, has a dense orbit in X (see ([2.7)).

Finally, still in the situation where p: £ — N is a principal G-bundle, it
follows from [FEFL24, Propositions 2.2.16 and 2.2.18 and Corollary 2.2.17]
that relatively minimal sets give rise to reductions of the structure group of
E. Namely, if X € 'y,

there is a closed subgroup Hx < G which acts freely

(2.9) and transitively on the fibers X, for any point z € IV,

and a continuous reduction of the structure group to Hx. The subgroup
Hxgen, given by applied to X&" instead of X, is called the transitivity
group of X and a priori depends on X. We will see that they are all iso-
morphic to each other, and they are also isomorphic to the Brin group of
p: E — N discussed below.

2.3. Brin group of isometric extensions. Let ®' : E — E be an iso-
metric extension of a volume-preserving Anosov flow ¢! : N — N. For any
s/u-curve—by which we mean a curve v : [0,7] — N whose image lies en-
tirely in a stable or unstable leaf—we may consider the holonomy mapping
Hf = Hg/;fE along =y, cf. , where x = v(0) and y = v(7); it is clearly
invariant under reparametrizations of v. More generally, if v = 1 % -+« %,
is an su-curve, that is, the concatenation of s/u-curves, we may define the
holonomy cycle mapping of v by H}YE = HVET o-- -oH}E. The holonomy group
‘H, based at a point x € N is then defined to be the group of all holonomy
cycle mappings associated with su-loops based at x. The conjugacy class
of H, is, as usual, independent of x. Accessibility of the flow easily implies
that

for any points x,y € N there is an su-curve n

(2.10) from z to y, so that H, = H,;EO%xO(Ha;E)_l-

Now assume that p: E — N is a principal G-bundle, where G is a compact
Lie group, and that ®' is a principal isometric extension of ¢'. For any
x € N, there is a (non-canonical) isomorphism 6, : Aut(FE,)% — G, where
Aut(E,) denotes the group of all G-equivariant self-mappings of E,. While
H, is a subgroup of Aut(E,)“ by design, tells us that the image
0,(Hz) in G is independent of the choice of x. The Brin group is finally

defined to be the closure B = 0,(H,) in G.

From [FFL24| Corollary 2.2.13 and Propositions 2.2.15 and 2.2.16] we obtain
some of the main properties of the Brin group: (i) X&" is B-invariant for
each X eI, cf. (2.§), (ii) X; in is a single B-orbit for each x € N and
X € I'yin, and (iii) for any X € I'yin, the subgroup Hx in is in fact the
Brin group B. In particular, we see that the transitivity group of X € 'y
is independent of the choice of X, and is simply the Brin group.
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The last fact we will need about principal isometric extensions in Section [4]
is that

(2.11) there is a ®!-invariant principal B-subbundle Ep

of E over which the restriction of ®¢ is ergodic.
For a proof, see [CLMS24l, Proposition 3.2].

3. DYNAMICAL GEOMETRY

Throughout this section, let (M, g) be an n-dimensional Riemannian man-
ifold, 7: UM — M be its unit-tangent bundle, and ¢': UM — UM be a
flow. The aim of this section is to outline all of the dynamical tools we need
based on the arguments in [FEL24].

3.1. Dynamical second fundamental form. Let N be a submanifold of
M equipped with its induced metric. Recall that N is totally ¢-invariant
if UN is a ol-invariant subset of UM for all t € R, cf. (1.7). In order
to characterize this condition, we first need a description of the tangent
bundle TUN as a vector subbundle of TUM|y. The two ingredients for
that are the second fundamental form Il of NV, and the Levi-Civita connector
K:TUM — E (here, E is as in the lines preceding (1.4))).

Below, we use the direct-sum decomposition TM|y = TN @[T N]* induced
by g, while [-]T: TM|y — TN and [-]*: TM|y — [T'N]* denote the
projections onto the tangent and normal bundles of V.

