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ABSTRACT. With the notions of magnetic curvature and magnetic second funda-

mental form recently introduced by Assenza and Albers–Benedetti–Maier, respec-

tively, we establish analogues of the Gauss, Ricci, and Codazzi–Mainardi compat-

ibility equations from submanifold theory in the magnetic setting.

1. Introduction

A generalization of Riemannian geometry, of much interest in differential ge-

ometry and dynamical systems, is magnetic geometry: instead of considering just a

Riemannian metric g on a smooth manifold M, we consider a pair (g, σ), where

g is a Riemannian metric and σ is a closed 2-form on M. Such a pair is called a

magnetic system on M (in particular, σ is called the magnetic form), and the dynam-

ics induced by the so-called Landau-Hall equation, that is, the non-homogeneous

differential equation

(1.1)
Dγ̇

dt
(t) = Yγ(t)(γ̇(t))

imposed on smooth curves γ : I → M, models the motion of particles moving in

M subject to the action of the magnetic field corresponding to σ. Here, D/dt is the

covariant derivative operator along γ induced by the Levi-Civita connection ∇ of

g, and Y : TM → TM is the Lorentz force operator built from the pair (g, σ), being

characterized by the relation

(1.2) gx(Yx(v), w) = σx(v, w), for all x ∈ M and v, w ∈ Tx M.

Closedness of σ is, of course, nothing more than Gauss’s law, stating that magnetic

fields are divergence-free (or in more physical terms: magnetic monopoles are not

observed in nature). This formalism goes back to Anosov and Sinai [9] and Arnold

[10] in the 1960s, but it is still a very active topic of research—see, e.g., [1,2,11,16].
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For a very long time, a missing part of the puzzle was the notion of curva-

ture for magnetic systems: as soon as σ does not identically vanishes, solutions of

(1.1) are not the actual geodesics for any linear connection on M [15, Proposition

2.1]. Therefore, there is no curvature tensor coming from a connection which may

properly control geometric (or dynamic) properties of the magnetic system (g, σ).

In the surface case, the definition of magnetic Gaussian curvature is due to G. and

M. Paternain [33]. In the higher-dimensional case, the definitions of magnetic cur-

vature operator, sectional curvature, and Ricci curvature, are due to Assenza [12];

earlier work by Gouda [24, 25] (focusing on uniform magnetic systems, that is,

those with ∇σ = 0) and Wojtkowski [35] also hinted at them. We review these

definitions in detail in Section 2.

With suitable definitions of magnetic curvature in place, the way is open for

many more classical results in Riemannian geometry to be generalized to the mag-

netic setting. For instance, magnetic versions of Synge’s theorem [12, Theorem C]

and of the Bonnet-Myers theorem [12, Lemma 14] have already been established.

Green’s theorem [26] has also been generalized [13, Theorem A], and nontrivial

magnetic systems with constant magnetic sectional curvature have been charac-

terized: they are all magnetically flat Kähler magnetic systems, with the underly-

ing metric having constant holomorphic sectional curvature, which is necessarily

negative outside of the surface case [13, Theorem D]; such Kähler systems have

been extensively investigated by Adachi [3–6, 14, 34].

In the recent work [7] of Albers–Benedetti–Maier, studying the magnetic dy-

namics of round odd-dimensional spheres S2n+1 with the magnetic form induced

by the standard contact structure of S2n+1, they are led to consider the totally mag-

netic submanifolds of S2n+1: the submanifolds N ⊆ S2n+1 with the property that

magnetic geodesics—that is, solutions of (1.1)—which start tangent to N remain

in N for sufficiently small time (that is, the magnetic analogues of totally geodesic

submanifolds in Riemannian geometry). In [7, Theorem 1.4] they present a general

criterion for a submanifold to be totally magnetic, in terms of its second funda-

mental form and Lorentz force, and they completely describe the totally magnetic

submanifolds of S2n+1 up to magnetomorphisms, which are the diffeomorphisms

preserving both the metric and magnetic form.

The criterion just mentioned was originally presented in an earlier preprint [8]

with the aid of a suitable magnetic second fundamental form, which brings us to the

goal of the present paper: using the definitions of magnetic curvature for higher-

dimensional systems, introducing a definition of magnetic shape operator, and
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extending the definition of magnetic second fundamental form given in [8], we es-

tablish magnetic analogues of the classical compatibility equations of submanifold

theory (Gauss, Ricci, and Codazzi–Mainardi).

THEOREM A. Let (g, σ) be a magnetic system on a smooth manifold M, and N ⊆ M

be a submanifold of M, equipped with its induced magnetic system. The s-magnetic cur-

vature operator of M is decomposed as

(i) (Mg,σ
s )M

(x,v)(w)> = (Mg,σ
s )N

(x,v)(w)− S(IIσ
s )(x,v)(v)(w) + (Sσ

s )(x,v)(IIx(v, w))

− 1
2

Pv⊥

(
sSY⊥x (w)(v) + sYM

x (IIx(v, w))> +
1
2

YM
x (Y⊥x (w))>

)
(ii) (Mg,σ

s )M
(x,v)(w)⊥ = (∇⊥w IIσ

s )(x,v)(v)− (∇⊥v IIσ
s )(x,v)(w)− s

2
(∇⊥v Y⊥)x(w)

− sIIx(w, YN
x (v)) +

s
2

YM
x (IIx(v, w))⊥ +

s
2

IIx(v, YN
x (w))

− 3
4

Y⊥x (Pv(YN
x (w)))− 1

4
Y⊥x (Y

N
x (w))− 1

4
YM

x (Y⊥x (w))⊥

for all (x, v) ∈ SN, w ∈ Tx N ∩ v⊥, and s > 0.

