
FINITENESS OF TOTALLY MAGNETIC HYPERSURFACES

JAMES MARSHALL REBER AND IVO TEREK

Abstract. By introducing a dynamical version of the second funda-
mental form, we generalize a recent result of Filip–Fisher–Lowe to the
setting of magnetic systems. Namely, we show that a real-analytic neg-
atively s-curved magnetic system on a closed real-analytic manifold has
only finitely many closed totally s-magnetic hypersurfaces, unless the
magnetic 2-form is trivial and the underlying metric is hyperbolic.

1. Introduction

A magnetic system on closed manifold M is a pair pg, σq, where g is a
Riemannian metric and σ is a closed 2-form on M . Associated to such a pair
is a dynamical system on the tangent bundle TM , called the magnetic flow,
which is given by the second-order nonhomogeneous differential equation

(1.1)
D 9γ

dt
ptq “ Yγptqp 9γptqq,

where D{dt denotes the covariant derivative operator along γ induced by g,
and Y: TM Ñ TM is the Lorentz force operator of pg, σq, defined via the
condition

(1.2) gxpYxpvq, wq “ σxpv, wq for all x PM and v, w P TxM.

It is straightforward to show that the magnetic flow ϕt : TM Ñ TM given
by ϕtpγp0q, 9γp0qq “ pγptq, 9γptqq preserves each s-sphere bundle

(1.3) Σs “ tpx, vq P TM : gxpv, vq “ s2u, s ą 0.

Unlike the geodesic flow, the dynamics of the magnetic flow can change
drastically as one varies s. For example, if pM, gq is a hyperbolic surface
and σ is its area form, then for s ą 1 the magnetic flow is continuously orbit-
equivalent to the underlying geodesic flow, for s “ 1 it is minimal, and for
s ă 1 every orbit is contractible (such example is well-known—see [Pat06]).
As a consequence, specifying the parameter s, we refer to the restriction of
the magnetic flow to Σs as the s-magnetic flow.

Let UM “ Σ1 be the unit-tangent bundle of pM, gq and, for px, vq P UM ,
let Pv : TxM Ñ Rv and PvK : TxM Ñ vK be the corresponding tangential
and orthogonal projections. We also consider the vector bundle E Ñ UM of
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orthogonal hyperplanes, whose fiber over an element px, vq P UM is given by

Epx,vq “ vK. For s ą 0, we consider the endomorphisms Apg,σq and Rpg,σ,sq

of E given by

A
pg,σq
px,vqpwq “ ´

3

4
YxpPvpYxpwqqq ´

1

4
PvKpY

2
xpwqq

R
pg,σ,sq
px,vq pwq “ s2Rxpw, vqv ´ sp∇wYqxpvq `

s

2
PvKpp∇vYqxpwqq,

(1.4)

where ∇ is the Levi-Civita connection of g and R its curvature tensor. The
s-magnetic curvature operator is then

(1.5) M
pg,σ,sq
px,vq pwq “ R

pg,σ,sq
px,vq pwq `A

pg,σq
px,vqpwq

and, if St2pM, gq denotes the Stiefel bundle of ordered orthonormal 2-frames

tangent to M , the s-magnetic sectional curvature Secpg,σ,sq : St2pM, gq Ñ R
is Sec

pg,σ,sq
x pv, wq “ gxpM

pg,σ,sq
px,vq pwq, wq. See also [Ass24, Section 1.2].

By design, the s-magnetic curvature captures relevant dynamical informa-
tion about the s-magnetic flow. For example,

(1.6) if Secpg,σ,sq ă 0, then the s-magnetic flow is Anosov,

cf. [AMRT25, Appendix A]. Moreover, the magnetic sectional curvature also
influences the underlying geometry. An example of this phenomenon is the
following: if σ ‰ 0 and dimpMq ě 3, and for some s ą 0 the s-magnetic sec-
tional curvature is everywhere constant, then σ is parallel and J “ }Y}´1Y
makes pM, gq a Kähler manifold with constant holomorphic sectional curva-
ture equal to ´}Y}2{s2 [AMRT25, Theorem D].

An immersed submanifold N Ď M is totally s-magnetic if every solution
to (1.1) with speed s which starts tangent to N remains in N for small
time, cf. [ABM25a, Definition 6.5]. In light of the recent work by Filip,
Fisher, and Lowe [FFL24, Theorem 1], we aim to show that real-analytic
magnetic systems of the form pg, 0q, where g is a hyperbolic metric on an
arithmetic manifold, are special in the sense that they are the only negatively
magnetically curved examples which have infinitely many totally s-magnetic
immersed hypersurfaces for any (and hence all) s ą 0. As in [FFL24], a
metric g is hyperbolic if it has constant strictly negative sectional curvature,
a manifold is hyperbolic if it admits a hyperbolic metric, and a hyperbolic
manifold is arithmetic if it can be written as Hn{Γ where Γ is an arithmetic
lattice.

Theorem A. Let pg, σq be a real-analytic magnetic system on a closed,
connected, real-analytic manifold M of dimension at least 3. If there exists
s ą 0 such that the s-magnetic sectional curvature of pg, σq is everywhere
negative and M contains infinitely many closed totally s-magnetic hypersur-
faces, then σ “ 0 and pM, gq is isometric to a hyperbolic manifold. Moreover,
M is arithmetic.
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Our method of proof is dynamically motivated, and is similar in spirit to
the work of Foulon in [Fou86]. In view of (1.6), by suitably rescaling both g
and σ if needed, we may assume that the 1-magnetic flow of pg, σq is Anosov
(see Lemma 3.6). With this perspective, we start by studying real-analytic
volume-preserving Anosov flows ϕt : UM Ñ UM . We say that

(1.7)
a submanifold N of M is totally ϕ-invariant if
UN is a ϕt-invariant subset of UM for all t P R.

In (1.7), N is equipped with its induced metric so that UN makes sense.
When ϕt is either the magnetic (or, geodesic) flow, we recover the usual
definition of totally magnetic (or, totally geodesic) submanifolds. In Section
3, we introduce a dynamical second fundamental form IIϕ, which precisely
captures what it means for a submanifold to be totally ϕ-invariant (see
Corollary 3.4).