Lemma 3.1. For all (z,v) e UN,

d T, v L =0 and

]Ix(d(a:,v)ﬂ-(f)av) = [K(J:,U) (5)]i

Proof. Let £ € T, ,)UN be the initial velocity of a curve t — (x(t),v(t))
in UN, so #(0) = d(;,7(§) and (Dv/dt)(0) = K(;,)(£), and let n be any
local section of [T'N]+ defined around z. The condition [d, 7 (£)]* = 0
is directly obtained from evaluating g, ) (%(t), n.)) = 0 at t = 0. We may
then differentiate g, ;) (v(t), my¢1) = 0 at t =0 to obtaln

(32) gI(K(:v,v) (5)5 nl‘) + gm(’U, Vd(x,v)w(f)n) =0,

where V is the Levi-Civita connection of (M,g). Letting A: T,N — T, N
denote the shape operator of 7,, we have that

g&?(vv Vd(myv)w(f)n) = —gx(’u, A(d(x,v)ﬂ(g)))

= _gx(]I (d(x v)ﬂ—(g)a U) 773?)
so that reduces to gq(K(y,0)(€) — Lz(d(, 77(&) v),nz) = 0. The arbi-
trariety of 7 now implies that I, (d( ) 7(), ) [K ()€ )]*

(3.3)

The conclusion follows from a dimension count: if & = dim N, the right side
of (3.1) has the dimension 2n—1—2(n—k) = 2k + 1, as does T(,, , ,UN. [
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Recall that K also yields a decomposition T(, ., \UM = H(z,v) ® V(z,v),
where H(z,v) = ker(K(,,,)) and V(z,v) = ker(d,,)7) are called the hori-

zontal and vertical bundles, and both restrictions
(3.4) dgunm: H(z,v) > T,M and K, : V(z,v) — vt
are isomorphisms.

The infinitesimal generator X of ¢! is completely determined by its horizon-
tal and vertical components, respectively defined by

(3.5)  Xp(w,v) =de,m(X(2,v) and Xy(x,v) = Kqg,)(X(2,0)).

With this in place, we say that ¢! is odd with respect to g if both of its
components are odd, that is, if

(3.6) Xu(z,—v) = —Xpg(z,v) and Xy(z,—v)=—-Xy(z,v)

for all (z,v) € UM. Note that the metric is crucial for this definition, since
(3.6) cannot be replaced by the single condition X (x,—v) = —X(x,v), as
T(a:,—v) UM # T(:v,v)UM

Furthermore, we say that x € M is a fized point of ¢! if there exists v € U, M
such that 7o !(z,v) = z for all t € R. Equivalently, ¢! has a fixed point in
M if there exists (x,v) € UM such that X (z,v) = 0. Finally, ¢! is called a
semi-spray flow if it satisfies that X (z,v) = v. Note that they are always
without fixed points.

Example 3.2. As in , the orbits of a semi-spray flow ¢': UM — UM
are also described by a second-order differential equation. Namely, the
condition Xp(xz,v) = v says that all such orbits ¢ — (y(¢),v(¢t)) must
have v(t) = 4(t), while taking covariant derivatives of the vector part of

(v(1),%(t)) = ¢'(v(0),7(0)) leads to

(1) = Xv (1), 3(0).

In particular, when ¢! is the geodesic flow of g, we have that Xg(z,v) = v
and Xy (z,v) = 0. When ¢! is the magnetic flow of a magnetic system
(g,0), we have X (z,v) = v and Xy (x,v) = Y, (v), for Y as in (1.2)). Both
such semi-spray flows are odd. For more examples on closed surfaces, we
refer the reader to [ECMR25b].

(3.7)

Inspired by Lemma we have the following.

Definition 3.3. The dynamical second fundamental form of N relative to
g and the flow ¢': UM — UM is the mapping I¥: UN — [TN]* ® [T N]*
defined by I£(v) = (L;([Xu(z,v)]",v) — [Xv(z,v)]", [Xu(z,v)]1), for
all (x,v) e UN.
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Note that the second component of ¥ vanishes identically whenever ! is
a semi-spray flow. In particular, in view of Example this dynamical
second fundamental form reduces to both the classical one in the case of the
geodesic flow, and also to the magnetic second fundamental form introduced
in [ABM25b, Definition 6.9] and [Ter25, Definition 4.1] in the case of a
magnetic flow. The significance of the dynamical second fundamental form
is that it precisely captures what it means for a submanifold to be totally
(p-invariant.

Corollary 3.4. A submanifold N of M is totally g-invariant if and only if
its dynamical second fundamental form vanishes identically.