The technical definitions of the objects IIσ
s , Sσ

s , and Y⊥ appearing in Theorem

A (magnetic second fundamental form, magnetic shape operator, normal Lorentz

force) are given in Section 4. This immediately gives us a relation between the

magnetic sectional curvatures of M and N:

COROLLARY B. With the setup of Theorem A, we have that

(secg,σ
s )M

x (v, w) = (secg,σ
s )N

x (v, w)− gx
(
(IIσ

s )(x,v)(v), IIx(w, w)
)

+ gx
(
IIx(v, w), (IIσ

s )(x,v)(w)
)
+

1
4
‖Y⊥x (w)‖2

for every s > 0 and (x, (v, w)) ∈ St2(N, g).

In particular, the codimension-one case deserves some attention:

COROLLARY C. Let (g, σ) be a magnetic system on a smooth manifold M, and

N ⊆ M be a two-sided hypersurface equipped with its induced magnetic system and a

global unit normal field η ∈ X⊥(N). Then we have that

(i) (secg,σ
s )N

x (v, w) = (secg,σ
s )M

x (v, w)

+

∣∣∣∣∣gx((Sσ
s )(x,v)(ηx), v) gx(Sη(v), w)

gx((Sσ
s )(x,v)(ηx), w) gx(Sη(w), w)

∣∣∣∣∣− 1
4

θx(w)2,

(ii) (Ricg,σ
s )N(x, v) = (Ricg,σ

s )M(x, v)− (secg,σ
s )M

x (v, ηx)

+ tr(Sη)gx((Sσ
s )(x,v)(ηx), v)− gx((Sσ

s )(x,v)(ηx), Sη(v))−
1
4
‖θ|v⊥‖

2,
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where θ ∈ Ω1(N) is defined by θx(w) = gx(Y⊥x (w), ηx).

One may also consider and compute the remaining six projected quantities

(Mg,σ
s )M

(x,v)(η)
>, (Mg,σ

s )M
(x,v)(η)

⊥, (Mg,σ
s )M

(x,ξ)(w)>,

(Mg,σ
s )M

(x,ξ)(w)⊥, (Mg,σ
s )M

(x,ξ)(η)
>, and (Mg,σ

s )M
(x,ξ)(η)

⊥,
(1.3)

where v, w are tangent to N, and ξ, η are normal to N. The main reason we do not

pursue it further here is technical: the definition of magnetic curvature operator

is made as an extension of the one for tidal force operators (in the sense of [32, Def-

inition 8, p. 219]), built from the Riemann curvature tensor and appearing promi-

nently in the Jacobi equation: F(x,v) : v⊥ → v⊥, given by F(x,v)(w) = Rx(w, v)v. The

quantities (1.3) would then involve the terms RM
x (η, v)v, RM

x (w, ξ)ξ, and RM
x (η, ξ)ξ,

none of which can be directly projected using the classical compatibility equations

(3.4)–(3.6).

In Appendix A, we apply our results to compute the magnetic sectional and

Ricci curvatures of the so-called Killing magnetic systems on three-dimensional man-

ifolds, that is, those whose Lorentz force operator is given by taking cross prod-

ucts with a Killing vector field. The flows of such systems have been computed in

several ambient manifolds and received considerable attention in recent research

[17,18,22,28,31], even in the case where the underlying metric is Lorentzian instead

of Riemannian [23, 27, 36]. We conclude the discussion by deducing from the be-

havior of the magnetic curvatures that the Mañé critical value of the Killing mag-

netic systems on S3 whose magnetic vector fields correspond to left-multiplication

by some unit quaternion equals 1/2 (Proposition A.1).

Acknowledgements. I would like to thank James Marshall Reber for a very help-

ful discussion on Mañé critical values and for some feedback on a previous draft

of this text. I also appreciate the comments made by the referees, which helped

improve the exposition.

2. Magnetic curvature

We briefly review the several definitions of magnetic curvature presented by

Assenza in [12]. Let M be a smooth manifold, (g, σ) be a magnetic system on M,

and Y be its Lorentz force operator as in (1.2). We consider the unit sphere bundle

SM→ M of (M, g),

(2.1)
the vector bundle E→ SM of orthogonal hyperplanes,

whose fiber over an element (x, v) ∈ SM is E(x,v) = v⊥

(i.e., the g-orthogonal complement of the line spanned by v in Tx M), and the Stiefel

bundle St2(M, g) → M of ordered g-orthonormal 2-frames tangent to M, whose
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fiber over a point x ∈ M is the set of all pairs (v, w), with v, w ∈ Tx M both unit

and g-orthogonal.

