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ABSTRACT. Using the notion of magnetic curvature recently introduced by the

first author, we extend E. Hopf’s theorem to the setting of magnetic systems.

Namely, we prove that if the magnetic flow on the s-sphere bundle is without con-

jugate points, then the total magnetic curvature is non-positive, and vanishes if

and only if the magnetic system is magnetically flat. We then prove that magnetic

flatness is a rigid condition, in the sense that it only occurs when either the mag-

netic form is trivial and the metric is flat, or when the magnetic system is Kähler,

the metric has constant negative sectional holomorphic curvature, and s equals the

Mañé critical value.

1. Introduction

A classical rigidity theorem in Riemannian geometry is due to E. Hopf [29]:

if a closed Riemannian surface is without conjugate points, then its total Gaussian cur-

vature is non-positive, and vanishes if and only if the metric is flat. The Gauss-Bonnet

theorem then implies that every metric without conjugate points on the two-di-

mensional torus T2 is flat. Hopf’s theorem was generalized to higher dimensions

by Green [27], with the scalar curvature replacing the Gaussian curvature. How-

ever, in absence of a higher dimensional argument à la Gauss-Bonnet, the question

of whether a metric without conjugate points on a torus Tn is flat remained open

for decades. The problem was finally solved using a different array of techniques

by Burago and Ivanov [16].

In this paper, we generalize Green’s argument to the setting of magnetic sys-

tems without conjugate points. This generalization naturally leads us to studying

flatness in a magnetic sense. A magnetic system on a closed smooth manifold M is

a pair (g, σ), where g = ⟨·, ·⟩ is a Riemannian metric and σ is a closed 2-form on

M. In this context, σ is referred to as the magnetic form, and the requirement that σ
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is closed corresponds to the well-known fact that magnetic fields are divergence-

free, courtesy of Maxwell’s equation. The skew-adjoint endomorphism Ω of TM

corresponding to σ under g is referred to as the Lorentz force, and it is defined by

(1.1) σ(v, w) = ⟨v, Ω(w)⟩ for all v, w ∈ TM.

Recall that a magnetic system is the mathematical formalism used to describe

the motion of a charged particle moving on a Riemannian manifold under the

action of a magnetic force field. More precisely, a trajectory γ : R → M of a charged

particle is described by the second-order ordinary differential equation

(1.2)
Dγ̇

dt
= Ω(γ̇),

where D/dt denotes the covariant derivative along γ induced by the Levi-Civita

connection ∇ of g. Solutions of (1.2) are called (g, σ)-geodesics. Lifting (1.2) to TM,

we obtain the magnetic flow Φ(g,σ) : R× TM → TM associated with (g, σ). Observe

that in absence of a magnetic interaction (that is, when σ = 0), (1.2) reduces to the

standard equation for geodesics, and Φ(g,0) is the geodesic flow of the metric g.

Since (g, σ)-geodesics have constant speed, the infinitesimal generator of Φ(g,σ) is

tangent to the s-sphere bundles Σs = {v ∈ TM | ∥v∥ = s} for s > 0. Thus, Σs is an

invariant set for the flow Φ(g,σ), and hereafter we denote by Φ
(g,σ)
s : R × Σs → Σs

the restriction of Φ(g,σ) to Σs. The dynamics of magnetic systems have been stud-

ied for many decades; for some historical background, see [6, 8, 23].

Linearizing (1.2) along a (g, σ)-geodesic γ, we obtain the differential equation

(1.3)
D2 J
dt2 + R(J, γ̇)γ̇ = (∇JΩ)(γ̇) + Ω

(
DJ
dt

)
for vector fields J along γ. A solution J of (1.3) is called a (g, σ)-Jacobi field. In

addition, a (g, σ)-Jacobi field J is normal if it satisfies

(1.4)
〈

DJ
dt

, γ̇

〉
= 0.

A point γ(τ) is said to be conjugate to γ(0) along γ if there exists a nontrivial

normal Jacobi field J along γ such that J(0) = 0 and J(τ) is proportional to γ̇(τ).

A (g, σ)-geodesic γ is without conjugate points if γ(τ) is not conjugate to γ(0) for

every τ ̸= 0, and the flow Φ
(g,σ)
s is without conjugate points if all of (g, σ)-geodesics

with speed s are without conjugate points.1

In [10], the first author introduced a notion of magnetic curvature related to

the second variation of the action which extends to higher dimensions the well-

known Gaussian magnetic curvature introduced by G. and M. Paternain in [34]

1The above definition is related to critical values of a suitable exponential map defined for mag-

netic systems. For more details, see [5, 28].
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for surfaces. We briefly recall its definition. Let E and E1 be the bundles of com-

plementary and unit-complementary directions over the unit sphere bundle SM,

whose fibers over v ∈ SM are given by Ev = v⊥ and E1
v = v⊥ ∩ SM. Denote by R

the Riemann curvature tensor, and for s > 0, consider the bundle endomorphisms

RΩ
s , AΩ : E → E given by

(RΩ
s )v(w) = s2R(w, v)v − s(∇wΩ)(v) +

s
2
((∇vΩ)(w)− ⟨(∇vΩ)(w), v⟩v) ,(1.5)

(AΩ)v(w) =
3
4
⟨w, Ω(v)⟩Ω(v)− 1

4
Ω2(w)− 1

4
⟨Ω(w), Ω(v)⟩v.(1.6)

The magnetic curvature operator at level s is the section MΩ
s of End(E) given by

(1.7) (MΩ
s )v(w) = (RΩ

s )v(w) + (AΩ)v(w).

The magnetic sectional curvature secΩ
s : E1 → R and the magnetic Ricci curvature

RicΩ
s : SM → R at level s are given by, respectively:

(1.8) (secΩ
s )v(w) =

〈
(MΩ

s )v(w), w
〉

and RicΩ
s (v) = tr (MΩ

s )v.

We note that the magnetic curvature function captures relevant dynamical in-

formation for the magnetic system. For instance, it can be deduced from [37, The-

orem 4.1] that if secΩ
s < 0, then Φ

(g,σ)
s is Anosov.2 Under the assumption that

RicΩ
s > 0, it was shown in [10] that there exists a closed contractible (g, σ)-geodesic

for small s.3

In Proposition 3.1, we relate MΩ
s to (1.3), and in Proposition 3.2 we show that

if secΩ
s ≤ 0, then Φ

(g,σ)
s is without conjugate points. As in the Riemannian setting,

the converse does not hold in general. An example of a magnetic flow without con-

jugate points whose magnetic curvature changes sign was constructed [17, Section

7]. Nevertheless, our main result gives a partial converse, generalizing [26, Theo-

rem 1] from the case where ∇σ = 0:

THEOREM A. Let (g, σ) be a magnetic system on a closed manifold M, and let s > 0.

If Φ
(g,σ)
s is without conjugate points, then

(1.9)
∫

SM
RicΩ

s (v)dµg(v) ≤ 0,

where dµg denotes the Liouville measure on SM. Moreover, equality holds if and only if

MΩ
s = 0.

The strategy of the proof is similar to the one given in [27]. With the aid of an

appropriate twisted connection introduced in Section 2, we construct the magnetic

Green bundles along (g, σ)-geodesics without conjugate points in Section 4. The

2See also Appendix A for a proof.
3See [11] for previous results in this direction.
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existence of such bundles guarantees that we are able to find non-trivial solutions

to a suitable magnetic Riccati equation (see (5.3)), and the result follows quickly.

We note that similar geometric constructions were previously introduced in the

classical Riemannian case by Green in [27], for Finsler metrics without conjugate

points in [22], and in the general context of Hamiltonian dynamics in [7, 14, 20].