Proof. Tt suffices to note that UN is ¢'-invariant for all t € R if and only
if we have that X(x,v) € T(,, UN for all (x,v) € UN. Such tangency
condition, due to Lemma and the definitions of Xy and Xy in ,
means precisely that ¥ = 0. O

In the case of magnetic flows, Corollary reduces to [ABM25al, Theo-
rem 1.4] and [Ter25, Remark 4.2 (i)]. We now have the tools to prove the
following, which can be seen as a dynamical version of Cartan’s axiom of
k-planes.

Theorem 3.5. Let (M,g) be an n-dimensional Riemannian manifold with
n =3, fix1<k<mn,andlet ¢': UM — UM be an odd flow without fixed
points in M. If for every x € M and any k-dimensional subspace W < T, M
there is a totally ¢-invariant submanifold of M with x € N and W = T, N,
then g has constant sectional curvature and ¢ is a smooth time-change of
the geodesic flow of g. Moreover, if ! is also assumed to be a semi-spray
flow, then ¢! is the geodesic flow of g.

Proof of Theorem[3.5 Note that, as 1 < k < n, for any (z,v) € UM we
have

(3.8) ()W € T.M : dimW = k and v e W} = Ro.

Now consider any k-dimensional subspace W of T, N containing v, and
choose a totally ¢-invariant submanifold NV of M with z € N and W =T, N.
As (z,v) € UN, Definition and Corollary yield both relations

(3.9) (i) ]L,;([XH(x,v)]T,v) = [Xv(av,v)]L and  (ii) [XH(:lc,v)]l =0.

As ¢! is odd, the left side of i) is even while the right side is odd,
and hence they vanish separately. Due to , it follows from (3.9}ii)
and [Xy(z,v)]* = 0 that Xp(x,v), Xy (2z,v) € Rv. At the same time,
Xy (z,v) € vt in view of ([3:4), and thus Xy (z,v) = 0. We also obtain a
smooth function A\: UM — R such that Xy (z,v) = A(x,v)v, which has no
zeros as ¢! is without fixed points in M. This way, I, ([Xg(x,v)]",v) = 0
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directly implies that I = 0, meaning that every totally yp-invariant subman-
ifold considered above is, in fact, totally geodesic. Hence, by the classical
characterization of Cartan’s axiom of k-planes, g has constant sectional cur-
vature. Finally, we conclude that X (z,v) = \(x,v)X®(x, v), where X is the
infinitesimal generator of the geodesic flow of g, making ¢’ a smooth time-
change of such geodesic flow. If ¢! is a semi-spray flow, then A\(z,v) =1. O

Theorem can be specialized to the case of s-magnetic flows. In order to

do so, a rescaling of the magnetic system is needed: s-magnetic flows are not
defined on UM, but instead on 3, cf. (|1.3).

Lemma 3.6. Let (g,0) be a magnetic system on a smooth manifold M,
and s > 0. Then,

2

(i) the s-magnetic flow of (g, o) equals the 1-magnetic flow of (s~2g, s~20);

(ii) any totally s-magnetic submanifold of M for (g,o) is also a totally
I-magnetic submanifold of M for (s~2g, s 20).

Proof. If we write 0 ~; Y to mean that o and Y are related under g as in
(1.2), multiplying both sides of (1.2]) by s=2 yields s~20 ~ s—2g Y. As X for
g equals the unit tangent bundle for s~2g and

(3.10) both g and s~2g share the same Levi-Civita connection,

it now follows that (s~2g, s 20) gives rise to the same equation as
(g,0). Therefore, (i) holds. For (ii) we first note that, as another conse-
quence of , the second fundamental form of any submanifold of M
remains unchanged under constant rescalings of g. At the same time, by
(i), the same holds for the infinitesimal generator of the magnetic flow, and
thus for the dynamical second fundamental form, cf. Definition With
this in place, (ii) follows from Corollary O

Applying Theorem 3.5/ to (s 2g, s 20) instead of (g, o) and noting that a
magnetic flow can only equal the underlying geodesic flow when the magnetic
2-form vanishes (see also the lines following ), we finally obtain the
magnetic version of Cartan’s axiom of k-planes.

Corollary 3.7. Let M be an n-dimensional smooth manifold with n > 3,
fix 1 < k <mn, and let (g,0) be a magnetic system on M. If, for some s > 0,
it holds that every k-plane tangent to M is realized as the tangent space to
a k-dimensional totally s-magnetic submanifold of M, then ¢ = 0 and g has
constant sectional curvature.