The endomorphisms Ag,σ, Rg,σ
s : E→ E, where s > 0, are defined by

(i) Ag,σ
(x,v)(w) = −3

4
Yx(Pv(Yx(w)))− 1

4
Pv⊥(Y

2
x(w)), and

(ii) (Rg,σ
s )(x,v)(w) = s2Rx(w, v)v− s(∇wY)x(v) +

s
2

Pv⊥((∇vY)x(w)),
(2.2)

and the s-magnetic curvature operator, Mg,σ
s : E→ E, is then given by

(2.3) (Mg,σ
s )(x,v)(w) = (Rg,σ

s )(x,v)(w) + Ag,σ
(x,v)(w).

In (2.2), ∇ denotes the Levi-Civita connection of g, while R is its curvature tensor,

and the projections Pv : Tx M → Rv and Pv⊥ : Tx M → v⊥ refer to the g-orthogonal

direct-sum decomposition Tx M = (Rv)⊕ v⊥.

With this, the s-magnetic sectional curvature secg,σ
s : St2(M, g) → R and the

s-magnetic Ricci curvature Ricg,σ
s : SM→ R are defined by, respectively:

(2.4) (secg,σ
s )x(v, w) = gx

(
(Mg,σ

s )(x,v)(w), w
)

and Ricg,σ
s (x, v) = tr (Mg,σ

s )(x,v).

The dependence of the objects Rg,σ
s , Mg,σ

s , secg,σ
s , Ricg,σ

s on the energy param-

eter s > 0 reflects non-homogeneity of (1.1), which in turn implies that the dy-

namics of the magnetic flow it induces on each radius-s sphere bundle depends

heavily on the value of s. Finally, Ag,σ is simply the part of the magnetic curvature

operator which is both quadratic in Y and insensitive to s. We also note that the

magnetic sectional curvature does not survive as a function on the Grassmannian

bundle Gr2(TM)→ M, as (secg,σ
s )x(v, w) does not equal (secg,σ

s )x(w, v) in general.

3. The classical compatibility equations from submanifold theory

The content of this section is standard and it is only included for the reader’s

convenience—more details can be found in, for instance, [20, Section 1.3]. Let

(M, g) be a Riemannian manifold, and N ⊆ M be a submanifold of M. We denote

by ∇M and ∇N the Levi-Civita connections of g and of the metric on N induced

by g. For each x ∈ N we have

(3.1) the g-orthogonal direct-sum decomposition Tx M = Tx N ⊕ [Tx N]⊥,

leading to the Gauss and Weingarten formulas

(3.2) (i) ∇M
X Y = ∇N

X Y + II(X, Y) and (ii) ∇M
X ξ = −Sξ(X) +∇⊥X ξ,

for all X, Y ∈ X(N) and ξ ∈ X⊥(N). Here, II and ∇⊥ denote the second fun-

damental form and normal connection of N relative to M, respectively, while
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Sξ : TN → TN denotes the shape operator associated with ξ. The second fun-

damental form and shape operators are related via

(3.3) g(II(X, Y), ξ) = g(Sξ(X), Y).

Decomposing the curvature tensor of (M, g), we obtain the Gauss equation

(3.4) [RM(X, Y)Z]> = RN(X, Y)Z− SII(Y,Z)(X) + SII(X,Z)(Y),

the Codazzi-Mainardi equation

(3.5) [RM(X, Y)Z]⊥ = (∇⊥X II)(Y, Z)− (∇⊥Y II)(X, Z),

and the Ricci equation

(3.6) [RM(X, Y)ξ]⊥ = R⊥(X, Y)ξ + II(Sξ(X), Y)− II(X, Sξ(Y)),

for all X, Y, Z ∈ X(N) and ξ ∈ X⊥(N). Here, R⊥ is the curvature tensor of the

normal connection ∇⊥, while the covariant derivative of II is defined by the ex-

pression (∇⊥X II)(Y, Z) = ∇⊥X (II(Y, Z)) − II(∇N
X Y, Z) − II(Y,∇N

X Z) (that is, it is

computed with the van der Waerden-Bortolotti connection ∇N ⊕∇⊥).

4. The magnetic second fundamental form and shape operator

Let (g, σ) be a magnetic system on a smooth manifold M, and N ⊆ M be a

submanifold of M. We may restrict (g, σ) to a magnetic system on N, so that

(4.1)
the Lorentz force operators YM and YN are related

via YN
x (v) = [YM

x (v)]> for all x ∈ N and v ∈ Tx N;

the orthogonal projections [ · ]> and [ · ]⊥ being taken relative to (3.1). For economy

of notation, we set Y⊥x (v) = [YM
x (v)]⊥ for v ∈ Tx N. Let π : SN → N be the bundle

projection. With this setup:

DEFINITION 4.1. Let s > 0 be any positive real number.

(a) The s-magnetic second fundamental form of N relative to M is the bundle mor-

phism IIσ
s : π∗(TN)→ [TN]⊥ given by (IIσ

s )(x,v)(w) = s2IIx(v, w)− sY⊥x (w).