We now observe some consequences of Theorem A. Using the linearity of Ω,

one can deduce

(1.10)
∫

SM
tr(RΩ

s )v dµg(v) = s2 vol(Sn−1)

n

∫
M

scal(x)dνg(x),

where dνg is the Riemannian volume measure on M. Combining (1.10) with the

fact that tr(AΩ)v is always non-negative and is positive on some open subset of

SM as soon as σ is not identically zero (see [10, Lemma 5] or (1.6)), the following

corollary holds:

COROLLARY B. If σ is not identically zero, then for every sufficiently small s the

flow Φ
(g,σ)
s has at least one pair conjugate points. Moreover, if g is a Riemannian metric

on M such that ∫
M

scal(x)dνg(x) > 0,

then for every magnetic form σ and every s > 0 the flow Φ
(g,σ)
s has at least one pair

conjugate points.

This can be interpreted as saying that if the magnetic deformation is strong,

then the magnetic flow must have at least one pair conjugate points. Naturally,

this leads us to the following question: given a Riemannian metric g with at least

one pair conjugate points, does there exist a closed 2-form σ and a value s such that the

corresponding flow Φ
(g,σ)
s is without conjugate points? While Corollary B points to a

negative answer for small values of s, the question is open to our best knowledge.

Some progress towards this question has been made by Bialy in [13], where it is

shown that if g is conformally flat on the n-torus Tn, then for every s the magnetic

flow Φ
(g,σ)
s is without conjugate points if and only if σ is identically zero and the

metric is flat. Bialy also conjectured that such a result should hold for arbitrary

metrics, which would generalize [16] to the magnetic case.

If M is an orientable surface, then every closed 2-form σ is related to the area

form νg by a smooth function b, in the sense that σ = bνg. We denote the magnetic

system (g, bνg) by (g, b). In this setting, the magnetic curvature functions secΩ
s and

RicΩ
s reduce to the Gaussian magnetic curvature at level s, which is given by

Kg,b
s (x, v) = s2Kg(x)− s dbx(iv) + b(x)2;
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see [10, Lemma 8]. Here, iv is the vector obtained by rotating v by π/2 according

to the fixed orientation, and Kg : M → R is the Gaussian curvature. As a conse-

quence of the Gauss-Bonnet theorem, we have∫
SM

Kg,b
s (x, v)dµg(x, v) = 2π

[
s2χ(M) +

∫
M

b2(x)dνg(x)
]

,

where χ(M) is the Euler characteristic of M. As pointed out in Corollary B, every

magnetic flow on S2 has conjugate points. In the case of a magnetic flow on T2,

we are able to recover [13, Theorem 1]:

COROLLARY C. The only magnetic flows on T2 without conjugate points are of the

form Φ
(g0,0)
s , where g0 is a flat metric.

Summarizing, the genus of the surface must be at least two for there to be a

non-trivial magnetic system without conjugate points. If we assume that (g, b) ̸=
(g0, 0), then Kg,b

s ≡ 0 if and only if b is constant, g has constant negative curvature

k, and s = |b|/
√
−k. Observe that if this happens, then Φ

(g,b)
s is the horocycle

flow [18, Section 5.2]. In particular, this allows us to view the horocycle flow on

hyperbolic surfaces as the magnetic analogue of T2 equipped with a flat metric.

In order to bring the discussion to higher dimensions, we recall that the Mañé

critical value s0 = s0(g, σ) ∈ [0,+∞] of the pair (g, σ) is defined as

(1.11) s0 =


inf

dθ=p∗σ
sup
x∈M̃

∥θx∥ if p∗σ is exact,

+∞ otherwise,

where p : M̃ → M is the universal covering map and ∥ · ∥ denotes the dual norm

induced by g. One can immediately see that s0 is finite if and only if p∗σ admits a

bounded primitive, and s0 = 0 if and only if σ = 0. The Mañé critical value marks

a drastic change of the dynamics of Φ
(g,σ)
s , and its computation is challenging in

general. For more details and alternative definitions of s0, we point the reader to

[18,32], and references within. In the special case when (M, g) is a Kähler manifold

with Kähler form ω and constant holomorphic sectional curvature sechol ≡ k < 0,

we have

(1.12) s0(g, λω) =
|λ|√
−k

;

see Appendix B.

We say that a magnetic system (g, σ) is magnetically flat at level s > 0 if MΩ
s ≡

0. Just like in the surface case, it turns out that being magnetically flat is a rigid

condition, and there are only two types of magnetic systems (g, σ) and levels s

for which it is satisfied: when σ = 0 and g is flat (in which case s > 0 can be
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anything), or when (g, λω) is a Kähler magnetic system on a Kähler manifold

with constant negative holomorphic sectional curvature and s = s0(g, λω). This is

a consequence of the following theorem, which we prove in Section 6:

THEOREM D. Let (g, σ) be a magnetic system on a (not necessarily closed) manifold

M with σ ̸= 0. If secΩ
s ≡ c for some s > 0, then ∇σ = 0, σ is nowhere vanishing, and

one of the following conclusions must hold:

(i) (M, g) is an oriented surface whose Gaussian curvature is constant and equal to

(c − ∥Ω∥2)/s2, and σ = −∥Ω∥νg;

(ii) dim M ≥ 4, c = 0, and ∥Ω∥−1Ω makes (M, g) a Kähler manifold with constant

holomorphic sectional curvature equal to −∥Ω∥2/s2.

Moreover, assuming that c = 0 in (i), we have that s = s0(g, σ) in either case.

We conclude by connecting the above discussion with the problem of existence

of closed (g, σ)-geodesics with speed s. The literature around this problem is vast;

for more details, see [9,19,32]. In general, existence depends on whether s is above

or below s0. Indeed, for every s > s0, there exists a closed (g, σ)-geodesic with

speed s [21, Theorem 27]. Moreover, if M is not simply connected and s > s0, then

for every non-trivial free homotopy class contains a (g, σ)-geodesic with speed

s [9]. On the other hand, for almost every sufficiently small s < s0, there exists a

contractible closed (g, σ)-geodesic with speed s [35, Corollary 3.5]. It is conjectured

that the latter conclusion in fact holds for all s ∈ (0, s0). To our best knowledge,

the only examples of magnetic flows without closed (g, σ)-geodesics are the ones

of the form Φ
(g,λω)
s0 , where (g, λω) is a Kähler magnetic system with constant neg-

ative holomorphic sectional curvature and s0 is the Mañé critical value. This raises

the following question: if there are no closed (g, σ)-geodesics with speed s, is the system

(g, σ) magnetically flat at level s?
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2. The anisotropic objects Ω̃ and D̃

In this section, we fix a magnetic system (g, σ) on a (not necessarily closed)

manifold M, and denote by π : TM → M the natural projection. We construct the

anisotropic Lorentz force and the anisotropic twisted connection, which will be

useful tools for the calculations done in Sections 3, 4, and 5.

