The submanifold compatibility equations in magnetic geometry

Ivo Terek

ABSTRACT. With the notions of magnetic curvature and magnetic second funda-
mental form recently introduced by Assenza and Albers—-Benedetti-Maier, respec-
tively, we establish analogues of the Gauss, Ricci, and Codazzi-Mainardi compat-

ibility equations from submanifold theory in the magnetic setting.

1. Introduction

A generalization of Riemannian geometry, of much interest in differential ge-
ometry and dynamical systems, is magnetic geometry: instead of considering just a
Riemannian metric g on a smooth manifold M, we consider a pair (g, o), where
g is a Riemannian metric and ¢ is a closed 2-form on M. Such a pair is called a
magnetic system on M (in particular, o is called the magnetic form), and the dynam-
ics induced by the so-called Landau-Hall equation, that is, the non-homogeneous
differential equation
210) = Y (4(1)

imposed on smooth curves y: I — M, models the motion of particles moving in

1.1)

M subject to the action of the magnetic field corresponding to o. Here, D/dt is the
covariant derivative operator along 7 induced by the Levi-Civita connection V of
g, and Y: TM — TM is the Lorentz force operator built from the pair (g, o), being
characterized by the relation

(1.2) gx(Yx(v),w) = ox(v,w), forallx € Mand v,w € T, M.

Closedness of ¢ is, of course, nothing more than Gauss'’s law, stating that magnetic
fields are divergence-free (or in more physical terms: magnetic monopoles are not
observed in nature). This formalism goes back to Anosov and Sinai [9] and Arnold

[10] in the 1960s, but it is still a very active topic of research—see, e.g., [1})2,(11}16].
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For a very long time, a missing part of the puzzle was the notion of curva-
ture for magnetic systems: as soon as o does not identically vanishes, solutions of
are not the actual geodesics for any linear connection on M [15, Proposition
2.1]. Therefore, there is no curvature tensor coming from a connection which may
properly control geometric (or dynamic) properties of the magnetic system (g, o).
In the surface case, the definition of magnetic Gaussian curvature is due to G. and
M. Paternain [33]. In the higher-dimensional case, the definitions of magnetic cur-
vature operator, sectional curvature, and Ricci curvature, are due to Assenza [12];
earlier work by Gouda [24,25] (focusing on uniform magnetic systems, that is,
those with Vo = 0) and Wojtkowski [35] also hinted at them. We review these
definitions in detail in Section[2]

With suitable definitions of magnetic curvature in place, the way is open for
many more classical results in Riemannian geometry to be generalized to the mag-
netic setting. For instance, magnetic versions of Synge’s theorem [12, Theorem C]
and of the Bonnet-Myers theorem [12, Lemma 14] have already been established.
Green’s theorem [26] has also been generalized [13, Theorem A], and nontrivial
magnetic systems with constant magnetic sectional curvature have been charac-
terized: they are all magnetically flat Kdhler magnetic systems, with the underly-
ing metric having constant holomorphic sectional curvature, which is necessarily
negative outside of the surface case [13, Theorem D]; such Kdhler systems have
been extensively investigated by Adachi [3-6,14,34].

In the recent work [7] of Albers—Benedetti-Maier, studying the magnetic dy-
namics of round odd-dimensional spheres $>"*! with the magnetic form induced
by the standard contact structure of $***1, they are led to consider the totally mag-
netic submanifolds of $*"*1: the submanifolds N C S$?**! with the property that
magnetic geodesics—that is, solutions of (L.I)—which start tangent to N remain
in N for sufficiently small time (that is, the magnetic analogues of totally geodesic
submanifolds in Riemannian geometry). In [7, Theorem 1.4] they present a general
criterion for a submanifold to be totally magnetic, in terms of its second funda-
mental form and Lorentz force, and they completely describe the totally magnetic
submanifolds of $?"*1 up to magnetomorphisms, which are the diffeomorphisms
preserving both the metric and magnetic form.

The criterion just mentioned was originally presented in an earlier preprint [8]
with the aid of a suitable magnetic second fundamental form, which brings us to the
goal of the present paper: using the definitions of magnetic curvature for higher-

dimensional systems, introducing a definition of magnetic shape operator, and
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extending the definition of magnetic second fundamental form given in [8], we es-
tablish magnetic analogues of the classical compatibility equations of submanifold

theory (Gauss, Ricci, and Codazzi-Mainardi).