Remark 3.8. As a last consequence of the proof of Theorem when
o': UM — UM is an odd semi-spray flow, a submanifold N of M is totally
e-invariant if and only if it is both totally geodesic and with Xy (z,v) € T, N
for all (x,v) € UN; cf. [Ter25, Example 4.3] for the case of a magnetic flow.
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3.2. Dynamical exponential map. Denoting by | - | the norms induced
by g on the tangent space of M, for each x € M the dynamical exponential
map relative to the flow ¢! is the mapping expy : T, M — M given by

o i
(3.11) expf(v) = 47 °¥ (@, v/[v]), if v 20,
x, ifv=0.

The following lemma is a direct adaptation of [DPSUQT7, Lemma A.7]. We
still provide its proof for the reader’s convenience (here, we use Einstein’s
summation convention).

Lemma 3.9. Assume that ¢ is of class C*, with k > 2 (or C* or C%).
Then for any point z € M, expy has the same regularity as ¢! on T, M ~. {0},
and it is of class C! on T, M. Moreover, if it is of class C? at 0 and ¢’ is an
odd semi-spray flow, then Xy (z,v) =0 for all v e U, M.

Proof. The C*-regularity of exp? on T, M ~ {0} follows from (3.11). In
addition, all of its directional derivatives at 0 exist as

(3.12) do exp?(v) = Tl ° o'(z,v) = Xp(z,v)

t=
for all (z,v) € UM. Fixing coordinates x!,..., 2" for M centered at z, set
(3.13) Y (t,2,0) = expf(tv),

where expf(tv) = z(expf (tv)); note that each 7' is of class C¥. Relative
to linear coordinates v, ..., v" on T, M, we may differentiate (3.13) with
respect to v/ to obtain
i

(3.14) o

(tv), for all t > 0.

Observe, however, that (3.14) also holds at t = 0, as 4*(0, z,v) = 0, which is
another consequence of (3.11)) together with our choice of coordinates. With
(04"/t)(0, z,v) = X} (z,v) for all (z,v) € UM, where Xk (x,v) denotes the
i-th component of X (z,v) in the coordinates !, ..., 2" (and similarly for

Xy (x,v) below), this allows us to compute

©,0 7 2.0
tim, “2P (10 = tim (1 20) = (0,0
(315) t—0 U t—>20‘ (% ' v
0" 0Xyy
S (0.,0) = S (w,0)

The above limit is uniform in v as U, M is compact and, together with (3.12)),
shows that exp? is of class C! at 0.

Next, assume that ¢! is an odd semi-spray flow, and that expy is of class
C? at 0. For any v € UM, the curve t — exp (tv) is a solution of (3.7),
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whose coordinate version reads

82 ) . o j o k )

(3.16) (0., 0) + T (expf (t0) - (t,2,0) - (1,2,0) = X (6 (),
for all i = 1,...,n. Differentiating (3.13]) with respect to ¢ twice, we obtain
0%y 02 exp?l’ -

(317) 61‘,2 (t,.f,'l)) = W(tU)U]U .

Using the C2%-regularity of expy in order to take ¢ — 0 in (3.16)), together
with (3.17) and the relations (0+'/0t)(0,z,v) = v given by the semi-spray
condition, it follows that

Pepft —
<&%wﬂm+Fﬂu0v%k=Xwam.

The left side of (3.18)) is manifestly even in v, while the right side is odd
by assumption—this is only possible if both vanish individually. Therefore,
Xv(xz,v) =0 as claimed. O

(3.18)

4. RIGIDITY RESULTS

The main goal of this section is to establish Theorems [B] and [C] working in
the real-analytic category. We recall some of the notation from [FEL24]. Let
(M, g) be a closed, real-analytic Riemannian manifold of dimension n > 3,
and assume that

(4.1) @' : UM — UM is a real-analytic volume-preserving Anosov flow.

We also consider the Grassmannian bundle HM of oriented hyperplanes
tangent to M, and let myy : FM — H M be the unit tautological bundle over
HM, with fibers F, myM = {(z,II,v) : (,1I) € HM and v € Il n U, M}.
Introducing a further projection nyy : FM — UM, with 7y (x, I, v) = (x,v),
and denoting by Z < HM the subset consisting of all hyperplanes which
are tangent to a germ of a totally p-invariant hypersurface, we set

(4.2) I=71(Z) S FM and A=nmy(I)<UM.