2.1. The anisotropic Lorentz force. The anisotropic Lorentz force Ω̃ is defined

by assigning to every v ∈ SM the skew-adjoint operator Ω̃v : Tπ(v)M → Tπ(v)M

given by

(2.1) Ω̃v(w) = Ω(w)⊤ + Ω(w⊤) +
1
2

Ω(w⊥)⊥,

where [ · ]⊤ and [ · ]⊥ denote the projections onto Rv and v⊥, according to the direct

sum decomposition Tπ(v)M = Rv⊕ v⊥. A straightforward computation yields the

alternative formula

(2.2) Ω̃v(w) =
1
2
(⟨Ω(w), v⟩v + ⟨w, v⟩Ω(v) + Ω(w))

for Ω̃. In particular, note that Ω̃v is completely characterized by the relations

(2.3) i) Ω̃v(v) = Ω(v) ii) ⟨Ω̃v(w), v⟩ = ⟨Ω(w), v⟩ iii) Ω̃v(w⊥)⊥ =
1
2

Ω(w⊥)⊥

imposed on all w ∈ Tπ(v)M. Repeatedly applying (2.2) and recalling (1.6) yields

(2.4) Ω̃2
v(w) = −(AΩ)v(w⊥) +

1
2
(Ω2(w⊤) + Ω2(w)⊤).

2.2. The anisotropic twisted connection. It is well-known that, if σ ̸= 0, there

is no affine connection on M whose geodesics are the (g, σ)-geodesics of our fixed

magnetic system [12, Proposition 2.1]. Thus, given a (g, σ)-geodesic γ : I → M

with constant speed s > 0, we may search for a covariant derivative operator D̃,

defined only along γ, which describes geometric properties of (g, σ) in the same

way that the Levi-Civita covariant derivative D/dt does so for the metric g.

The first two desired properties are (i) D̃γ̇ = 0, and (ii) metric compatibility.

Condition (i) should ultimately be equivalent to (1.2) and, in the presence of (ii),

implies that D̃-derivatives of vector fields proportional to γ̇ remain proportional

to γ̇. Condition (ii) also implies that D̃-derivatives of vector fields orthogonal to

γ̇ remain orthogonal to γ̇. This allows us to formally deduce, from (1.3), that
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D̃2 J⊥ + AD̃J⊥ + BJ⊥ = 0 for every (g, σ)-Jacobi field J along γ, for suitable en-

domorphisms A and B of the pullback bundle γ∗E. The last desired condition,

inspired by the Riemannian situation, is (iii) A = 0 and B = (MΩ
s )γ̇/s.

As we will see in Proposition 3.1, the covariant derivative operator D̃ acting

on vector fields V along γ by

(2.5) D̃V =
DV
dt

− Ω̃γ̇/s(V),

for Ω̃ is as in (2.1), satisfies all the requirements.

Warning: For economy of notation, we will write simply Ω̃ instead of Ω̃γ̇/s when

using (2.5) in the next sections.

3. Curvature identities

The main goal of this section is to establish the following result:

PROPOSITION 3.1. Let (g, σ) be a magnetic system on a (not necessarily closed)

manifold M, γ : I → M be a (g, σ)-geodesic with speed s > 0, and J be a normal (g, σ)-

Jacobi field along γ. Then

(3.1) D̃2 J⊥ + (MΩ
s )γ̇/s(J⊥) = 0

on I.

Here, we will need to consider the projections P⊤ and P⊥, acting on vector

fields V along γ via

P⊤(V) = V⊤ = s−2⟨V, γ̇⟩γ̇ and P⊥(V) = V⊥ = V − s−2⟨V, γ̇⟩γ̇.

Denoting Levi-Civita covariant derivatives with dots, a straightforward compu-

tation shows that (P⊤)· = [Ω, P⊤] and (P⊥)· = [Ω, P⊥]. With these commutator

identities in place, it follows from (2.1) and from differentiating Ω̃(γ̇) = Ω(γ̇) that

(3.2) i) P⊥ ◦ ˙̃Ω ◦ P⊥ =
1
2

P⊥ ◦ Ω̇ ◦ P⊥ and ii) ˙̃Ω(γ̇) = Ω̇(γ̇) +
1
2

Ω2(γ̇)⊥,

respectively.

PROOF OF PROPOSITION 3.1. We start by computing

(3.3) D̃2 J = D̃( J̇ − Ω̃(J)) = J̈ − 2Ω̃( J̇)− ˙̃Ω(J) + Ω̃2(J),

and substituting the (g, σ)-Jacobi equation (1.3) together with (2.4) to obtain

D̃2 J = R(γ̇, J)γ̇ + (∇JΩ)(γ̇) + Ω( J̇)− 2Ω̃( J̇)

− ˙̃Ω(J)− (AΩ)γ̇/s(J⊥) +
1
2
(Ω2(J⊤) + Ω2(J)⊤).

(3.4)
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At the same time, using that (3.2-ii) remains valid when replacing γ̇ with J⊤, we

may evaluate (1.5) as

(3.5) (RΩ
s )γ̇/s(J⊥) = −R(γ̇, J⊥)γ̇ − (∇J⊥Ω)(γ̇) + ˙̃Ω(J⊥)⊥.

As R(γ̇, J)γ̇ = R(γ̇, J⊥)γ̇ and (∇JΩ)(γ̇) = Ω̇(J⊤) + (∇J⊥Ω)(γ̇), we may substi-

tute (3.5) into (3.4) and use (1.7) to write

D̃2 J = −(MΩ
s )γ̇/s(J⊥) + ˙̃Ω(J⊥)⊥ + Ω̇(J⊤) + Ω( J̇)

− 2Ω̃( J̇)− ˙̃Ω(J) +
1
2
(Ω2(J⊤) + Ω2(J)⊤).

(3.6)

Applying P⊥ to both sides of (3.6) and noting that Ω( J̇)⊥ − 2Ω̃( J̇)⊥ = 0, by nor-

mality of J and (2.3-iii), it follows that

(3.7) D̃2 J⊥ = −(MΩ
s )γ̇/s(J⊥) + ˙̃Ω(J⊥)⊥ + Ω̇(J⊤)− ˙̃Ω(J)⊥ +

1
2

Ω2(J⊤)⊥.

Decomposing ˙̃Ω(J)⊥ = ˙̃Ω(J⊤)⊥ + ˙̃Ω(J⊥)⊥ and using (3.2-ii) for a second time, a

complete cancellation occurs and (3.7) reduces to (3.1), as required. □

We conclude this section with one interesting consequence of Proposition 3.1.

PROPOSITION 3.2. Let (g, σ) be a magnetic system on a (not necessarily closed)

manifold M. If s > 0 is such that secΩ
s ≤ 0, then Φ

(g,σ)
s is without conjugate points.

PROOF. Let v ∈ Σs, and assume that J is any normal (g, σ)-Jacobi field along

the geodesic γ with initial velocity v. Using metric compatibility of D̃ together

with (3.1), we find that

d2

dt2
∥J⊥∥2

2
= ∥D̃J⊥∥2 + ⟨D̃2 J⊥, J⊥⟩

= ∥D̃J⊥∥2 − ⟨(MΩ
s )γ̇/s(J⊥), J⊥⟩

= ∥D̃J⊥∥2 − (secΩ
s )γ̇/s

(
J⊥

∥J⊥|

)
∥J⊥∥2 ≥ 0,

(3.8)

where the secΩ
s term is understood to be zero at all instants on which J⊥ van-

ishes. Hence, the function t 7→ ∥J(t)⊥∥ is increasing whenever J is normal. If,

in addition, we suppose that J(0) = 0 and that J(t0) is proportional to γ̇(t0) for

some t0 > 0, then it must be the case that J⊥|[0,t0]
= 0 identically, making J|[0,t0]

tangential. As a tangential and normal (g, σ)-Jacobi field is necessarily a constant

multiple of γ̇, J(0) = 0 implies that J|[0,t0]
= 0, and so γ(t0) is not conjugate to

γ(0) along γ. □
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4. Magnetic Green bundles

In this section, we construct the so-called Green bundles associated with a

magnetic flow Φ
(g,σ)
s . As described in the Introduction, this is a useful tool for

obtaining non-trivial normal (g, σ)-Jacobi fields along any given (g, σ)-geodesic

whose perpendicular component never vanishes. The strategy is to introduce a

symplectic vector bundle Q over Σs, whose fibers are in correspondence with suit-

able spaces of normal (g, σ)-Jacobi fields (see Lemma 4.2). The Green bundles are

then defined as limits of curves of Lagrangian subbundles of Q (see Lemma 4.4),

and its elements give rise to the desired fields.