(b) The s-magnetic shape operator of N relative to M is the bundle morphism

Sσ
s : π∗([TN]⊥)→ TN given by (Sσ

s )(x,v)(ξ) = s2Sξ(v) + sYM
x (ξ)>.

REMARK 4.2. Our Definition 4.1(a) does not immediately agree with [8, Defini-

tion 6.9], which is IImag : TN → [TN]⊥ with IImag
x (v) = IIx(v, v) + YM

x (v)− YN
x (v)

for any v ∈ Tx N, by an overall sign and the presence of s. There are three main

reasons for this, which we justify as follows:
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(i) The sign convention adopted in [8] for the classical second fundamental form

II is the opposite of the standard one used in submanifold theory [20, 21,

29, 32], which we adopt here, flipping the sign in the right side of (3.2-i).

However, as pointed out in [8], the quantity IIx(v, v) + YM
x (v)− YN

x (v) van-

ishes for every v if and only if IIx(v, v) and YM
x (v)− YN

x (v) separately vanish

for every v, as the former is quadratic in v while the latter is linear in v.

For the same reason, this also holds for our magnetic second fundamental

form, meaning that our (IIσ
s )(x,v)(v) vanishes for all (x, v) ∈ SN if and only if

IImag
x (v) in [8] does whenever ‖v‖ = s.

(ii) The definition of magnetic curvature operator (2.2)–(2.3) makes the depen-

dence on the parameter s > 0 explicit, by restricting (x, v) to live in the

appropriate unit sphere bundle. As our goal is to relate the magnetic sec-

ond fundamental form to the magnetic curvature operators of M and N, it is

natural to carry out this same normalization here.

Points (i) and (ii), together with [8, Remark 6.10], imply that (IIσ
s )(x,v)(v) = 0 for

every (x, v) ∈ SN if and only if N is totally s-magnetic, in the sense that every

magnetic geodesic (that is, a solution of (1.1)) with the specific speed s which starts

tangent to N remains in N for small time.

(iii) The classical second fundamental form may be regarded as a collection of

linear transformations IIx(v, ·) : Tx N → [Tx N]⊥, one for each (x, v) ∈ SN,

making it a bundle morphism II : π∗(TN)→ [TN]⊥, and our definition of IIσ
s

only adds a magnetic term to that. Similarly, as the quantity Sξ(v) is linear in

both v ∈ Tx N and ξ ∈ [Tx N]⊥, it may be regarded as a linear transformation

S(v) : [Tx N]⊥ → Tx N (the g-adjoint of IIx(v, ·)), and the definition of Sσ
s is

made so that the relation

gx
(
(IIσ

s )(x,v)(w), ξ
)
= gx

(
(Sσ

s )(x,v)(ξ), w
)

always holds, mimicking (3.3). This is also in line with the general philos-

ophy that, once a magnetic field is introduced, geometric objects become

anisotropic (that is, direction-dependent), already illustrated by the anisotropic

Lorentz force and anisotropic twisted connection used in [12] and [13].

EXAMPLE 4.3. Let (g, σ) be any magnetic system on a smooth manifold M. If

N ⊆ M is any submanifold for which Y⊥ = 0, then N is totally s-magnetic for some

(and hence every) s > 0 if and only if N is totally geodesic. This is the case, in particular,

when (g, σ) = (g, λω) is a Kähler magnetic system and N is a complex submanifold of

M, as then YM = λJ and TN being J-invariant imply that Y⊥ = 0.
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5. Orthogonal decompositions and the proof of Theorem A

We continue with the setup of the previous section.

Via (2.1), we now obtain two vector bundles EM → SM and EN → SN; here

SN denotes the unit sphere bundle of N. The orthogonal projection TM → TN

clearly maps EM onto EN , cf. Figure 1. As a crucial intermediate step in establish-

ing Theorem A, we will first determine how the operators (Ag,σ)M : EM → EM

and (Ag,σ)N : EN → EN—cf. (2.2-i)—are related.

Tx N

[Tx N]⊥

v

EM
(x,v)

EN
(x,v)

x

FIGURE 1. The relation EN
(x,v) = EM

(x,v) ∩ Tx N, for (x, v) ∈ SN.

We have the obvious relations

(i) Pv⊥(z
⊥) = Pv⊥(z

⊥) = z⊥, (ii) Pv⊥(z
>) = Pv⊥(z)

>,

(iii) (Pv ◦ YM
x )|Tx N = Pv ◦ YN

x , and (iv) Pv ◦ Y⊥x = 0,
(5.1)

for any (x, v) ∈ SN and z ∈ Tx M, where Pv : Tx M → Rv and Pv⊥ : Tx M → EM
(x,v)

are as in Section 2. Note that (5.1-iv) follows from (5.1-iii).

PROPOSITION 5.1. The formulas

(i) (Ag,σ)M
(x,v)(w)> = (Ag,σ)N

(x,v)(w)− 1
4

Pv⊥(Y
M
x (Y⊥x (w)))>

(ii) (Ag,σ)M
(x,v)(w)⊥ = −3

4
Y⊥x (Pv(YN

x (w)))− 1
4

Y⊥x (Y
N
x (w))− 1

4
YM

x (Y⊥x (w))⊥

hold, for any (x, v) ∈ SN and w ∈ EN
(x,v).