Our first claim is that the sets I and Z are real-analytic and A is subana-
lytic. The method of proving this perfectly mirrors [FEL24, Corollary 3.2.3];
namely, we wish to take advantage of [FFL24, Lemma 3.2.2], which estab-
lishes real-analyticity of the set consisting of all base points over whose fibers
a real-analytic function (defined on a bundle) vanishes. Utilizing Section
we now present the argument in detail.

Lemma 4.1. The set Z is real-analytic. In particular, I is also real-analytic,
and A is subanalytic.

Proof. For any (z,11) € HM, we set Sy = exps(Il). Note that Sy is a
C'-immersed hypersurface of M but, as expf is real-analytic away from
the origin, so is St \ {z}. In addition, Sty represents the germ of a totally
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p-invariant hypersurface if and only if for every y € Sp, unit vector v € Ty, 51,
and t € R, we have that 7 o ¢!(y,v) € Sq.

Whenever (z,11,v) € FM, the curve t — 7 o ¢'(x,v) lies entirely in Sp by
definition of St. This allows us to define the augmented exponential map

(4.3) E: FM x (0,00) > HM, by E(z,I1,v,t) = (exp?(tv), ds exp? (1I)).

Explicitly, E sends (x,II,v) to the corresponding tangent hyperplane to St
at expy (tv). Furthermore, since tv is never the zero vector, this is a real-
analytic mapping. Define the mapping o: HM — R by

(4.4) a(z, 1) = JU . |0£ () dpe(v)

where IIZ is the dynamical second fundamental form of Sty at , the codomain
bundle [T'Sy]* @ [T'Sn]* of I¥ is equipped with the product fiber metric
g ®g, and u denotes the Lebesgue measure on U, St induced by g. With
this in place, the pullback mapping E*« : FM x (0,00) — R is also real-
analytic, and Theorem yields that (x,II) € Z if and only if we have
that the function E*«(x,I1,-,-) : U,S x (0,00) — R vanishes identically.
This allows us to obtain the conclusion from [FFL24, Lemma 3.2.2], taking
m: X — Y therein to beEinandsz*a for o in (4.4)). ([

Once Z is real-analytic, it follows from nearly the same argument as in
[FFL24, Proposition 3.2.5] that there is at least one totally ¢-invariant hy-
persurface through every tangent vector. The only difference is that one
has to take advantage of the fact that the flow is without conjugate points,
along with and the inverse function theorem. We sketch the details for
the reader’s convenience.

Proof of Theorem [B, We must show that A = UM, cf. . As A is
closed and '-invariant, it suffices to show that there exists (z,v) € A
whose forward-orbit or backward-orbit is dense. First, using the assumption
that M has infinitely many closed, immersed, distinct totally y-invariant
hypersurfaces, it follows that we have dim(Z) > n. As a consequence,

dim(I) = dim(Z) + (n — 2), and hence dim(I) > 2n — 2.

Let A° < A be the collection of smooth points, and consider the restricted
projection 7y : I — A, cf. (4.2]). There are now two possibilities: either

(i) dim(A) = dim([]), or

(ii) there is a further relatively open subset A°° < A such that 7y |; has
fibers of positive dimension over A°°.

We address each case separately.

If (i) holds, suppose that dim(A) = dim(/) > 2n — 2. If equality holds,
then dim(UM) = 2n — 1 yields A = UM. Otherwise, if dim(A) = 2n — 2,
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let (z,v) € A° be a smooth point, and consider the bundle NUM over
UM with fibers given by N, ,\ UM = T{,,,,UM/RX (z,v). The hyperplane
T 0)A/RX (z,v) must be transverse—without loss of generality—to the sta-
ble bundle E*(z,v) (as ¢' is Anosov, cf. ([£.1)), in which case we have that
dim(E (z,v) N Ty A) = dim(WS(z,v)) —1 = n — 1; see (2.4)). Let Q be
a real-analytic submanifold of A° such that T, ,\ UM = T(, ,,Q ®E“(z,v).
Such @ remains transverse to W in a neighborhood U of (z,v), and so
the projection 7*(Q nU) < W} (z,v)—cf. and ([2.5)—contains a non-
empty open set. By Lemma [2.2] we obtain a forward-dense point in A.