4.1. General setup. Let (g, σ) be a magnetic system on a closed manifold M.

On TM, we may consider the twisted symplectic form ωσ defined by

(4.1) ωσ(ξ, η) = ⟨π∗ξ, K(η)⟩ − ⟨K(ξ), π∗η⟩ − σ(π∗ξ, π∗η),

for all ξ, η ∈ T(TM). Here, π : TM → M is the natural bundle projection, and

K : TTM → TM is the Levi-Civita connector of (M, g).

It is well-known that

(4.2) the magnetic flow Φ(g,σ) : R × TM → TM is Hamiltonian,

as its generator Xg,σ ∈ X(TM) satisfies ωσ(Xg,σ, ·) = dL, where L : TM → R is

given by L(v) = ∥v∥2/2. Indeed, it is a direct consequence of (4.1) together with

(4.3) (i) dLv(η) = ⟨K(η), v⟩ and (ii) K(Xg,σ
v ) = Ω(v).

Clearly (4.3-i) holds, while (4.3-ii) follows from the easily verified general relation

Xg,σ
v = Xg

v +Ωv(v), where Xg ∈ X(TM) denotes the geodesic vector field of (M, g)

and Ωv(v) ∈ Tv(TM) is the vertical lift of Ω(v), characterized by π∗(Ωv(v)) = 0

and K(Ωv(v)) = Ω(v).

In the following, instead of K we will use

(4.4)
the twisted connector Kσ : TTM ∖ {0} → TM, de-

fined by Kσ(ξ) = K(ξ)− Ω̃(π∗ξ), for ξ ∈ Tv(TM),

where Ω̃ is the anisotropic Lorentz force given by (2.1). Note that the zero section

must be removed from TTM in (4.4) so that Ω̃ may be evaluated. In addition,

observe that Kσ(Xg,σ) = 0 as a consequence of (4.3-ii) and (2.3-i).

4.2. Reduced magnetic Green bundles over s-sphere bundles. Let s > 0 and

fix Σs = {v ∈ TM | ∥v∥ = s}. We denote by π and Kσ the restrictions to Σs of the

corresponding objects in TM, and by Φ
(g,σ)
s the magnetic flow restricted to Σs.
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Combining (4.3-i) with (4.4) and (2.3-i), we see that

(4.5) TvΣs = {ξ ∈ Tv(TM) | ⟨Kσ(ξ) + Ω(π∗ξ), v⟩ = 0},

for every v ∈ Σs. Three distinguished subspaces of (4.5) are the (g, σ)-horizontal

and vertical spaces at v, defined by Hσ
v = ker Kσ|TvΣs and Vv = ker π∗|TvΣs , respec-

tively, and Θv = {ξ ∈ Tv(TM) | π∗ξ ∈ RΩ(v) and K(ξ) = 0}. They provide

(4.6) a direct sum decomposition TvΣs = Hσ
v ⊕ Θv ⊕ Vv.

Indeed, it is straightforward to check that Hσ
v ∩ Vv = {0} by using that K and Kσ

agree on vertical vectors, as well as Θv ∩ Hσ
v = Θv ∩ Vv = {0} using (4.5), while

the restrictions

(4.7) (i)Kσ : Vv → v⊥ and (ii)π∗ : Hσ
v ⊕ Θv → Tπ(v)M

are isomorphisms, so that dim TvΣs = dim(Hσ
v ⊕ Θv) + dim Vv. Motivated by

(4.7-ii), let Ĥσ
v = Hσ

v ⊕ Θv. Formula (4.1) can now be made simpler:

LEMMA 4.1. With the above setup,

(4.8) ωσ(ξ, η) = ⟨[π∗ξ]⊥, Kσ(η)⟩ − ⟨Kσ(ξ), [π∗η]⊥⟩,

for all ξ, η ∈ TΣs. In particular, ωσ restricted to Σs is degenerate and has its kernel

spanned by Xg,σ.

PROOF. For ξ, η ∈ TvΣs, decompose Tπ(v)M = Rv ⊕ v⊥, and denote by [ · ]⊤

and [ · ]⊥ the orthogonal projections onto Rv and v⊥, respectively. Using (2.2) and

(1.1), (4.1) becomes

ωσ(ξ, η) = ⟨π∗ξ, Kσ(η)⟩ − ⟨Kσ(ξ), π∗η⟩

+ ⟨Ω(π∗η), [π∗ξ]⊤⟩ − ⟨Ω(π∗ξ), [π∗η]⊤⟩.
(4.9)

As ξ, η ∈ TvΣs, self-adjointness of [ · ]⊤ and [ · ]⊥ together with (4.5) leads to (4.8).

It remains to establish the claim about the kernel of ωσ. If ξ ∈ TvΣs is such that

ωσ(ξ, ·) = 0, then from the relation ωσ(ξ, Vv) = 0 and (4.7-i) we directly ob-

tain that π∗ξ ∈ (v⊥)⊥ = Rv. Writing π∗ξ = λv, for some λ ∈ R, and noting

from (4.7-ii) that Hσ
v surjects onto Ω(v)⊥, we see that ωσ(ξ, Hσ

v ) = 0 implies that

Kσ(ξ) ∈ RΩ(v), since Kσ(ξ) lies in the double orthogonal complement to RΩ(v)

relative to v⊥. We conclude with two cases: if Ω(v) = 0, then K(ξ) = 0 and thus

ξ = λXg
v = λXg,σ

v ; if Ω(v) ̸= 0 instead, then K(ξ) − λΩ(v) = µΩ(v) for some

µ ∈ R, and we use that ωσ(ξ, η) = −µ∥Ω(v)∥2 whenever η ∈ Θv has π∗η = Ω(v),

so that µ = 0 and ξ = λXg,σ
v again. □
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By modding out RXg,σ in (4.6), we obtain a symplectic vector bundle Q over

Σs, whose fiber over v ∈ Σs is given by Qv = TvΣs/RXg,σ
v and whose symplectic

structure is naturally induced by ωσ. As Xg,σ
v ̸∈ Vv, we have that V is projectable,

and so we may also identify Qv with the direct sum [Ĥσ
v /RXg,σ

v ]⊕Vv. In addition,

due to (4.2) and Xg,σ being Φ
(g,σ)
s -related to itself, we see that

(4.10)
for each t ∈ R, the quotient flow Ψg,σ : R × Q → Q induced by the

derivative dΦ
(g,σ)
s : R× TΣs → TΣs is a bundle symplectomorphism.

For notational simplicity, we write Ψ
(g,σ)
t = Ψ(g,σ)(t, ·). For every v ∈ Σs

and t ∈ R, we define Eσ
v (t) = (Ψ

(g,σ)
t )−1[V

Φ
(g,σ)
s (t,v)

], so that (Ψ(g,σ)
t )v[Eσ

v (t)] =

V
Φ
(g,σ)
s (t,v)

. Here, we identify each Vv with its isomorphic image under the quotient

projection TΣs → Q. It follows from (4.8) that V is a Lagrangian subbundle of Q,

and thus, by (4.10),

(4.11) R ∋ t 7→ Eσ
v (t) is a curve of Lagrangian subspaces of Qv.