We also define a dynamical exponential mapping expϕx in Section 3. With
this, we say that the flow ϕt : UM Ñ UM is without conjugate points if for
every x PM , the mapping expϕx is a local diffeomorphism. We will consider
Anosov flows which, on top of being without conjugate points, satisfy the
additional transversality property:

(1.8) Vpx, vq X Es{upx, vq “ t0u for all px, vq P UM,

where V is the vertical distribution of the fibration UM Ñ M and Es{u
are the stable and unstable distributions of the flow ϕt (see Section 2.1 for
more details on Anosov flows). Condition (1.8) is related to being without
conjugate points for a variety of flows, and generally comes for free from
the Anosov condition [PP94, CGIP03]. As arbitrary flows in UM do not
come from Hamiltonian flows on TM , it is not immediately clear whether
all Anosov semi-spray flows on UM are without conjugate points or satisfy
(1.8) (see [ECMR25a] for some results in this direction on surfaces).

Both the dynamical exponential map and the dynamical second fundamental
form allow for us to follow the first part of the strategy in [FFL24, Section
3.1] for a special class of real-analytic volume-preserving Anosov flows.

Theorem B. Let pM, gq be a closed, connected, real-analytic Riemannian
manifold of dimension at least 3, and ϕt : UM Ñ UM be a real-analytic
volume-preserving Anosov flow which is without conjugate points. If it also
satisfies (1.8) and there are infinitely many closed totally ϕ-invariant hyper-
surfaces in M , then every unit tangent vector lies in a totally ϕ-invariant
hypersurface.

The next step in the strategy would be to show that every hyperplane tan-
gent to M can be realized by a totally ϕ-invariant hypersurface. The argu-
ments in [FFL24] take advantage of both the Brin group and the dynamics
of the frame flow. In absence of a linear connection compatible with both
the metric and the flow, it is unclear how to define a frame flow from an
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arbitrary volume-preserving Anosov flow beyond the magnetic case. To that
end, we restrict to the magnetic setting in the following.

Theorem C. Let pg, σq be a real-analytic magnetic system on a closed,
connected, real-analytic manifold M of dimension at least 3 and s ą 0. If
the s-magnetic flow is Anosov and there are infinitely many closed totally
s-magnetic hypersurfaces in M , then every hyperplane tangent to M is
realized as the tangent hyperplane to a totally s-magnetic hypersurface.

To conclude the proof of Theorem A, we establish a dynamical version of
Cartan’s axiom of k-planes [DT19, Theorem 1.16], which is classically char-
acterized as follows: if pM, gq is a Riemannian manifold with dimension n ě 3
and the property that, for some 1 ă k ă n, every k-plane tangent to M is re-
alized as the tangent space to a k-dimensional totally geodesic submanifold,
then pM, gq has constant sectional curvature. We generalize this by replac-
ing totally geodesic submanifolds with totally ϕ-invariant submanifolds in
the setting where the flow is odd and without fixed points in M , meaning
the horizontal and vertical components of its infinitesimal generator are odd,
and the former never vanishes (see (3.6) and the discussion after).

Theorem D. Let pM, gq be a Riemannian manifold of dimension n ě 3,
ϕt : UM Ñ UM be odd and without fixed points in M , and 1 ă k ă n be
an integer. If every k-plane tangent to M is realized as the tangent space to
a k-dimensional totally ϕ-invariant submanifold, then pM, gq has constant
sectional curvature and ϕt is a smooth time-change of the geodesic flow.
Moreover, if ϕt is a semi-spray flow, then it is the geodesic flow of g.

In [FFL24, Section 4.2], the authors discuss whether an Anosov flow admit-
ting infinitely many flow-invariant submanifolds with dimension at least two
is necessarily algebraically defined. As pointed out to us by Fisher in pri-
vate communication, one can show that this is not the case for Anosov flows
on solvmanifolds. Either by perturbing an algebraic flow or by looking at
suspensions of products of Anosov toral automorphisms with Anosov diffeo-
morphisms that are not algebraic, it is not hard to produce examples where
there are infinitely many flow-invariant submanifolds of various dimensions,
but the flow is not smoothly conjugate to an algebraic flow.

Theorem A gives some evidence that such rigidity may hold once one leaves
the realm of solvmanifolds; in particular, one can widen the pool from the
Riemannian setting to the magnetic setting. It is an interesting question
whether one could further improve the result to all odd semi-spray flows on
UM . While many of the arguments carry over, the main issue lies within
the proof of Theorem C; one would have to find an appropriate isometric
extension of the flow (see Remark 4.3 for more details).
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Organization of the paper. In Section 2 we gather some preliminar-
ies about volume-preserving Anosov flows, principal isometric extensions of
such flows, and their Brin groups. Section 3 introduces the notions of the
dynamical second fundamental form and dynamical exponential map. Here,
we also prove Theorem 3.5. Finally, in Section 4, we outline and adapt
the arguments given in [FFL24] in order to establish Theorems B and C;
Theorem A follows.

Acknowledgments. The authors would like to thank David Fisher for
suggesting that we explore the magnetic version of the result in [FFL24] as
well as for useful discussions. The authors would also like to thank Simion
Filip and Ben Lowe for explaining various parts of their proof as well as
many helpful discussions, and Jeffrey Meyer for providing some very helpful
intuition for arithmetic manifolds. The first author was supported by the
National Science Foundation under award No. DMS-2503020.

2. Preliminaries

In this section, we review some basics on the dynamics of Anosov flows as
well as the Brin group associated with an isometric extension of a volume-
preserving Anosov flow.

2.1. Volume-preserving Anosov flows. We follow [FFL24, Section 2.1]
as well as [FH19]. Let N be a closed, connected Riemannian manifold and
let } ¨ } denote the norm induced by the metric. A smooth flow ϕt : N Ñ N
is Anosov if there exists a dϕt-invariant splitting TN “ Es ‘ Ec ‘ Eu and
constants C, λ ą 0 such that Ec is a one-dimensional distribution tangent to
the flow and for all t ě 0, x P N , and vs{u P Es{upxq, we have

(2.1) }dxϕ
tpvsq}ϕtpxq ď Ce´λt}vs}x and }dxϕ

´tpvuq}ϕ´tpxq ď Ce´λt}vu}x.

Note that since N is compact, (2.1) is independent of the choice of metric,
after adjusting C and λ if needed. We say that ϕt is volume-preserving if
there is a nowhere-vanishing top-degree form ω which is invariant under the
flow. If the flow is volume-preserving, then we will denote by µ the volume
measure associated to the invariant form.

Example 2.1. Let M be a smooth closed manifold of dimension n and
let pg, σq be a magnetic system on M . The tautological 1-form α on TM
associated with g is given by αpx,vqpξq “ gxpdpx,vqπpξq, vq. For any s ą 0,
the restriction of α to Σs (cf. (1.3)) is a contact form [Pat99], allowing us
to define the Liouville volume form ω on Σs by ω “ α^ pdαq^2n ‰ 0. It is
well-known that, for any σ, the s-magnetic flow of pg, σq preserves ω.