PROOF. As Pv(YM
x (w)) ∈ Tx N, we may apply (4.1) and (5.1-ii) when taking

the tangent projection of formula (2.2-i) for (Ag,σ)M to obtain

(Ag,σ)M
(x,v)(w)> = −3

4
YN

x (Pv(YN
x (w)))− 1

4
Pv⊥((Y

M
x )2(w))>.
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Substituting formula (2.2-i) for (Ag,σ)N into the above and simplifying, we obtain

(i). As for (ii), we proceed similarly: taking the normal projection of formula

(2.2-i) for (Ag,σ)M, using the definition of Y⊥ and (5.1-iv) on the first term in the

right side, and (5.1-i) on the second term, we have that

(Ag,σ)M
(x,v)(w)⊥ = −3

4
Y⊥x (Pv(YN

x (w))− 1
4
(YM

x )2(w)⊥.

Further expanding (YM
x )2(w)⊥ = Y⊥x (YN

x (w)) + YM
x (Y⊥x (w))⊥, (ii) follows. �

Next, we must relate (Rg,σ
s )M : EM → EM and (Rg,σ

s )N : EN → EN . As (2.2-ii)

involves covariant derivatives of the Lorentz force operator, it is convenient to

start with an auxilliary result.

LEMMA 5.2. The formulas

(i) (∇M
v YM)x(w)> = (∇N

v YN)x(w)− SY⊥x (w)(v)− YM
x (IIx(v, w))>

(ii) (∇M
v YM)x(w)⊥ = (∇⊥v Y⊥)x(w) + IIx(v, YN

x (w))− YM
x (IIx(v, w))⊥

hold, for any x ∈ N and v, w ∈ Tx N, where the normal covariant derivative ∇⊥Y⊥ is

defined as (∇⊥X Y⊥)(Y) = ∇⊥X (Y⊥(Y))− Y⊥(∇N
X Y), for all X, Y ∈ X(N).

PROOF. Formulas (i) and (ii) are tensorial, but to establish them we first choose

vector fields V and W tangent to N, defined on some neighborhood of x, which

extend v and w. Then we project both sides of the relation

(∇M
V YM)(W) = ∇M

V (YN(W)) +∇M
V (Y⊥(W))− YM(∇N

V W)− YM(II(V, W)),

obtained via the definitions of Y⊥ and ∇MYM, onto the tangent and normal bun-

dles of N, using (3.2). From

(∇M
V YM)(W)> = ∇N

V (YN(W))− SY⊥(W)(V)− YN(∇N
V W)− YM(II(V, W))>

(∇M
V YM)(W)⊥ = II(V, YN(W)) +∇⊥V (Y⊥(W))− Y⊥(∇N

V W)− YM(II(V, W))⊥,

it suffices to recognize the definitions of ∇NYN and ∇⊥Y⊥, and evaluate all of it

at the point x to get (i) and (ii). �

With the definition of the normal covariant derivative∇⊥Y⊥ in place, we also

introduce the normal covariant derivative of the s-magnetic second fundamental

form as

(5.2) (∇⊥z IIσ
s )(x,v)(w) = s2(∇⊥z II)x(v, w)− s(∇⊥z Y⊥)x(w),

for all (x, v) ∈ SN, w ∈ EN
(x,v), and z ∈ Tx N. We may now proceed.
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PROPOSITION 5.3. The formulas

(i) (Rg,σ
s )M

(x,v)(w)> = (Rg,σ
s )N

(x,v)(w)− S(IIσ
s )(x,v)(v)(w) + (Sσ

s )(x,v)(IIx(v, w))

− s
2

Pv⊥(SY⊥x (w)(v) + YM
x (IIx(v, w))>)

(ii) (Rg,σ
s )M

(x,v)(w)⊥ = (∇⊥w IIσ
s )(x,v)(v)− (∇⊥v IIσ

s )(x,v)(w)− s
2
(∇⊥v Y⊥)x(w)

− sIIx(w, YN
x (v)) +

s
2

YM
x (IIx(v, w))⊥ +

s
2

IIx(v, YN
x (w))

hold, for any (x, v) ∈ SN, w ∈ EN
(x,v), and s > 0.

PROOF. Taking the tangent projection of both sides of (2.2-ii) for (Rg,σ
s )M and

applying the Gauss equation (3.4), formula (5.1-ii), and Lemma 5.2(i) with the

roles of v and w switched, we obtain

(Rg,σ
s )M

(x,v)(w)> = s2(RN
x (w, v)v− SIIx(v,v)(w) + SIIx(w,v)(v))

− s((∇N
w YN)x(v)− SY⊥x (v)(w)− YM

x (IIx(v, w))>)

+
s
2

Pv⊥

(
(∇N

v YN)x(w)− SY⊥x (w)(v)− YM
x (IIx(v, w))>

)
.