If (ii) holds instead, we may fix a point (z,v) € A°° such that the fiber
Iipv) = 77131 (z,v) < I contains a real-analytic curve I'." We proceed in a
small neighborhood U € M of x. For a point i = (z,1II,v) along the curve
I', let H; < U be the closed totally ¢-invariant hypersurface with T, H; = II.
As expy is a local diffeomorphism by assumption,

(4.5) the union of all such H; must contain an open subset Uy of U.

By (L.8), reducing W (z,v) further if needed, the projection UM — M
restricts to a diffeomorphism w: W& (x,v) — M onto its image; we denote
its inverse by 0(y): U — Wi (2, v). Given y e U,

the element §(, . (y) is characterized by the property that the
distance d(¢'(8(3,0)(y)), ¢' (2, v)) remains bounded as t — +o0,

cf. (2.3). It remains to show that
(4.7) (z,0)(U1) € A, where Uy is the open set in (4.5)).

(4.6)

This way, as A then contains an open set, we may use Lemma to de-
duce that A = UM, concluding the proof. We establish directly: if
p1 € Uy n H; for some ¢ € I', using that H; is a totally ¢-invariant hyper-
surface containing both p; and x, we obtain a unique v1 € Uy, H; such that
d(¢t(p1,v1), ¢t (x,v)) remains bounded as t — +00; it follows from that
(P1,v1) = O(z,0)(p1) is tangent to H;, and hence in A as required. O

We now consider the frame bundle PM — UM , whose fiber over any element
(z,v) € UM consists of all ordered orthonormal bases of T,, M starting with
v; it is easy to see that it is a principal SO(n — 1)-bundle over UM. The
construction of the frame extension of ¢’ used in [FFL24] must be modified
in order for us to proceed and establish Theorem [C] It is from this point
onwards that the discussion is specialized to s-magnetic flows; Lemma |3.6
allows us to assume without loss of generality that s = 1 in Theorems [A] and
[Cl Along each unit-speed magnetic geodesic v: R — M, we may consider
the magnetic covariant derivative operator D given by

_ DW

(4.8) (DW)(t) = — (1) = Yy (W (1)),
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for any vector field W along ~ (see [Gro99] and [Ass24] for implicit uses
of D). In fact, D defines a metric-compatible connection in the pullback
bundle v*(T'M) over R (as Y in (1.2)) is skew-adjoint), while (1.1)) reduces
to Dy = 0.

We define the magnetic frame-extension flow ®': PM — PM of ¢! as

(4.9) Ol (z,v,v2,...,vn) = (V(1),v(t),va(t), ..., vn(t)),

where we set ¢!(z,v) = (y(t),v(t)) and each v;(t) is the D-parallel transport
of the corresponding vector v; along the curve z(t). By metric-compatibility
of D, defines a principal isometric extension of ¢!, and so we may
consider its Brin group B < SO(n — 1).

In [FFL24, Remark 3.3.3], the authors observe that there are topological
obstructions to the principal bundle having a continuous reduction of the
structure group to H < SO(n—1) with H connected. Provided n is odd and
n # 7, there does not exist a non-trivial reduction. If n is even and is not
either 8 or 134, then there are two cases: either n =2 (mod 4) or n =4, in
which case H must fix a vector in R®™1, or n = 0 (mod 4), in which case H
must act reducibly on R”~!. In the exceptional cases, if n = 7 then we must
have that H contains SU(3) and fixes a complex structure on R%, if n = 8
then either H acts reducibly on R” or H fixes a nonzero 3-form on R” and
is either SO(3) or Gg, and finally if n = 134 then H either fixes a vector in
R133 or it fixes a nonzero 3-form and equals E7/(Z/27Z).

With the above discussion and [CLMS24) Step 1 of Proof of Theorem 3.1],
the authors were able to leverage these obstructions in [FFL24. Proposi-
tion 3.3.5] along with the fact that there are infinitely many closed totally
geodesic hypersurfaces in order to enumerate all possibilities for what

(4.10) the coset space C = B\(SO(n — 1)/SO(n — 2))

could be, provided the Brin group B is connected. In light of Section [3| we
observe that these arguments generalize readily without any modification,
provided there is a notion of a frame flow. In our setting, we have

if B is connected and M admits infinitely many
(4.11) closed totally 1-magnetic hypersurfaces, then ei-
ther B =SO(n—1) or C equals [—1, 1] or a point.