The flow ϕt gives rise to the stable and unstable foliations on N , which
we denote by W s{u. Their leaves are smooth immersed submanifolds of N ,
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called stable and unstable manifolds, respectively. In particular, it holds that
TxW

spxq “ Espxq and TxW
upxq “ Eupxq for each x P N . Furthermore,

(2.2)
there is also ε ą 0 such that the local stable and unstable manifolds

W
s{u
loc pxq “W s{upxq XBpx, εq are embedded submanifolds of N .

A defining property of the stable and unstable manifolds is that

W spxq “ ty P N : dpϕtpxq, ϕtpyqq
tÑ8
ÝÝÝÑ 0u,

W upxq “ ty P N : dpϕ´tpxq, ϕ´tpyqq
tÑ8
ÝÝÝÑ 0u,

(2.3)

where d is the distance function induced by the metric on N . We also define
the center-stable and center-unstable manifolds by

(2.4) W cspxq “
ď

tPR
W spϕtpxqq and W cupxq “

ď

tPR
W upϕtpxqq,

and call a subset X Ď N η-saturated if for any x P X, we have W ηpxq Ď X,
where η P ts, u, cs, cuu.

As in (2.2), we may also consider W cs
locpxq and W cu

locpxq. Given a second point
y P N , we define their Bowen bracket to be rx, ys “ W u

locpxq XW cs
locpyq. As

W cs and W u are everywhere transverse, there is a neighborhood of U for
which rx, ys consists of a single point z whenever y P U , and

(2.5) the resulting map πcsu on U , given by πcsu pyq “ z, is continuous.

The classical Hopf argument yields that all volume-preserving Anosov flows
are ergodic with respect to their volume measure µ [Lef23, Lemma A.1]. The
forward- and backward-orbits of a point x P N are respectively denoted by
O`pxq “ tϕtpxq : t ě 0u and O´pxq “ tϕtpxq : t ď 0u. We say that x P N
is forward-generic (or, backward-generic) if O`pxq (or, O´pxq) is dense in
N ; it is generic if it is either forward- or backward-generic, and two-sided
generic if the full orbit Opxq “ O´pxq YO`pxq is dense in M .

As a consequence of Birkhoff’s ergodic theorem, the subset D Ď N con-
sisting of all two-sided generic points has full µ-measure. Furthermore, the
subsets D`, D´ Ď N consisting of all forward- and backward-generic points
are dense in N , with D` and D´ being s-saturated and u-saturated, respec-
tively. As D˘ are invariant under the flow, we also conclude that they are
cs{cu-saturated sets of full µ-measure. We record the following lemma, to
be used in Section 4.

Lemma 2.2 ([FFL24, Corollary 2.1.6]). Let ϕt : N Ñ N be a volume-
preserving Anosov flow. For any x P N and any open subset V Ď W u

locpxq
(respectively V ĎW s

locpxq), we have V XD` ‰ ∅ (respectively V XD´ ‰ ∅).
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2.2. Principal isometric extensions. We follow [Lef23, Section 2]. Let
ϕt : N Ñ N be a volume-preserving Anosov flow. By a Riemannian fiber
bundle over N with typical fiber a closed Riemannian manifold pF, gF q, we
mean a smooth fiber bundle p : E Ñ N with typical fiber F which admits
a reduction of its structure group to IsopF, gF q. In particular, this implies
that for each x P N , the fiber Ex has a Riemannian metric which makes it
isometric to pF, gF q. A flow Φt : E Ñ E is called an isometric extension of ϕt

if, for each t P R and x P N , we have that p˝Φt “ ϕt˝p and Φt : Ex Ñ Eϕtpxq

is an isometry. If p : E Ñ N also happens to be a principal bundle, we call
Φt a principal isometric extension of ϕt.

The principal isometric extension Φt of a volume-preserving Anosov flow ϕt

is a partially hyperbolic flow on E. Namely, we have a direct-sum decomposi-
tion TE “ Es,E‘pV‘Ec,Eq‘Eu,E , where V is the vertical distribution of the
fibration p : E Ñ N , the distribution Ec,E is one-dimensional and tangent to
the flow Φt, and the stable and unstable bundles Es{u,E of Φt on E are lifts
of the stable and unstable bundles Es{u of ϕt on N (i.e., dppEs{u,Eq “ Es{u).
As in Section 2.1, these bundles are all uniquely integrable, and we denote
the corresponding stable and unstable foliations on E by W s{u,E . In partic-
ular, with (2.2) and suggestive notation, we may also consider local stable
and unstable manifolds on the level of E.

Given x P N and y PW
s{u
loc pxq it holds that, for each v P Ex, the intersection

W
s{u,E
loc pvq X Ey consists of a single point w, characterized by the property

that dpΦtpvq,Φtpwqq Ñ 0 as tÑ `8. This allows us to consider

(2.6) the holonomy mapping H
s{u,E
x,y : Ex Ñ Ey, given by H

s{u,E
x,y pvq “ w,

which is continuous and may be naturally extended to the entire stable/un-
stable leaf. We may also consider holonomy mappings built with the local
center-stable and center-unstable manifolds instead.

For any closed subset X Ď E and generic point x P D` YD´ Ď N , we let
the generic part of X be defined as

(2.7) Xgen
x “

ď

tPR
ΦtpXxq, where Xx “ X X Ex.

In [FFL24, Proposition 2.2.10] it is established that if X is Φt-invariant, then
Xgen
x is independent of the choice of generic point x and invariant under the

holonomy mappings (2.6). Hereafter, we denote Xgen
x simply by Xgen.

We may now consider

(2.8)
the collection Γ of all closed and Φt-invariant subsets of E
which are mapped surjectively onto N under p : E Ñ N .

An element X P Γ is called relatively minimal if it is a minimal element of
Γ relative to the inclusion order, and we let Γmin Ď Γ denote the subcol-
lection of all relatively minimal subsets. The reason for this terminology is



8 J. MARSHALL REBER AND I. TEREK

that in the case where p : E Ñ N is a principal G-bundle, with G being a
compact Lie group, it holds that Γmin ‰ ∅ and X “ Xgen for all X P Γmin.
Furthermore, if x is generic, any v P Xx has a dense orbit in X (see (2.7)).