To study the behavior of Eσ
v (t) as t → ±∞, it will be convenient to use a

different characterization of Q. For each v ∈ Σs, we let Jg,σ,n
0 (v) be the space of all

normal (g, σ)-Jacobi fields along γv such that J(0)⊤ = 0.

LEMMA 4.2. The mapping

(4.12) Qv ∋ ξ + RXg,σ
v 7→ Jξ ∈ J

g,σ,n
0 (v),

where Jξ is the unique normal (g, σ)-Jacobi field determined by the initial conditions

Jξ(0) = [π∗ξ]⊥ and (D̃Jξ)(0) = Kσ(ξ), is a well-defined linear isomorphism.

PROOF. It is easy to see that if one replaces ξ with ξ + λXg,σ
v for some λ ∈ R,

then such initial conditions remain unchanged, while Jξ is automatically normal

in view of ξ ∈ TvΣs combined with (4.5). Finally, (4.12) is injective for reasons

explained in the proof of Lemma 4.1: namely, if [π∗ξ]⊥ = 0, so that π∗ξ = λv for

some λ ∈ R, then Kσ(ξ) = 0 implies that ξ = λXg,σ
v , and thus ξ + RXg,σ

v is zero in

Qv. As dim Qv = dim J
g,σ,n
0 (v) = 2(n− 1), it follows that (4.12) is an isomorphism.

□

As the next result shows, the condition of Φ
(g,σ)
s being without conjugate

points is what will allows us to proceed.

PROPOSITION 4.3. Let γ be the (g, σ)-geodesic with initial velocity v ∈ Σs. For

each τ ∈ R, Eσ
v (τ) ∩ Vv ̸= {0} if and only if γ(τ) is conjugate to γ(0) = π(v) along γ.

PROOF. Note that, under the identification (4.12), we may express the vertical

space as Vv ∼= {J ∈ J
g,σ,n
0 (v) | J(0) = 0}. The quotient flow introduced in (4.10), in
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turn, appears as the mapping Ψ
g,σ
τ : Jg,σ,n

0 (v) → J
g,σ,n
0 (Φ

(g,σ)
s (τ, v)) given by

(4.13) [Ψ
g,σ
τ (J)](t) = J(t + τ)− s−2⟨J(τ), γ̇(τ)⟩γ̇(t + τ).

Indeed, that the derivative of the magnetic flow pushes J to t 7→ J(t + τ) is ob-

tained exactly as in [33, Lemma 1.40], while the term subtracted in (4.13) amounts

to the natural projection of a normal (g, σ)-Jacobi field along γ onto J
g,σ,n
0 (v). As

[Ψ
g,σ
τ (J)](0) = J(τ)⊥, we see that Eσ

v (τ)
∼= {J ∈ J

g,σ,n
0 (v) | J(τ)⊥ = 0} under

(4.12), so that

(4.14) Eσ
v (τ) ∩ Vv ∼= {J ∈ J

g,σ,n
0 (v) | J(0) = J(τ)⊥ = 0}.

The conclusion follows. □

From here on, we assume that Φ
(g,σ)
s is without conjugate points. Observe the

isomorphism Ĥσ
v /RXg,σ

v ∼= v⊥ induced by (4.7-ii), in view of π∗(Xg,σ
v ) = v and

Tπ(v)M/Rv ∼= v⊥. With this isomorphism and (4.7-i) in mind, we have

(4.15) each Eσ
v (t) corresponds to the graph of a linear operator Sv(t) : v⊥ → v⊥

which, by (4.8) and (4.11), must be self-adjoint. Now, recall the Loewner order on the

space of self-adjoint operators on v⊥: we write A < B if B − A is positive-definite.

For this partial order, it is well-known that

(4.16)
the monotone convergence theorem holds: a bounded and monoto-

ne sequence (or curve) of self-adjoint operators must converge,

cf. [15, 3.6.5, p. 108].

LEMMA 4.4. For every v ∈ Σs, the limits

(4.17) S+
v = lim

t→+∞
Sv(t) and S−

v = lim
t→−∞

Sv(t)

exist, and their graphs define Ψ
(g,σ)
t -invariant Lagrangian subbundles Eσ,+ and Eσ,− of Q.

PROOF. The arguments for S+
v and S−

v are identical, so it suffices to show that

S+
v exists and its graph defines an invariant Lagrangian subbundle. We first show

that the limit exists, following the argument in [30]. Assume for simplicity that

s = 1, so Σs = SM. We claim that

(4.18)
the difference Sv(t, s) = Sv(t) − Sv(s) has constant sig-

nature in the open regions (i) 0 < s < t and (ii) s < 0 < t.

To verify (4.18-i), assume that there exists w ∈ ker Sv(t0, s0) ∖ {0}, for suitable

0 < s0 < t0. Then, the field J ∈ J
g,σ,n
0 (v) with initial conditions J(0) = w and

(D̃J)(0) = Sv(t0)w necessarily has J(t0)
⊥ = J(s0)

⊥ = 0, due to (4.14) and (4.15).

It follows from (4.13) that Ψ(g,σ)
s0 (J) ∈ J

g,σ,n
0 (Φ

(g,σ)
1 (s0, v)) satisfies Ψ(g,σ)

s0 (J)(0) = 0
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and [Ψ(g,σ)
s0 (J)(t0 − s0)]

⊥ = 0, contradicting our assumption that Φ
(g,σ)
1 is without

conjugate points. The same argument also establishes (4.18-ii).

In view of (4.18-i), to show that t 7→ Sv(t) is increasing for t > 0, it suffices

to exhibit 0 < s0 < t0 such that Sv(t0, s0) is positive-definite. This is done with a

local argument: for every t > 0, let P−t : γ̇(t)⊥ → v⊥ be the D̃-parallel transport

along γv and, for every w ∈ v⊥ let J ∈ Eσ
v (t) have initial conditions J(0) = w and

(D̃J)(0) = Sv(t)w — here, we use (4.12). Now the Taylor expansion

0 = P−t(J(t)⊥) = J(0)⊥ + t(D̃J⊥)(0) + O(t2)

= w + tSv(t)w + O(t2) = (Idv⊥ + tSv(t) + O(t2))w
(4.19)

leads to Sv(t) = −t−1Idv⊥ + O(t), meaning that Sv(t, s) is positive-definite for

0 < s < t sufficiently small.

Finally, it follows from (4.18-ii) that t 7→ Sv(t) is bounded for t > 0 as, for

instance, Sv(t) < Sv(−1). The existence of limt→+∞ Sv(t) is now a consequence of

(4.16).

To prove invariance of the bundle, fix τ ̸= 0 and v ∈ SM. Observe that

if J ∈ J
g,σ,n
0 (v) has initial conditions J(0) = w and (D̃J)(0) = Sv(t)w, then

Ψ
(g,σ)
τ (J) ∈ J

g,σ,n
0 (Φ

(g,σ)
1 (τ, v)) is a new Jacobi field satisfying Ψ

(g,σ)
τ (J)(0) = J(τ)⊥

and [Ψ
(g,σ)
τ (J)(t − τ)]⊥ = 0. This shows (D̃Ψ

(g,σ)
τ (J))(0) = SΦ

g,σ
1 (τ,v)(t − τ)J(τ)⊥.

We let t tend to +∞ to get that Ψ
(g,σ)
τ (Eσ,+

v ) ⊆ Eσ,+
Φ
(g,σ)
1 (τ,v)

. The choice of v and τ

was arbitrary, so the same argument also shows that Ψ
(g,σ)
−τ

(
Eσ,+

Φ
g,σ
1 (τ,v)

)
⊆ Eσ,+

v , and

we conclude invariance. Finally, we observe that the bundles are Lagrangian by

Lemma 4.1, since a limit of symmetric matrices is symmetric.