Simply recognizing the defintions of (Rg,σ
s )N

(x,v), IIσ
s , and Sσ

s , we obtain (i). As for

(ii), we proceed in a similar fashion: taking the normal projection of both sides

of (2.2-ii) for (Rg,σ
s )M, applying the Codazzi-Mainardi equation (3.5), and Lemma

5.2(ii) with the roles of v and w switched, it follows that

(Rg,σ
s )M

(x,v)(w)⊥ = s2((∇⊥w II)x(v, v)− (∇⊥v II)x(w, v))

− s((∇⊥w Y⊥)x(v) + IIx(w, YN
x (v))− YM

x (IIx(w, v))⊥)

+
s
2

Pv⊥

(
(∇M

v YM)x(w)
)⊥

.

Expanding (∇M
v YM)x(w) = (∇M

v YM)x(w)> + (∇M
v YM)x(w)⊥, we may use for-

mulas (5.1-i) and (5.1-ii) to conclude that Pv⊥
(
(∇M

v YM)x(w)
)⊥

= (∇M
v YM)x(w)⊥,

so that another application of Lemma 5.2(ii) yields

(Rg,σ
s )M

(x,v)(w)⊥ = s2((∇⊥w II)x(v, v)− (∇⊥v II)x(w, v))

− s((∇⊥w Y⊥)x(v) + IIx(w, YN
x (v))− YM

x (IIx(w, v))⊥)

+
s
2

(
(∇⊥v Y⊥)x(w) + IIx(v, YN

x (w))− YM
x (IIx(v, w))⊥

)
.

Recognizing two instances of (5.2) and combining the terms with YM
x (IIx(v, w))⊥,

(ii) is established. �

PROOF OF THE MAIN RESULTS. Theorem A follows from adding the expres-

sions obtained in Propositions 5.1 and 5.3. Corollary B follows immediately from

Theorem A once one notes that the expression in the second line of item (i) in
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Proposition 5.3 is always orthogonal to w. As for item (i) of Corollary C, we sub-

stitute that IIx(v, w) = gx(Sη(v), w)ηx and (IIσ
s )(x,v)(w) = gx((Sσ

s )(x,v)(ηx), w)ηx

into Corollary B. Finally, in item (ii), we let e2, . . . , en−1 be an orthonormal basis

of EN
(x,v), set w = ej in item (i) and sum over j, adding and subtracting the term

(secg,σ
s )M

x (v, ηx) required to produce (Ricg,σ
s )M(x, v). �

Appendix A. The curvature of Killing magnetic systems

We briefly explore some properties of Killing magnetic systems.

A.1. Geometry in dimension three. Let (M, g) be an oriented three-dimen-

sional Riemannian manifold, and fix its Riemannian volume form µg ∈ Ω3(M).

Given x ∈ M and v, w ∈ Tx M, we define the cross product v× w ∈ Tx M as the

unique tangent vector such that

(A.1) gx(v×w, u) = (µg)x(v, w, u), for all u ∈ Tx M.

This generalizes the standard cross product in R3, and shares all of its well-known

algebraic properties. Namely, the × operation is bilinear and skew-symmetric,

v× w is always orthogonal to both v and w, we have that v× · ∈ so(Tx M, gx) for

each v ∈ Tx M, and the relations

(A.2)

(i) v× (w× z) = gx(v, z)w− gx(v, w)z,

(ii) gx(v× w, z) = gx(v, w× z), and

(iii) gx(v1 × v2, w1 × w2) = gx(v1, w1)gx(v2, w2)− gx(v1, w2)gx(v2, w1)

hold for all possible tangent vectors.

On the level of vector fields, if X, Y, Z ∈ X(M), we have the Leibniz rule

∇X(Y×Z) = ∇XY×Z+Y×∇XZ (as a consequence of g and µg being∇-parallel),

while [X, Y × Z] = [X, Y]× Z + Y × [X, Z] holds whenever X is a Killing vector

field (for a similar reason, as then LXg = LXµg = 0). The curl of X ∈ X(M) is the

unique vector field curlgX ∈ X(M) such that

(A.3) µg(curlgX, Y, Z) = g(∇YX, Z)− g(Y,∇ZX), for all Y, Z ∈ X(M).

Once again, this generalizes the classical notion of curl in R3. Gradients are always

curl-free and curls are always divergence-free, as a consequence of the identity

d2 = 0, and for any f ∈ C∞(M) it holds that curlg( f X) = f curlgX + gradg f × X.