Finally, still in the situation where p : E Ñ N is a principal G-bundle, it
follows from [FFL24, Propositions 2.2.16 and 2.2.18 and Corollary 2.2.17]
that relatively minimal sets give rise to reductions of the structure group of
E. Namely, if X P Γmin,

(2.9)
there is a closed subgroup HX ď G which acts freely
and transitively on the fibers Xx, for any point x P N ,

and a continuous reduction of the structure group to HX . The subgroup
HXgen , given by (2.9) applied to Xgen instead of X, is called the transitivity
group of X and a priori depends on X. We will see that they are all iso-
morphic to each other, and they are also isomorphic to the Brin group of
p : E Ñ N discussed below.

2.3. Brin group of isometric extensions. Let Φt : E Ñ E be an iso-
metric extension of a volume-preserving Anosov flow ϕt : N Ñ N . For any
s{u-curve—by which we mean a curve γ : r0, T s Ñ N whose image lies en-
tirely in a stable or unstable leaf—we may consider the holonomy mapping

HE
γ “ H

s{u,E
x,y along γ, cf. (2.6), where x “ γp0q and y “ γpT q; it is clearly

invariant under reparametrizations of γ. More generally, if γ “ γ1 ˚ ¨ ¨ ¨ ˚ γr
is an su-curve, that is, the concatenation of s{u-curves, we may define the
holonomy cycle mapping of γ by HE

γ “ HE
γr ˝ ¨ ¨ ¨ ˝H

E
γ1

. The holonomy group
Hx based at a point x P N is then defined to be the group of all holonomy
cycle mappings associated with su-loops based at x. The conjugacy class
of Hx is, as usual, independent of x. Accessibility of the flow easily implies
that

(2.10)
for any points x, y P N there is an su-curve η
from x to y, so that Hy “ HE

η ˝Hx˝pH
E
η q
´1.

Now assume that p : E Ñ N is a principal G-bundle, where G is a compact
Lie group, and that Φt is a principal isometric extension of ϕt. For any
x P N , there is a (non-canonical) isomorphism θx : AutpExq

G Ñ G, where
AutpExq

G denotes the group of all G-equivariant self-mappings of Ex. While
Hx is a subgroup of AutpExq

G by design, (2.10) tells us that the image
θxpHxq in G is independent of the choice of x. The Brin group is finally

defined to be the closure B “ θxpHxq in G.

From [FFL24, Corollary 2.2.13 and Propositions 2.2.15 and 2.2.16] we obtain
some of the main properties of the Brin group: (i) Xgen is B-invariant for
each X P Γ, cf. (2.8), (ii) Xx in (2.7) is a single B-orbit for each x P N and
X P Γmin, and (iii) for any X P Γmin, the subgroup HX in (2.9) is in fact the
Brin group B. In particular, we see that the transitivity group of X P Γmin

is independent of the choice of X, and is simply the Brin group.
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The last fact we will need about principal isometric extensions in Section 4
is that

(2.11)
there is a Φt-invariant principal B-subbundle EB
of E over which the restriction of Φt is ergodic.

For a proof, see [CLMS24, Proposition 3.2].

3. Dynamical geometry

Throughout this section, let pM, gq be an n-dimensional Riemannian man-
ifold, π : UM ÑM be its unit-tangent bundle, and ϕt : UM Ñ UM be a
flow. The aim of this section is to outline all of the dynamical tools we need
based on the arguments in [FFL24].

3.1. Dynamical second fundamental form. Let N be a submanifold of
M equipped with its induced metric. Recall that N is totally ϕ-invariant
if UN is a ϕt-invariant subset of UM for all t P R, cf. (1.7). In order
to characterize this condition, we first need a description of the tangent
bundle TUN as a vector subbundle of TUM |N . The two ingredients for
that are the second fundamental form II of N , and the Levi-Civita connector
K : TUM Ñ E (here, E is as in the lines preceding (1.4)).

Below, we use the direct-sum decomposition TM |N “ TN ‘rTN sK induced
by g, while r ¨ sJ : TM |N Ñ TN and r ¨ sK : TM |N Ñ rTN sK denote the
projections onto the tangent and normal bundles of N .

Lemma 3.1. For all px, vq P UN ,

(3.1) Tpx,vqUN “

#

ξ P Tpx,vqUM :
rdpx,vqπpξqs

K “ 0 and

IIxpdpx,vqπpξq, vq “ rKpx,vqpξqs
K

+

.

Proof. Let ξ P Tpx,vqUN be the initial velocity of a curve t ÞÑ pxptq, vptqq
in UN , so 9xp0q “ dpx,vqπpξq and pDv{dtqp0q “ Kpx,vqpξq, and let η be any

local section of rTN sK defined around x. The condition rdpx,vqπpξqs
K “ 0

is directly obtained from evaluating gxptqp 9xptq, ηxptqq “ 0 at t “ 0. We may
then differentiate gxptqpvptq, ηxptqq “ 0 at t “ 0 to obtain

(3.2) gxpKpx,vqpξq, ηxq ` gxpv,∇dpx,vqπpξqηq “ 0,

where ∇ is the Levi-Civita connection of pM, gq. Letting A : TxN Ñ TxN
denote the shape operator of ηx, we have that

gxpv,∇dpx,vqπpξqηq “ ´gxpv,Apdpx,vqπpξqqq

“ ´gxpIIxpdpx,vqπpξq, vq, ηxq,
(3.3)

so that (3.2) reduces to gxpKpx,vqpξq ´ IIxpdpx,vqπpξq, vq, ηxq “ 0. The arbi-

trariety of η now implies that IIxpdpx,vqπpξq, vq “ rKpx,vqpξqs
K.

The conclusion follows from a dimension count: if k “ dimN , the right side
of (3.1) has the dimension 2n´1´2pn´kq “ 2k`1, as does Tpx,vqUN . �
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Recall that K also yields a decomposition Tpx,vqUM – Hpx, vq ‘ Vpx, vq,
where Hpx, vq “ kerpKpx,vqq and Vpx, vq “ kerpdpx,vqπq are called the hori-
zontal and vertical bundles, and both restrictions

(3.4) dpx,vqπ : Hpx, vq Ñ TxM and Kpx,vq : Vpx, vq Ñ vK

are isomorphisms.

The infinitesimal generator X of ϕt is completely determined by its horizon-
tal and vertical components, respectively defined by

(3.5) XHpx, vq “ dpx,vqπpXpx, vqq and XV px, vq “ Kpx,vqpXpx, vqq.