□

5. Proof of Theorem A

Let (g, σ) be a magnetic system on a closed manifold M, and s > 0 be such that

Φ
(g,σ)
s : R × Σs → Σs is without conjugate points. We use the notation and setup

from Section 4. For every v ∈ Σs and t ∈ R, we define an operator Yv(t) : v⊥ → v⊥

by Yv(t)w = P−t(Jw(t)⊥), where P−t : γ̇(t)⊥ → v⊥ is the D̃-parallel transport

operator along γv, and Jw ∈ J
g,σ,n
0 (v) has the initial conditions Jw(0) = w and

(D̃Jw)(0) = S+
v w, for S+

v given as in Lemma 4.4. We first claim that

(5.1) P−τ ◦ Y
Φ
(g,σ)
s (τ,v)

(t) ◦ Pτ ◦ Yv(τ) = Yv(t + τ)

holds for all t, τ ∈ R. Indeed, if we denote by Lv(t) : v⊥ → γ̇(t)⊥ the linear

mapping taking w to Jw(t)⊥, the cocycle relation L
Φ
(g,σ)
s (τ,v)

(t) ◦ Lv(τ) = Lv(t + τ)

obviously holds; substituting Lv(t) = Pt ◦ Yv(t) in it yields (5.1).



MAGNETIC FLATNESS AND E. HOPF’S THEOREM FOR MAGNETIC SYSTEMS 15

By construction of S+
v , we have that Jw is nowhere vanishing whenever w ̸= 0,

and thus each Yv(t) is invertible. This allows us to consider the self-adjoint opera-

tor Uv(t) = Ẏv(t) ◦ Yv(t)−1 on v⊥. Using Proposition 3.1, we have that

(5.2) Ÿv(t)w = P−t(D̃
2(Jw)(t)⊥) = −P−t

(
(MΩ

s )
Φ
(g,σ)
s (t,v)/s

(Jw(t)⊥)
)

or, equivalently, Ÿv(t) = −P−t ◦ (MΩ
s )

Φ
(g,σ)
s (t,v)/s

◦ Lv(t). Thus,

U̇v(t) = Ÿv(t)Yv(t)−1 − Ẏv(t)Yv(t)−1Ẏv(t)Yv(t)−1

= −P−t ◦ (MΩ
s )

Φ
(g,σ)
s (t,v)/s

◦ Pt − Uv(t)2.
(5.3)

Taking the trace of (5.3), it follows that

(5.4) tr
(
U̇v(t)

)
+ tr

(
Uv(t)2)+ RicΩ

s (Φ
(g,σ)
s (t, v)/s) = 0.

Setting t = 0 and integrating both sides of (5.4) with respect to the Liouville mea-

sure dµg,s = dνg ⊗ dms induced in Σs, where dνg is the Riemannian measure of

(M, g) and dms is the Lebesgue measure on a round sphere of radius s, we see that

(5.5)
∫

Σs

(
tr(U̇v(0)) + tr(Uv(0)2)

)
dµg,s(v) + sn−1

∫
SM

RicΩ
s (v)dµg,1(v) = 0.

For the integral of RicΩ
s above, note that dms(v) = sn−1dm(w) for w = v/s and

apply Fubini’s theorem.

Letting F : Σs → R be given by F(v) = tr(Uv(0)), we claim that tr(U̇v(0)) =

Xg,σ(F)(v). Indeed, in view of the relation

(5.6) U
Φ
(g,σ)
s (τ,v)

(t) = Pτ ◦ Uv(t + τ) ◦ P−τ ,

which is a direct consequence of (5.1), we have

(5.7) Xg,σ(F)(v) =
d
dt

∣∣∣∣
t=0

tr U
Φ
(g,σ)
s (t,v)

(0) =
d
dt

∣∣∣∣
t=0

tr Uv(t) = tr U̇v(0).

As the magnetic flow is volume-preserving [37, Proposition 1.5], it follows that the

integral of tr(U̇v(0)) over Σs vanishes, and so (5.5) leads us to

(5.8)
∫

SM
RicΩ

s (v)dµg,1(v) = −s1−n
∫

Σs
tr(Uv(0)2)dµg,s(v) ≤ 0,

concluding the first part of the argument.

Assuming now that the equality holds in (5.8), measurability and non-negati-

vity of the function Σs ∋ v 7→ tr(Uv(0)2) tells us that tr(Uv(0)2) = 0 for almost

every v ∈ Σs. As Uv(0) is self-adjoint, it must then be the case that Uv(0) = 0 for

almost every v ∈ Σs. Using that the flow is volume preserving along with (5.6),

we see that for every t ∈ R the set Bt = {v ∈ Σs | Uv(t) = 0} has full µg,s-measure.

Hence, B = B0 ∩
(⋂

n≥1 B1/n
)

also has full measure, so for almost every v ∈ Σs we
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have U̇v(0) = limn→∞ n[Uv(1/n) − Uv(0)] = 0. Substituting this into (5.3) with

t = 0, we obtain that MΩ
s = 0 as required.

6. The meaning of magnetic flatness and proof of Theorem D

Recall that a Kähler manifold may be defined as a Riemannian manifold (M, g)

equipped with an almost-complex structure J such that g(J·, J·) = g and ∇J = 0,

with ∇ denoting the Levi-Civita connection of (M, g). This latter condition then

implies that J is integrable. Restricting the sectional curvature function of (M, g)

to J-invariant planes, one has the well-known notion of holomorphic sectional cur-

vature, which may be regarded as the smooth function sechol : SM → R given

by sechol(v) = sec(v, Jv). Note that sechol also equals the Gaussian curvature of

(M, g) when dim M = 2.

Given any λ ∈ (0, ∞), we may consider the magnetic system (g, λω) on M,

where ω = g(J·, ·) is the Kähler form of (M, g). Systems of this form are called

Kähler magnetic systems, and they have been extensively studied by Adachi [1–4,

36].

Whenever the holomorphic sectional curvature of (M, g) is constant and equal

to k, the Riemann curvature tensor is given by

(6.1) R(X, Y)Z =
k
4
(⟨Y, Z⟩X − ⟨X, Z⟩Y − ⟨Y, JZ⟩JX + ⟨X, JZ⟩JY + 2⟨X, JY⟩JZ),

for all vector fields X, Y, and Z on M (cf. [31, Proposition 7.3, p. 167]). In this case,

a straightforward computation shows that

(6.2) (secΩ
s )v(w) =

s2k + λ2

4
(1 + 3⟨v, Jw⟩2),

for all s > 0 and all pairs of orthonormal vectors v, w tangent to M. In the case

where dim M = 2, (6.2) reads secΩ
s ≡ s2k + λ2.

Our Theorem D serves as a rough “converse” of the above discussion.

PROOF OF THEOREM D. Combining (1.6) with the easily-verified relation

(6.3) (secΩ
s )v(w) = s2sec(v, w)− s⟨(∇wΩ)(v), w⟩+

〈
(AΩ)v(w), w

〉
,

the constant secΩ
s condition can be written as

(6.4) s2sec(v, w)− s⟨(∇wΩ)(v), w⟩+ 3
4
⟨v, Ω(w)⟩2 +

1
4
∥Ω(w)∥2 = c,

for all pairs of orthonormal vectors v, w ∈ TM. We first claim that

(6.5) (∇wΩ)(w) = 0, for every w ∈ TM.