Finally, it follows from the Koszul formula together with (A.1) and (A.3) that

(A.4) ∇YX =
1
2
(curlgX)×Y, for all Y ∈ X(M),

whenever X is a Killing vector field.
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A.2. Killing systems. Given a vector field B ∈ X(M), we may consider the

2-form σ = µg(B, ·, ·) on M. As dσ = (divgB) µg, it follows that σ is closed if

and only if divgB = 0 (Gauss’s law redux), which in particular happens when

B = curlgX for some X ∈ X(M), or when B is a Killing vector field; we assume

from here onwards that we are in the latter situation (hence Killing systems). It

immediately follows from (1.2) and (A.1) that the Lorentz force operator of (g, σ)

is given by Yx(v) = Bx × v, for all (x, v) ∈ TM. Using (A.2-i) to deal with the last

term in (2.2-i), we may readily compute that

(A.5) Ag,σ
(x,v)(w) = −3

4
gx(v, Bx × w) Bx × v− 1

4
gx(Bx, w)Pv⊥(Bx) +

1
4
‖Bx‖2w

for all (x, v) ∈ SM and w ∈ v⊥, where Pv⊥ is as in Section 2. We may also use (A.4)

and (A.2-i) to compute that

(A.6) (∇wY)x(v) = ∇wB× v =
1
2
((curlgB)x × w)× v =

1
2
gx((curlgB)x, v)w,

directly leading to

(A.7) (Rg,σ
s )(x,v)(w) = s2Rx(w, v)v− s

2
gx((curlgB)x, v)w

from (2.2-ii), and hence to (Mg,σ
s )(x,v)(w) via (2.3). With this in place, it follows

from (A.2-i) and (2.4) that the s-magnetic sectional curvature is given by

(secg,σ
s )x(v, w) = s2secx(v, w)− s

2
gx((curlgB)x, v)

+ gx(Bx, v× w)2 +
1
4
gx(Bx, v)2

(A.8)

for all (x, (v, w)) ∈ St2(M, g). As for the s-magnetic Ricci tensor, note that w and

v× w form an orthonormal basis of v⊥ whenever (x, v) ∈ SM, so that (2.4) yields

(Ricg,σ
s )(x, v) = gx((Mg,σ

s )(x,v)(w), w) + gx((Mg,σ
s )(x,v)(v× w), v× w)

= (secg,σ
s )x(v, w) + (secg,σ

s )x(v, v× w).
(A.9)

The second term is obtained by replacing w and v × w in (A.8) with v × w and

v× (v× w) = −w, respectively, cf. (A.2-i). It follows from (A.8) and (A.9) that

(A.10) (Ricg,σ
s )(x, v) = s2Ricx(v, v)− sgx((curlgB)x, v) + ‖Bx‖2 − 1

2
gx(Bx, v)2

for all (x, v) ∈ SM.

A.3. The static case. Here, we assume that the Killing field B is hypersurface-

orthogonal, in the sense that the distribution B⊥ on M is nontrivial and integrable

(in general relativity, hypersurface-orthogonal Killing fields are often called static).

Provided that B is nowhere-vanishing,

(A.11) B⊥ is integrable if and only if curlgB is always orthogonal to B.
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Indeed, this is an easy consequence of the formula

(A.12) Xg(Y, B)−Yg(X, B) = g([X, Y], B) + g(curlgB, X×Y),

valid for all X, Y ∈ X(M), and obtained via (A.1), (A.3), and (A.4).

Let N be an integral surface of B⊥, equipped with its induced magnetic sys-

tem. We first claim that

(A.13) N is both totally geodesic and totally s-magnetic in M, for every s > 0.

Namely, as YM
x (v) = Bx × v is always tangent to N (being orthogonal to Bx), it

follows that Y⊥ = 0; by Example 4.3, it now suffices to argue that N is totally

geodesic. This, in turn, is immediate from B being a Killing vector field and N

being an integral surface of B⊥: geodesics which start tangent to N remain tangent

to N as the function t 7→ gγ(t)(γ̇(t), Bγ(t)) is constant whenever γ is a geodesic but

vanishes at t = 0.

It now follows from (A.13) that both the shape operators and the s-magnetic

shape operators of N vanish. Hence, with the aid of (A.2-iii), (A.4), and (A.11), we

use Corollary C to compute the s-magnetic Gaussian curvature Kg,σ
s : SN → R of

N as

Kg,σ
s (x, v) = (secg,σ

s )N
x (v, ‖Bx‖−1Bx × v)

= s2secM(Tx N)− s
2
gx((curlgB)x, v) + ‖Bx‖2.

(A.14)

Particularizing it further: if B has constant length b = ‖B‖ 6= 0, then B is a ge-

odesic vector field, in the sense that ∇BB = 0, and this implies via (A.4) that

curlgB = 0 (as curlgB becomes both orthogonal and proportional to B 6= 0).

Hence, B is parallel (again by (A.4)) and Kg,σ
s (x, v) = s2secM(Tx N) + b2 is inde-

pendent of v.

A.4. Special Killing systems on S3. Denoting by x = (x0, x1, x2, x3) the usual

Cartesian coordinates in R4, consider the unit sphere

S3 = {x ∈ R4 : (x0)2 + (x1)2 + (x2)2 + (x3)2 = 1}

equipped with its standard round metric g◦. Its tangent bundle is globally trivial-

ized by the orthonormal vector fields

Ei(x) = −x1∂0 + x0∂1 − x3∂2 + x2∂3

Ej(x) = −x2∂0 + x3∂1 + x0∂2 − x1∂3

Ek(x) = −x3∂0 − x2∂1 + x1∂2 + x0∂3,

(A.15)
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corresponding to quaternionic left-multiplication by i, j, and k; their Lie brackets

are easily computed to be

(A.16) [Ei, Ej] = −2Ek, [Ej, Ek] = −2Ei, and [Ek, Ei] = −2Ej.