With this in place, we say that ϕt is odd with respect to g if both of its
components are odd, that is, if

(3.6) XHpx,´vq “ ´XHpx, vq and XV px,´vq “ ´XV px, vq

for all px, vq P UM . Note that the metric is crucial for this definition, since
(3.6) cannot be replaced by the single condition Xpx,´vq “ ´Xpx, vq, as
Tpx,´vqUM ‰ Tpx,vqUM .

Furthermore, we say that x PM is a fixed point of ϕt if there exists v P UxM
such that π ˝ϕtpx, vq “ x for all t P R. Equivalently, ϕt has a fixed point in
M if there exists px, vq P UM such that XHpx, vq “ 0. Finally, ϕt is called a
semi-spray flow if it satisfies that XHpx, vq “ v. Note that they are always
without fixed points.

Example 3.2. As in (1.1), the orbits of a semi-spray flow ϕt : UM Ñ UM
are also described by a second-order differential equation. Namely, the
condition XHpx, vq “ v says that all such orbits t ÞÑ pγptq, vptqq must
have vptq “ 9γptq, while taking covariant derivatives of the vector part of
pγptq, 9γptqq “ ϕtpγp0q, 9γp0qq leads to

(3.7)
D 9γ

dt
ptq “ XV pγptq, 9γptqq.

In particular, when ϕt is the geodesic flow of g, we have that XHpx, vq “ v
and XV px, vq “ 0. When ϕt is the magnetic flow of a magnetic system
pg, σq, we have XHpx, vq “ v and XV px, vq “ Yxpvq, for Y as in (1.2). Both
such semi-spray flows are odd. For more examples on closed surfaces, we
refer the reader to [ECMR25b].

Inspired by Lemma 3.1, we have the following.

Definition 3.3. The dynamical second fundamental form of N relative to
g and the flow ϕt : UM Ñ UM is the mapping IIϕ : UN Ñ rTN sK ‘ rTN sK

defined by IIϕxpvq “
`

IIxprXHpx, vqs
J, vq ´ rXV px, vqs

K , rXHpx, vqs
K
˘

, for
all px, vq P UN .
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Note that the second component of IIϕ vanishes identically whenever ϕt is
a semi-spray flow. In particular, in view of Example 3.2, this dynamical
second fundamental form reduces to both the classical one in the case of the
geodesic flow, and also to the magnetic second fundamental form introduced
in [ABM25b, Definition 6.9] and [Ter25, Definition 4.1] in the case of a
magnetic flow. The significance of the dynamical second fundamental form
is that it precisely captures what it means for a submanifold to be totally
ϕ-invariant.

Corollary 3.4. A submanifold N of M is totally ϕ-invariant if and only if
its dynamical second fundamental form vanishes identically.

Proof. It suffices to note that UN is ϕt-invariant for all t P R if and only
if we have that Xpx, vq P Tpx,vqUN for all px, vq P UN . Such tangency
condition, due to Lemma 3.1 and the definitions of XH and XV in (3.5),
means precisely that IIϕ “ 0. �

In the case of magnetic flows, Corollary 3.4 reduces to [ABM25a, Theo-
rem 1.4] and [Ter25, Remark 4.2 (i)]. We now have the tools to prove the
following, which can be seen as a dynamical version of Cartan’s axiom of
k-planes.

Theorem 3.5. Let pM, gq be an n-dimensional Riemannian manifold with
n ě 3, fix 1 ă k ă n, and let ϕt : UM Ñ UM be an odd flow without fixed
points in M . If for every x PM and any k-dimensional subspace W Ď TxM
there is a totally ϕ-invariant submanifold of M with x P N and W “ TxN ,
then g has constant sectional curvature and ϕ is a smooth time-change of
the geodesic flow of g. Moreover, if ϕt is also assumed to be a semi-spray
flow, then ϕt is the geodesic flow of g.

Proof of Theorem 3.5. Note that, as 1 ă k ă n, for any px, vq P UM we
have

(3.8)
č

tW Ď TxM : dimW “ k and v PW u “ Rv.

Now consider any k-dimensional subspace W of TxN containing v, and
choose a totally ϕ-invariant submanifold N of M with x P N and W “ TxN .
As px, vq P UN , Definition 3.3 and Corollary 3.4 yield both relations

(3.9) piq IIxprXHpx, vqs
J, vq “ rXV px, vqs

K and piiq rXHpx, vqs
K “ 0.

As ϕt is odd, the left side of (3.9-i) is even while the right side is odd,
and hence they vanish separately. Due to (3.8), it follows from (3.9-ii)
and rXV px, vqs

K “ 0 that XHpx, vq, XV px, vq P Rv. At the same time,
XV px, vq P v

K in view of (3.4), and thus XV px, vq “ 0. We also obtain a
smooth function λ : UM Ñ R such that XHpx, vq “ λpx, vqv, which has no
zeros as ϕt is without fixed points in M . This way, IIxprXHpx, vqs

J, vq “ 0
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directly implies that II “ 0, meaning that every totally ϕ-invariant subman-
ifold considered above is, in fact, totally geodesic. Hence, by the classical
characterization of Cartan’s axiom of k-planes, g has constant sectional cur-
vature. Finally, we conclude that Xpx, vq “ λpx, vqXgpx, vq, where Xg is the
infinitesimal generator of the geodesic flow of g, making ϕt a smooth time-
change of such geodesic flow. If ϕt is a semi-spray flow, then λpx, vq ” 1. �

Theorem 3.5 can be specialized to the case of s-magnetic flows. In order to
do so, a rescaling of the magnetic system is needed: s-magnetic flows are not
defined on UM , but instead on Σs, cf. (1.3).

Lemma 3.6. Let pg, σq be a magnetic system on a smooth manifold M ,
and s ą 0. Then,

(i) the s-magnetic flow of pg, σq equals the 1-magnetic flow of ps´2g, s´2σq;

(ii) any totally s-magnetic submanifold of M for pg, σq is also a totally
1-magnetic submanifold of M for ps´2g, s´2σq.

Proof. If we write σ „g Y to mean that σ and Y are related under g as in
(1.2), multiplying both sides of (1.2) by s´2 yields s´2σ „s´2g Y. As Σs for

g equals the unit tangent bundle for s´2g and

(3.10) both g and s´2g share the same Levi-Civita connection,

it now follows that ps´2g, s´2σq gives rise to the same equation (1.1) as
pg, σq. Therefore, (i) holds. For (ii) we first note that, as another conse-
quence of (3.10), the second fundamental form of any submanifold of M
remains unchanged under constant rescalings of g. At the same time, by
(i), the same holds for the infinitesimal generator of the magnetic flow, and
thus for the dynamical second fundamental form, cf. Definition 3.3. With
this in place, (ii) follows from Corollary 3.4. �

Applying Theorem 3.5 to ps´2g, s´2σq instead of pg, σq and noting that a
magnetic flow can only equal the underlying geodesic flow when the magnetic
2-form vanishes (see also the lines following (3.7)), we finally obtain the
magnetic version of Cartan’s axiom of k-planes.