To establish (6.5), we may assume without loss of generality that ∥w∥ = 1. Replac-

ing v 7→ −v in (6.4) and invoking skew-adjointness of ∇wΩ immediately yields
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⟨(∇wΩ)(w), v⟩ = 0, for all unit vectors v orthogonal to w. This forces (∇wΩ)(w)

to be proportional to w, while at the same time (∇wΩ)(w) is orthogonal to w; (6.5)

thus holds.

Polarizing (6.5), it follows that ∇Ω is skew-symmetric, and as a consequence

∇σ is alternating. However, the exterior derivative of a differential form equals

the alternator of its covariant differential, up to a nonzero dimensional constant

depending on conventions. Therefore, ∇σ = 0 follows from dσ = 0.

As a nontrivial parallel tensor field on any connected manifold equipped with

an affine connection is necessarily nowhere-vanishing, we now claim that

(6.6)
Ω is a conformal endomorphism of TM, and

thus ∥Ω∥−1Ω is a complex structure on M.

Indeed, replacing (v, w) 7→ (w, v) in (6.4) gives us that ∥Ω(v)∥ = ∥Ω(w)∥ for all

pairs of orthonormal vectors v, w tangent to M, and such condition immediately

implies that Ω is conformal, with constant conformal factor ∥Ω∥ > 0. Namely, we

have that ⟨Ω(v), Ω(w)⟩ = ∥Ω∥2⟨v, w⟩ for all vectors v, w tangent to M. As Ω is

skew-adjoint, nondegeneracy of g now implies that Ω2 = −∥Ω∥2Id, yielding (6.6).

Since Ω is parallel, we have that J = ∥Ω∥−1Ω is parallel and preserves g,

so (6.6) makes (M, g) a Kähler manifold. Let sechol be its holomorphic sectional

curvature. Setting w = Jv in (6.4) leads to s2sechol(v) + ∥Ω∥2 = c — yielding (i)

— and so (6.2) with λ = −∥Ω∥ implies that

(6.7)
c
4
(1 + 3⟨v, Jw⟩2) = c,

for all pairs of orthonormal vectors v, w tangent to M. Now, it follows from (6.7)

that c = 0 whenever dim M > 2. Indeed, if c ̸= 0, then 1 + 3⟨v, Jw⟩2 = 4 leads to

|⟨v, Jw⟩| = 1, and the equality case in the Cauchy-Schwarz inequality implies that

(6.8)
the set {v, Jw} is linearly dependent, for all

pairs of orthonormal vectors v, w tangent to M.

If dim M ≥ 3, (6.8) easily leads to a contradiction by fixing w and choosing two

mutually orthogonal unit vectors v, v′, both orthogonal to w.

□

Appendix A. Negative magnetic curvature implies Anosov

The goal of this appendix is to prove the following:

PROPOSITION A.1. If secΩ
s < 0, then Φ

(g,σ)
s is Anosov.

Without loss of generality, assume s = 1 and write φt(v) = Φ(g,σ)
1 (t, v). Recall

that φt is Anosov if there exists a φt-invariant splitting TSM = E+ ⊕ E0 ⊕ E− and

constants a, b > 0 so that
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(1) E0
v is spanned by Xg,σ

v for all v ∈ SM, and

(2) ∥d(φ±t)v(ξ)∥ ≤ be−ta∥ξ∥ for all v ∈ SM, ξ ∈ E±
v , and t ≥ 0, .

Since M is compact, note that the choice of metric on SM does not matter. We will

consider SM equipped with the twisted Sasaki metric, so that the norm of ξ ∈ TvSM

is given by

(A.1) ∥ξ∥2 = ∥π∗(ξ)∥2 + ∥Kσ(ξ)∥2.

Let Q be the quotient bundle equipped with the quotient norm coming from (A.1),

and let Ψ
(g,σ)
t be the quotient flow introduced in (4.10). We recall [37, Proposition

5.1], which allows us to work on the level of the quotient bundle instead of TSM:

LEMMA A.2. The flow φt is Anosov if and only if there is a Ψ
(g,σ)
t -invariant splitting

Q = E+ ⊕ E− and two positive constants a, b so that we have ∥Ψ
(g,σ)
±t (ξ)∥ ≤ be−ta∥ξ∥

for all v ∈ SM, ξ ∈ E±
v , and t ≥ 0.

Next, we consider two associated matrix differential equations and recall some

standard comparison theory. Since secΩ
1 < 0, we have that the operators S±

v are

defined by Proposition 3.2 and Lemma 4.4. Consider the maps Y±
v (t) : v⊥ → v⊥

given by Y±
v (t)w = P−t(J±w (t)⊥), where J±w ∈ J

g,σ,n
0 (v) has initial conditions

J±w (0) = w and (D̃J±w )(0) = S±
v w. Defining Av(t) = P−t ◦ (MΩ

1 )φt(v) ◦ Pt and us-

ing (5.2), we have that the Jacobi equation Ÿ±
v (t) + Av(t) ◦ Y±

v (t) = 0 holds on

v⊥ ∼= Rn−1. Similarly, defining U±
v (t) = Ẏ±

v (t) ◦ (Y±
v (t))−1 and using (5.3), we

have that the Riccati equation U̇±
v (t) + (U±

v (t))2 + Av(t) = 0 holds on v⊥ ∼= Rn−1.

Under the assumption that secΩ
1 < 0, we can find two positive constants ã, a

so that −ã2Idv⊥ ≤ Av(t) ≤ −a2Idv⊥ for all v ∈ SM and t ∈ R, where here we

use the Loewner order described in Section 4. These constants allow us to apply

Riccati comparison results in order to get bounds on U±
v (t). The lower bound

−ã2Idv⊥ ≤ Av(t) gives |⟨U±
v (t)w, w⟩| ≤ ã∥w∥2 for all v ∈ SM, w ∈ v⊥, and

t ∈ R [25, Lemma 4.4]. Moreover, since U±
v (t) is a symmetric matrix, we deduce

(A.2) ∥U±
v (t)w∥ ≤ ã∥w∥

for all v ∈ SM, w ∈ v⊥, and t ∈ R.

Similarly, the upper bound Av(t) ≤ −a2Idv⊥ gives

(A.3) ⟨U+
v (t)w, w⟩ ≤ −a and ⟨U−

v (t)w, w⟩ ≥ a.

for all v ∈ SM, w ∈ v⊥ a unit vector, and t ∈ R [25, Lemma 4.5]. In particular,

∥Y+
v (t)w∥ ≤ e−at∥w∥ and ∥Y−

v (t)w∥ ≥ eat∥w∥,(A.4)
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for all v ∈ SM, w ∈ v⊥, and t ≥ 0 [25, Corollary 4.6]. Note that applying the

Cauchy-Schwarz inequality to (A.3) yields a ≤ ⟨U−
v (t)w, w⟩ ≤ ∥U−

v (t)w∥, which

we can rewrite as

(A.5) a∥w∥ ≤ ∥U−
v (t)w∥

for all v ∈ SM, w ∈ v⊥, and t ∈ R.

Finally, it will be useful to understand how the quotient norm interacts with

Jacobi fields. For v ∈ SM, let ξ ∈ Qv and let J(t) ∈ J
g,σ,n
0 (v) be the correspond-

ing Jacobi field given by Lemma 4.2. Similar to the geodesic case, we have the

relations π∗(Ψ
(g,σ)
t (ξ)) = J(t)⊥ and Kσ(Ψ

(g,σ)
t (ξ)) = D̃J(t) (cf. [25, Lemma 5.3]

and [33, Lemma 1.40]). Thus, ∥Ψ
(g,σ)
t (ξ)∥2 = ∥J(t)⊥∥2 + ∥D̃J(t)∥2 by (A.1). Let-

ting w = J(0) and assuming that ξ ∈ Eσ,±
v , we can use the D̃-parallel transport to

rewrite the norm in terms of Y±
v (t) as follows:

(A.6) ∥Ψ
(g,σ)
t (ξ)∥2 = ∥Y±

v (t)w∥2 + ∥Ẏ±
v (t)w∥2.