We now explain why we may assume the Brin group is connected. Below,
by a magnetomorphism between manifolds equipped with magnetic systems,
we mean a diffeomorphism which preserves both the metric and magnetic
2-form, cf. [ABM25a), Section 1.1]. Similarly, a magnetomorphic covering be-
tween manifolds equipped with magnetic systems is a covering map which is
a local magnetomorphism. The next lemma is a direct magnetic adaptation
of [CLMS24, Lemma 3.3], whose details we again provide.
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Lemma 4.2. With the above setup, and with B° denoting the identity
component of B, there is a finite magnetomorphic covering of M whose
magnetic frame-extension flow has the Brin group BY.

Proof. By , we may fix a ®'-invariant principal B-subbundle Pg of
PM on which ®! is ergodic. Since ®! is transitive on Pg, we have that
Pg is connected. As the quotient B/B is discrete, the quotient projection
Pg/B° — UM is a finite covering map, with deck transformation group
B/BY. At the same time, as n = 3, it follows from the long exact sequence in
homotopy that w1 (UM) = w1 (M). Thus, we may fix a subgroup I' < m; (M)
acting freely and properly dlscontlnuously on the universal covering M of
M for which the quotient M=DM /F equlpped with the pullback magnetic
system, has its own unit-tangent bundle U M equivariantly diffeomorphic to
Py/B°. Here, UM is equipped with its own 1-magnetic flow, while Pg/B°
has the quotient flow induced by ®‘. The conclusion now follows as the
Brin group of the magnetic frame-extension flow on PM — UM is B°, by
construction. O

Utilizing Lemmal[4.2] and passing to a finite magnetomorphic covering of M if
needed, we may assume without loss of generality that B is connected with-
out affecting the conclusion of Theorem |B| In [FFL24, Proposition 3.3.6],
the authors utilize the equivalent of in order to argue why the dimen-
sion of the fibers of HM — M have full dimension. If the coset space C in
is a point, the conclusion follows immediately, as the generic part of
I = 71’;11(2 ) corresponds to a nonempty closed subset of C, and the set I is
saturated by the fibers of the projection to HM. Thus, in order to show that
the fibers have full dimension, one only has to argue when C = [—1,1]. The
argument for this case is purely topological in [FFL24, Proposition 3.3.6],
and hence it carries over immediately to our setting:

dim(Z(x)) = dim(H, M) = n—1 for all

x € M, where we set Z(x) = H,M n Z.

We now conclude the proof of Theorem |C] following the argument in [FFL24,
Section 3.3.7].

(4.12)

Proof of Theorem|[(. Since Z = HM is a closed real-analytic set of full
dimension, it suffices to show that Z is open. For every z € Z, let Z,
denote the germ of Z at z. This has full dimension by , and therefore
the complexified germ is an entire complex neighborhood of z. By [Nar(06,
Chapter V, Proposition 1], the germ Z, is an entire real neighborhood of z,
and hence Z is open. (I

In the same way that Corollary [3.7] followed from Theorem [3.5] we have that
Theorem [A]follows from Theorems[C] and [D]applied to the rescaled magnetic
system (s~2g,s 20) instead of the original system (g, o), cf. Lemmas
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and [PP94]. In fact, as this argument shows, it suffices to assume that the
s-magnetic flow is Anosov in Theorem[A]rather than the stronger assumption
that the s-magnetic curvature is negative.

Remark 4.3. It is not immediately clear how to generalize to any
semi-spray flow ¢! on UM. Namely, the expression DW /dt — Xy (v, W) (cf.
(3-5)) does not define a linear connection on v*(T'M) because (i) Xy (z,v)
does not depend linearly on v, and (ii) the vector field W is not restricted
to have unit length. One can work around (i) by defining D¥ via the above
expression, with Xy (v, W) replaced by the fiber-derivative of Xy at (v,7),
evaluated at W, but a different issue arises: DY is not guaranteed to be
a metric-compatible linear connection on *(T'M), as the fiber-derivative
of Xy need not be skew-adjoint. This would be necessary to ensure that
the D¥-parallel transport preserves the tangent spaces to totally (p-invariant
submanifolds. For magnetic flows, however, D¥ agrees with D in .
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