Corollary 3.7. Let M be an n-dimensional smooth manifold with n ě 3,
fix 1 ă k ă n, and let pg, σq be a magnetic system on M . If, for some s ą 0,
it holds that every k-plane tangent to M is realized as the tangent space to
a k-dimensional totally s-magnetic submanifold of M , then σ “ 0 and g has
constant sectional curvature.

Remark 3.8. As a last consequence of the proof of Theorem 3.5, when
ϕt : UM Ñ UM is an odd semi-spray flow, a submanifold N of M is totally
ϕ-invariant if and only if it is both totally geodesic and with XV px, vq P TxN
for all px, vq P UN ; cf. [Ter25, Example 4.3] for the case of a magnetic flow.
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3.2. Dynamical exponential map. Denoting by } ¨ } the norms induced
by g on the tangent space of M , for each x P M the dynamical exponential
map relative to the flow ϕt is the mapping expϕx : TxM ÑM given by

(3.11) expϕxpvq “

#

π ˝ ϕ}v}px, v{}v}q, if v ‰ 0,

x, if v “ 0.

The following lemma is a direct adaptation of [DPSU07, Lemma A.7]. We
still provide its proof for the reader’s convenience (here, we use Einstein’s
summation convention).

Lemma 3.9. Assume that ϕt is of class Ck, with k ě 2 (or C8 or Cω).
Then for any point x PM , expϕx has the same regularity as ϕt on TxMrt0u,
and it is of class C1 on TxM . Moreover, if it is of class C2 at 0 and ϕt is an
odd semi-spray flow, then XV px, vq “ 0 for all v P UxM .

Proof. The Ck-regularity of expϕx on TxM r t0u follows from (3.11). In
addition, all of its directional derivatives at 0 exist as

(3.12) d0 expϕxpvq “
d

dt

ˇ

ˇ

ˇ

t“0
π ˝ ϕtpx, vq “ XHpx, vq

for all px, vq P UM . Fixing coordinates x1, . . . , xn for M centered at x, set

(3.13) γipt, x, vq “ expϕ,ix ptvq,

where expϕ,ix ptvq “ xipexpϕxptvqq; note that each γi is of class Ck. Relative
to linear coordinates v1, . . . , vn on TxM , we may differentiate (3.13) with
respect to vj to obtain

(3.14)
Bγi

Bvj
pt, x, vq “ t

B expϕ,ix
Bvj

ptvq, for all t ą 0.

Observe, however, that (3.14) also holds at t “ 0, as γip0, x, vq “ 0, which is
another consequence of (3.11) together with our choice of coordinates. With
pBγi{Btqp0, x, vq “ Xi

Hpx, vq for all px, vq P UM , where Xi
Hpx, vq denotes the

i-th component of XHpx, vq in the coordinates x1, . . . , xn (and similarly for
XV px, vq below), this allows us to compute

lim
tÑ0`

B expϕ,ix
Bvj

ptvq “ lim
tÑ0`

1

t

Bγi

Bvj
pt, x, vq “

B2γi

BtBvj
p0, x, vq

“
B2γi

BvjBt
p0, x, vq “

BXi
H

Bvj
px, vq.

(3.15)

The above limit is uniform in v as UxM is compact and, together with (3.12),
shows that expϕx is of class C1 at 0.

Next, assume that ϕt is an odd semi-spray flow, and that expϕx is of class
C2 at 0. For any v P UxM , the curve t ÞÑ expϕxptvq is a solution of (3.7),
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whose coordinate version reads

(3.16)
B2γi

Bt2
pt, x, vq ` Γijkpexpϕxptvqq

Bγj

Bt
pt, x, vq

Bγk

Bt
pt, x, vq “ Xi

V pϕ
tpx, vqq,

for all i “ 1, . . . , n. Differentiating (3.13) with respect to t twice, we obtain

(3.17)
B2γi

Bt2
pt, x, vq “

B2 expϕ,ix
BvjBvk

ptvqvjvk.

Using the C2-regularity of expϕx in order to take t Ñ 0 in (3.16), together
with (3.17) and the relations pBγi{Btqp0, x, vq “ vi given by the semi-spray
condition, it follows that

(3.18)

˜

B2 expϕ,ix
BvjBvk

p0q ` Γijkpxq

¸

vjvk “ Xi
V px, vq.

The left side of (3.18) is manifestly even in v, while the right side is odd
by assumption—this is only possible if both vanish individually. Therefore,
XV px, vq “ 0 as claimed. �

4. Rigidity results

The main goal of this section is to establish Theorems B and C, working in
the real-analytic category. We recall some of the notation from [FFL24]. Let
pM, gq be a closed, real-analytic Riemannian manifold of dimension n ě 3,
and assume that

(4.1) ϕt : UM Ñ UM is a real-analytic volume-preserving Anosov flow.

We also consider the Grassmannian bundle HM of oriented hyperplanes
tangent to M , and let πH : FM Ñ HM be the unit tautological bundle over
HM , with fibers Fpx,ΠqM “ tpx,Π, vq : px,Πq P HM and v P Π X UxMu.
Introducing a further projection πU : FM Ñ UM , with πU px,Π, vq “ px, vq,
and denoting by Z Ď HM the subset consisting of all hyperplanes which
are tangent to a germ of a totally ϕ-invariant hypersurface, we set

(4.2) I “ π´1
H pZq Ď FM and A “ πU pIq Ď UM.

Our first claim is that the sets I and Z are real-analytic and A is subana-
lytic. The method of proving this perfectly mirrors [FFL24, Corollary 3.2.3];
namely, we wish to take advantage of [FFL24, Lemma 3.2.2], which estab-
lishes real-analyticity of the set consisting of all base points over whose fibers
a real-analytic function (defined on a bundle) vanishes. Utilizing Section 3,
we now present the argument in detail.

Lemma 4.1. The set Z is real-analytic. In particular, I is also real-analytic,
and A is subanalytic.

Proof. For any px,Πq P HM , we set SΠ “ expϕxpΠq. Note that SΠ is a
C1-immersed hypersurface of M but, as expϕx is real-analytic away from
the origin, so is SΠ r txu. In addition, SΠ represents the germ of a totally
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ϕ-invariant hypersurface if and only if for every y P SΠ, unit vector v P TySΠ,
and t P R, we have that π ˝ ϕtpy, vq P SΠ.