PROOF OF PROPOSITION A.1. The first step is to show that the bundles Eσ,+

and Eσ,− constructed in Lemma 4.4 give us the Ψ
(g,σ)
t -invariant splitting needed

to apply Lemma A.2. Since dim(Eσ,+
v ) = dim(Eσ,−

v ) = n − 1 for all v ∈ SM, it

suffices to show that Eσ,+
v ∩ Eσ,−

v = 0 for all v ∈ SM. Using the correspondence

described in Lemma 4.2, let J ∈ Eσ,+
v ∩ Eσ,−

v and let J(0) = w ∈ v⊥. We can

simultaneously write J(t) = Y+
v (t)w and J(t) = Y−

v (t)w, and (A.4) forces J = 0.

The next step is to show that we have the necessary exponential bounds. We

start by examining Eσ,+. Let v ∈ SM, ξ ∈ Eσ,+
v , and t ≥ 0. Combining (A.4) and

(A.6), we have ∥Ψ
(g,σ)
t (ξ)∥2 ≤ e−2at∥w∥2 + ∥Ẏ+

v (t)w∥2. Using (A.2) and (A.4), we

see that ∥Ẏ+
v (t)w∥ = ∥U+

v (t) ◦ Y+
v (t)w∥ ≤ ã∥Y+

v (t)∥ ≤ ãe−at∥w∥, and thus

(A.7) ∥Ψ
(g,σ)
t (ξ)∥ ≤

√
1 + ã2 e−at∥ξ∥.

We now examine Eσ,−. Let v ∈ SM, ξ ∈ Eσ,−
v , and t ≥ 0. Again, combin-

ing (A.4) and (A.6) yields ∥Ψ
(g,σ)
t (ξ)∥2 ≥ e2at∥w∥2 + ∥Ẏ−

v (t)w∥2. Using (A.4) and

(A.5), we see that ∥Ẏ−
v (t)w∥ = ∥U−

v (t) ◦ Y−
v (t)w∥ ≥ a∥Y−

v (t)w∥ ≥ aeat∥w∥, and

thus we have the lower bound

(A.8) ∥Ψ
(g,σ)
t (ξ)∥ ≥

√
1 + a2 eat∥w∥.

To finish, observe that ∥ξ∥2 = ∥w∥2 + ∥Ẏ−
v (0)w∥2 by (A.6). Notice that we can

use (A.2) to get ∥Ẏ−
v (0)w∥ = ∥U−

v (0)w∥ ≤ ã∥w∥, and from this we can deduce

the bound (1 + ã2)−1/2∥ξ∥ ≤ ∥w∥. Combining this with (A.8) and using that the
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inequality holds for all v ∈ SM, ξ ∈ Eσ,−
v and t ≥ 0, we have

(A.9) ∥Ψ
(g,σ)
−t (ξ)∥ ≤

√
1 + ã2

1 + a2 e−at∥ξ∥.

Setting b = max{(1 + ã2)1/2, (1 + ã2)1/2(1 + a2)−1/2}, we see that Lemma A.2,

(A.7), and (A.9) prove the result. □

Appendix B. The Mañé critical value of Kähler magnetic systems

The goal of this appendix is to mimic the proof of [18, Lemma 6.1] in order to

establish (1.12). Namely:

PROPOSITION B.1. Let (M, g) be a compact Kähler manifold with Kähler form ω,

whose holomorphic sectional curvature is constant and equal to k < 0. Then for every

constant λ ∈ R, the Mañé critical value of the Kähler magnetic system (g, λω) is given

by s0(g, λω) = |λ|/
√
−k.

Here, we will use an alternative description of the Mañé critical value (see [18,

Section 5.1]). Let (g, σ) be any magnetic system on M, s > 0, and p : M̃ → M be the

universal covering of M. If p∗σ is exact, we consider the Lagrangian Ls : TM̃ → R

given by

(B.1) Ls(v) =
1
2
(∥v∥2 + s2)− θ(v),

where ∥ · ∥ is the norm induced by p∗g and θ is any primitive of p∗σ. Writing

ΛM̃ for the space of absolutely continuous loops in M̃, we also consider the action

functional As : ΛM̃ → R given by

(B.2) As(γ) =
∫ T

0
Ls(γ̇(t))dt,

where T > 0 is the smallest period of γ. Evidently, (B.2) is independent of the

choice of primitive θ. With this in place, we have that

(B.3) s0(g, σ) =

inf{s > 0 | As(γ) ≥ 0 for all γ ∈ ΛM̃} if p∗σ is exact,

+∞ otherwise.

PROOF OF PROPOSITION B.1. As it follows from (1.11) that

(B.4) s0(−kg, λω) =
|λ|√
−k

s0(g, ω),

it suffices to prove that s0(g, ω) = 1 under the assumption that k = −1. By [31,

Theorems 7.8 and 7.9], the universal covering of M is holomorphically isometric
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to the unit ball Bn = {z ∈ Cn | ∥z∥ < 1} equipped with the Kähler metric

(B.5) g̃ = −4
n

∑
j,k=1

(
(1 − ∥z∥2)δjk + z̄jzk

(1 − ∥z∥2)2

)
dzj dz̄k.

The Kähler form ω̃ of (Bn, g̃) is given by

(B.6) ω̃ = −4i
n

∑
j,k=1

(
(1 − ∥z∥2)δjk + z̄jzk

(1 − ∥z∥2)2

)
dzj ∧ dz̄k,

and admits

(B.7) θ =
−2i

1 − ∥z∥2

n

∑
j=1

(z̄j dzj − zj dz̄j)

as a primitive. A routine computation using (B.5), (B.7), and (1.11), shows that

∥θz∥ = ∥z∥ < 1 for all z ∈ Bn, so that s0(g, ω) ≤ supz∈Bn ∥θz∥ = 1. It remains

to establish the reverse inequality. To do so, we consider the totally geodesic em-

bedding ι : B1 → Bn given by ι(ζ) = (ζ, 0, . . . , 0). From [24, Theorem 3.19], we

have

(B.8) ι∗g̃ = − 4 dζ dζ̄

(1 − |ζ|2)2 and ι∗ω̃ = − 4i dζ ∧ dζ̄

(1 − |ζ|2)2 .

Let s > 0. For each r > 0, let γr : [0, sinh r] → B1 be the circle of radius r with

respect to ι∗g̃, parametrized with constant speed s. Denoting by ℓ(γr) = 2π sinh r

and a(Dr) = 2π(cosh r − 1) the ι∗g̃-length of γr and the ι∗g̃-area of the disk

bounded by γr, respectively, we proceed to compute the action (B.2) with the aid

of θ in (B.7) and Stokes’ theorem:

As(γr) =
∫ ℓ(γr)/s

0

1
2

(
(ι∗g̃)(γ̇r(t), γ̇r(t)) + s2

)
− (ι∗θ)(γ̇r(t))dt

= sℓ(γr)− a(Dr)

= 2π(s sinh r − cosh r + 1).

(B.9)

It follows from (B.9) that if s < 1, the value As(γr) becomes negative for suffi-

ciently large r. We conclude from (B.3) that s0(g, ω) ≥ 1, as desired. □
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