In addition, (A.15) are Killing fields for g◦, as their flows consist of rotations in S3.

Orienting S3 so its Riemannian volume form is µg◦ = θi ∧ θj ∧ θk, where θi, θj, θk

constitute the coframe dual to (A.15), we may use (A.16) and (A.12) to obtain that

(A.17) curlgEi = 2Ei, curlgEj = 2Ej, and curlgEk = 2Ek.

Consider now the Killing magnetic system (g◦, σi) corresponding to B = Ei.

Observe that Ei is not hypersurface-orthogonal, cf. (A.11) and (A.17), and that

σi = d(θi/2) = θj ∧ θk as a consequence of (A.16). It is well-known that the

corresponding magnetic geodesics are the helices whose axes are the great cir-

cles of S3 tangent to Ei [18, Theorem 4.1]. Combining (A.17) with (A.4) to write

∇wEi = Ei(x)× w, we compute the s-magnetic sectional curvature via (A.8) to be

(A.18)
(
secg

◦ ,σi

s
)

x(v, w) =

(
s− 1

2
g◦x(Ei(x), v)

)2
+ g◦x(Ei(x), v× w)2,

for all (x, (v, w)) ∈ St2(S
3, g◦). It is clear that (A.18) is non-negative for all values of

s > 0, and it is in fact positive whenever s > 1/2. On the other hand, if s ∈ (0, 1/2],

we may choose any (x, v) ∈ SS3 such that g◦x(Ei(x), v) = 2s, and let w be any

unit vector orthogonal to both v and Ei(x)× v, so that (secg
◦ ,σi

s )x(v, w) = 0. (For

example, v = 2sEi(x) + (1 − 4s2)1/2Ej(x) and w = (1 − 4s2)1/2Ei(x) − 2sEj(x)

work.)

In a similar manner, using (A.17) and (A.10), it follows that each s-magnetic

Ricci curvature is given by

(A.19) (Ricg
◦ ,σi

s )(x, v) = 2s2 − 2sg◦x(Ei(x), v) + 1− 1
2
g◦x(Ei(x), v)2,

for all (x, v) ∈ SS3. This time, we have that (A.19) is positive for all values

s ∈ (0, ∞)r {1/2}, while (Ricg
◦ ,σ

1/2 )(x, Ei(x)) = 0. See Figure 2 below. This was

predicted by item (ii) of [12, Proposition 7], which states that if (g, σ) is any mag-

netic system on a compact manifold M, and σ is nowhere-vanishing, there is s0 > 0

such that Ricg,σ
s > 0 for all s ∈ (0, s0).
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FIGURE 2. The graph of the function f : (0, ∞) → R given by

f (s) = (Ricg
◦ ,σi

s )(x, Ei(x)) = 2s2 − 2s + 1/2 = 2(s − 1/2)2, sat-

isfying the optimal bound Ricg
◦ ,σi

s ≥ f (s) for every s > 0.

The value s0 = 1/2 marks a distinct change in the geometric behavior of the

magnetic system (g◦, σi). This makes our last result not surprising:

PROPOSITION A.1. The Mañé critical value is c(g◦, σi) = 1/2.

Recall from Section 2 that the dynamics of the magnetic flow on the s-sphere

bundle depends on the value of s > 0. The Mañé critical value c(g, σ)—defined

for arbitrary magnetic systems (g, σ) on any manifold M—marks where the dy-

namical behavior of the magnetic flow changes. To justify Proposition A.1, we use

two distinct characterizations of c(g, σ). The first one is that

(A.20) c(g, σ) =


inf

p∗σ=dθ
sup
x∈M̃
‖θx‖, if σ is weakly exact,

+∞, otherwise,

where p : M̃ → M is the universal covering of M, cf. [30, Section 2]. The second

one, in the weakly exact case, is that

(A.21) c(g, σ) = inf{s > 0 : As(γ) ≥ 0 for all γ ∈ ΛM̃},

where ΛM̃ is the Hilbert manifold of absolutely continuous loops in M̃, and the

action functional As : ΛM̃→ R is defined as

(A.22) As(γ) =
∫ T

0

1
2
(‖γ̇(t)‖2 + s2)− θγ(t)(γ̇(t))dt,

with T > 0 being the least period of γ, the norm computed via p∗g, and θ being

any primitive of p∗σ; see [19, Section 5.1].
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PROOF OF PROPOSITION A.1. As σi = d(θi/2) and ‖θi/2‖ = 1/2, it follows

from (A.20) that c(g◦, σi) ≤ 1/2. As for the reverse inequality, let s ∈ (0, 1/2)

and consider the curve γ : [0, 2π/s] → S3 given by γ(t) = (cos(st), sin(st), 0, 0).

Then θi
γ(t)(γ̇(t)) = s implies—via (A.22)—that As(γ) = (2s− 1)π < 0, due to our

choice of s; by (A.21), this shows that c(g◦, σi) ≥ 1/2. �
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