Whenever px,Π, vq P FM , the curve t ÞÑ π ˝ ϕtpx, vq lies entirely in SΠ by
definition of SΠ. This allows us to define the augmented exponential map

(4.3) E : FM ˆ p0,8q Ñ HM, by Epx,Π, v, tq “ pexpϕxptvq,dtv expϕxpΠqq.

Explicitly, E sends px,Π, vq to the corresponding tangent hyperplane to SΠ

at expϕxptvq. Furthermore, since tv is never the zero vector, this is a real-
analytic mapping. Define the mapping α : HM Ñ R by

(4.4) αpx,Πq “

ż

UxSΠ

}IIϕxpvq}
2 dµpvq

where IIϕx is the dynamical second fundamental form of SΠ at x, the codomain
bundle rTSΠs

K ‘ rTSΠs
K of IIϕ is equipped with the product fiber metric

g ‘ g, and µ denotes the Lebesgue measure on UxSΠ induced by g. With
this in place, the pullback mapping E˚α : FM ˆ p0,8q Ñ R is also real-
analytic, and Theorem 3.4 yields that px,Πq P Z if and only if we have
that the function E˚αpx,Π, ¨, ¨q : UxSΠ ˆ p0,8q Ñ R vanishes identically.
This allows us to obtain the conclusion from [FFL24, Lemma 3.2.2], taking
π : X Ñ Y therein to be E in (4.3) and ρ “ E˚α for α in (4.4). �

Once Z is real-analytic, it follows from nearly the same argument as in
[FFL24, Proposition 3.2.5] that there is at least one totally ϕ-invariant hy-
persurface through every tangent vector. The only difference is that one
has to take advantage of the fact that the flow is without conjugate points,
along with (1.8) and the inverse function theorem. We sketch the details for
the reader’s convenience.

Proof of Theorem B. We must show that A “ UM , cf. (4.2). As A is
closed and ϕt-invariant, it suffices to show that there exists px, vq P A
whose forward-orbit or backward-orbit is dense. First, using the assumption
that M has infinitely many closed, immersed, distinct totally ϕ-invariant
hypersurfaces, it follows that we have dimpZq ě n. As a consequence,
dimpIq “ dimpZq ` pn´ 2q, and hence dimpIq ě 2n´ 2.

Let Ao Ď A be the collection of smooth points, and consider the restricted
projection πU : I Ñ A, cf. (4.2). There are now two possibilities: either

(i) dimpAq “ dimpIq, or

(ii) there is a further relatively open subset Aoo Ď A such that πU |I has
fibers of positive dimension over Aoo.

We address each case separately.

If (i) holds, suppose that dimpAq “ dimpIq ě 2n ´ 2. If equality holds,
then dimpUMq “ 2n ´ 1 yields A “ UM . Otherwise, if dimpAq “ 2n ´ 2,
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let px, vq P Ao be a smooth point, and consider the bundle NUM over
UM with fibers given by Npx,vqUM “ Tpx,vqUM{RXpx, vq. The hyperplane
Tpx,vqA{RXpx, vqmust be transverse—without loss of generality—to the sta-

ble bundle Espx, vq (as ϕt is Anosov, cf. (4.1)), in which case we have that
dimpEcspx, vq X Tpx,vqAq “ dimpW cspx, vqq ´ 1 “ n´ 1; see (2.4). Let Q be
a real-analytic submanifold of Ao such that Tpx,vqUM “ Tpx,vqQ‘Ecspx, vq.
Such Q remains transverse to W cs in a neighborhood U of px, vq, and so
the projection πcsu pQXUq ĎW u

locpx, vq—cf. (2.2) and (2.5)—contains a non-
empty open set. By Lemma 2.2, we obtain a forward-dense point in A.

If (ii) holds instead, we may fix a point px, vq P Aoo such that the fiber
Ipx,vq “ π´1

H px, vq Ď I contains a real-analytic curve Γ. We proceed in a
small neighborhood U Ď M of x. For a point i “ px,Π, vq along the curve
Γ, let Hi Ď U be the closed totally ϕ-invariant hypersurface with TxHi “ Π.
As expϕx is a local diffeomorphism by assumption,

(4.5) the union of all such Hi must contain an open subset U1 of U .

By (1.8), reducing W cs
locpx, vq further if needed, the projection UM Ñ M

restricts to a diffeomorphism π : W cs
locpx, vq Ñ M onto its image; we denote

its inverse by δpx,vq : U ÑW cs
locpx, vq. Given y P U ,

(4.6)
the element δpx,vqpyq is characterized by the property that the

distance dpϕtpδpx,vqpyqq, ϕ
tpx, vqq remains bounded as tÑ `8,

cf. (2.3). It remains to show that

(4.7) δpx,vqpU1q Ď A, where U1 is the open set in (4.5).

This way, as A then contains an open set, we may use Lemma 2.2 to de-
duce that A “ UM , concluding the proof. We establish (4.7) directly: if
p1 P U1 X Hi for some i P Γ, using that Hi is a totally ϕ-invariant hyper-
surface containing both p1 and x, we obtain a unique v1 P Up1Hi such that
dpϕtpp1, v1q, ϕ

tpx, vqq remains bounded as tÑ `8; it follows from (4.6) that
pp1, v1q “ δpx,vqpp1q is tangent to Hi, and hence in A as required. �

We now consider the frame bundle PM Ñ UM , whose fiber over any element
px, vq P UM consists of all ordered orthonormal bases of TxM starting with
v; it is easy to see that it is a principal SOpn ´ 1q-bundle over UM . The
construction of the frame extension of ϕt used in [FFL24] must be modified
in order for us to proceed and establish Theorem C. It is from this point
onwards that the discussion is specialized to s-magnetic flows; Lemma 3.6
allows us to assume without loss of generality that s “ 1 in Theorems A and
C. Along each unit-speed magnetic geodesic γ : R Ñ M , we may consider
the magnetic covariant derivative operator D given by

(4.8) pDW qptq “ DW

dt
ptq ´YγptqpW ptqq,
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for any vector field W along γ (see [Gro99] and [Ass24] for implicit uses
of D). In fact, D defines a metric-compatible connection in the pullback
bundle γ˚pTMq over R (as Y in (1.2) is skew-adjoint), while (1.1) reduces
to D 9γ “ 0.

We define the magnetic frame-extension flow Φt : PM Ñ PM of ϕt as

(4.9) Φtpx, v, v2, . . . , vnq “ pγptq, vptq, v2ptq, . . . , vnptqq,

where we set ϕtpx, vq “ pγptq, vptqq and each vjptq is the D-parallel transport
of the corresponding vector vj along the curve xptq. By metric-compatibility
of D, (4.9) defines a principal isometric extension of ϕt, and so we may
consider its Brin group B ď SOpn´ 1q.

In [FFL24, Remark 3.3.3], the authors observe that there are topological
obstructions to the principal bundle having a continuous reduction of the
structure group to H Ď SOpn´1q with H connected. Provided n is odd and
n ‰ 7, there does not exist a non-trivial reduction. If n is even and is not
either 8 or 134, then there are two cases: either n ” 2 pmod 4q or n “ 4, in
which case H must fix a vector in Rn´1, or n ” 0 pmod 4q, in which case H
must act reducibly on Rn´1. In the exceptional cases, if n “ 7 then we must
have that H contains SUp3q and fixes a complex structure on R6, if n “ 8
then either H acts reducibly on R7 or H fixes a nonzero 3-form on R7 and
is either SOp3q or G2, and finally if n “ 134 then H either fixes a vector in
R133 or it fixes a nonzero 3-form and equals E7{pZ{2Zq.

With the above discussion and [CLMS24, Step 1 of Proof of Theorem 3.1],
the authors were able to leverage these obstructions in [FFL24, Proposi-
tion 3.3.5] along with the fact that there are infinitely many closed totally
geodesic hypersurfaces in order to enumerate all possibilities for what

(4.10) the coset space C “ BzpSOpn´ 1q{SOpn´ 2qq

could be, provided the Brin group B is connected. In light of Section 3, we
observe that these arguments generalize readily without any modification,
provided there is a notion of a frame flow. In our setting, we have

(4.11)
if B is connected and M admits infinitely many
closed totally 1-magnetic hypersurfaces, then ei-
ther B “ SOpn´1q or C equals r´1, 1s or a point.

We now explain why we may assume the Brin group is connected. Below,
by a magnetomorphism between manifolds equipped with magnetic systems,
we mean a diffeomorphism which preserves both the metric and magnetic
2-form, cf. [ABM25a, Section 1.1]. Similarly, a magnetomorphic covering be-
tween manifolds equipped with magnetic systems is a covering map which is
a local magnetomorphism. The next lemma is a direct magnetic adaptation
of [CLMS24, Lemma 3.3], whose details we again provide.
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Lemma 4.2. With the above setup, and with B0 denoting the identity
component of B, there is a finite magnetomorphic covering of M whose
magnetic frame-extension flow has the Brin group B0.

Proof. By (2.11), we may fix a Φt-invariant principal B-subbundle PB of
PM on which Φt is ergodic. Since Φt is transitive on PB, we have that
PB is connected. As the quotient B{B0 is discrete, the quotient projection
PB{B0 Ñ UM is a finite covering map, with deck transformation group
B{B0. At the same time, as n ě 3, it follows from the long exact sequence in
homotopy that π1pUMq – π1pMq. Thus, we may fix a subgroup Γ ď π1pMq

acting freely and properly discontinuously on the universal covering ĂM of

M for which the quotient xM “ ĂM{Γ, equipped with the pullback magnetic

system, has its own unit-tangent bundle UxM equivariantly diffeomorphic to

PB{B0. Here, UxM is equipped with its own 1-magnetic flow, while PB{B0

has the quotient flow induced by Φt. The conclusion now follows as the

Brin group of the magnetic frame-extension flow on PxM Ñ UxM is B0, by
construction. �

Utilizing Lemma 4.2 and passing to a finite magnetomorphic covering of M if
needed, we may assume without loss of generality that B is connected with-
out affecting the conclusion of Theorem B. In [FFL24, Proposition 3.3.6],
the authors utilize the equivalent of (4.11) in order to argue why the dimen-
sion of the fibers of HM Ñ M have full dimension. If the coset space C in
(4.10) is a point, the conclusion follows immediately, as the generic part of
I “ π´1

H pZq corresponds to a nonempty closed subset of C, and the set I is
saturated by the fibers of the projection to HM . Thus, in order to show that
the fibers have full dimension, one only has to argue when C “ r´1, 1s. The
argument for this case is purely topological in [FFL24, Proposition 3.3.6],
and hence it carries over immediately to our setting:

(4.12)
dimpZpxqq “ dimpHxMq “ n´ 1 for all
x PM , where we set Zpxq “ HxM XZ.

We now conclude the proof of Theorem C, following the argument in [FFL24,
Section 3.3.7].

Proof of Theorem C. Since Z Ď HM is a closed real-analytic set of full
dimension, it suffices to show that Z is open. For every z P Z, let Zz
denote the germ of Z at z. This has full dimension by (4.12), and therefore
the complexified germ is an entire complex neighborhood of z. By [Nar06,
Chapter V, Proposition 1], the germ Zz is an entire real neighborhood of z,
and hence Z is open. �

In the same way that Corollary 3.7 followed from Theorem 3.5, we have that
Theorem A follows from Theorems C, and D applied to the rescaled magnetic
system ps´2g, s´2σq instead of the original system pg, σq, cf. Lemmas 3.6
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and [PP94]. In fact, as this argument shows, it suffices to assume that the
s-magnetic flow is Anosov in Theorem A rather than the stronger assumption
that the s-magnetic curvature is negative.

Remark 4.3. It is not immediately clear how to generalize (4.8) to any
semi-spray flow ϕt on UM . Namely, the expression DW {dt´XV pγ,W q (cf.
(3.5)) does not define a linear connection on γ˚pTMq because (i) XV px, vq
does not depend linearly on v, and (ii) the vector field W is not restricted
to have unit length. One can work around (i) by defining Dϕ via the above
expression, with XV pγ,W q replaced by the fiber-derivative of XV at pγ, 9γq,
evaluated at W , but a different issue arises: Dϕ is not guaranteed to be
a metric-compatible linear connection on γ˚pTMq, as the fiber-derivative
of XV need not be skew-adjoint. This would be necessary to ensure that
the Dϕ-parallel transport preserves the tangent spaces to totally ϕ-invariant
submanifolds. For magnetic flows, however, Dϕ agrees with D in (4.8).
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Mañé critical value for magnetic geodesics on odd-dimensional spheres. J.
Geom. Phys., 214:105521, 2025.

[ABM25b] P. Albers, G. Benedetti, and L. Maier. The Hopf-Rinow theorem and the
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