THEOREM A. Let (g, o) be a magnetic system on a smooth manifold M, and N C M
be a submanifold of M, equipped with its induced magnetic system. The s-magnetic cur-
vature operator of M is decomposed as

(i) (MEYY (@) = (MBI, () — Sque) (o) () + (52) ) (a0, 0))

1 1
— 3P (5541 (0 + XML 0, 20) T+ Y2 (¥ )T

(i) (MEVL () = (VTIE) 1) (2) = (VTIE) 100 (1) — 5 (VY1) ()

sl (w, YN (0)) + %YXM (I (0, w))* + %IIX(D, YN (w))
3 21 1
4 4 4
forall (x,v) € SN, w € TyN Nv*,ands > 0.

i (Po(YY () = 5 Yx (Y3 () = Y3 (Yx (w)*

The technical definitions of the objects 117, S7, and Y+ appearing in Theorem
(magnetic second fundamental form, magnetic shape operator, normal Lorentz
force) are given in Section |4} This immediately gives us a relation between the

magnetic sectional curvatures of M and N:
COROLLARY B. With the setup of Theorem [A} we have that
(sec¥” 1 (0, w) = (sect” )N (0, w) — g ((1IF) (1 (0), (w0, )
+ eI (0,0), (1) (0 () + 5 ¥ (@)
for every s > 0and (x, (v,w)) € St(N, g).
In particular, the codimension-one case deserves some attention:

COROLLARY C. Let (g, o) be a magnetic system on a smooth manifold M, and
N C M be a two-sided hypersurface equipped with its induced magnetic system and a
global unit normal field y € X*(N). Then we have that

(i) (sec¥”) (v,w) = (sect”)! (v, w)

(ii) (Ric®”)N (x,0) = (Ric?”)(x,0) — (sec¥”) ¥ (v, 7x)

+tr(Sy)gx ((85) (x,0) (12), 0) = &8x((55) (x,0) (112), Sy (v)) — EIIGIULIIZ/
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where 8 € QY(N) is defined by 0, (w) = gx (Y (W), 7).

One may also consider and compute the remaining six projected quantities

(ME) ()T (MEO)E (D, (MET) e ()T,

(13) (x) (x0) (e
(ME) o (@), (ME) ()", and (ME)Y - ()",

where v, w are tangent to N, and ¢, # are normal to N. The main reason we do not
pursue it further here is technical: the definition of magnetic curvature operator
is made as an extension of the one for tidal force operators (in the sense of [32} Def-
inition 8, p. 219]), built from the Riemann curvature tensor and appearing promi-
nently in the Jacobi equation: F, ) : vt — v, givenby F(y)(w) = Ry(w, v)v. The
quantities would then involve the terms R (17, v)v, RM(w, &)¢, and RM (5, &)¢,
none of which can be directly projected using the classical compatibility equations
GA-G.9.

In Appendix [A] we apply our results to compute the magnetic sectional and
Ricci curvatures of the so-called Killing magnetic systems on three-dimensional man-
ifolds, that is, those whose Lorentz force operator is given by taking cross prod-
ucts with a Killing vector field. The flows of such systems have been computed in
several ambient manifolds and received considerable attention in recent research
[17,18,22/28)31], even in the case where the underlying metric is Lorentzian instead
of Riemannian [23}27,]36]. We conclude the discussion by deducing from the be-
havior of the magnetic curvatures that the Mafié critical value of the Killing mag-
netic systems on S whose magnetic vector fields correspond to left-multiplication

by some unit quaternion equals 1/2 (Proposition [A.T).

Acknowledgements. I would like to thank James Marshall Reber for a very help-
ful discussion on Mafié critical values and for some feedback on a previous draft
of this text. I also appreciate the comments made by the referees, which helped

improve the exposition.

2. Magnetic curvature

We briefly review the several definitions of magnetic curvature presented by
Assenza in [12]. Let M be a smooth manifold, (g, o) be a magnetic system on M,
and Y be its Lorentz force operator as in (1.2). We consider the unit sphere bundle
SM — Mof (M, g),

the vector bundle E — SM of orthogonal hyperplanes,

(2.1) B

whose fiber over an element (x,v) € SMis E(, ;) = v

(i.e., the g-orthogonal complement of the line spanned by v in T, M), and the Stiefel
bundle St;(M,g) — M of ordered g-orthonormal 2-frames tangent to M, whose
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fiber over a point x € M is the set of all pairs (v, w), with v,w € TyM both unit
and g-orthogonal.
The endomorphisms A&7, R®7: E — E, where s > 0, are defined by

(1) A% (w) = — S ¥e(Po(Ya(w))) ~ 1Pt (Y2(w)), and

2.2) )
(if) (RE) (1,0) (W) = 8*Ry(w,0)v — 5(ViyY)x(0) + Lot (VoY)x(w)),

and the s-magnetic curvature operator, M : E — E, is then given by

(2.3) (Msg,g)(x,v) (w) = (REIU)(x,v)(w) + A% (w).

(x0)

In , V denotes the Levi-Civita connection of g, while R is its curvature tensor,
and the projections Py: TyM — Rovand P,. : TyM — v refer to the g-orthogonal
direct-sum decomposition TyM = (Rv) & v.

With this, the s-magnetic sectional curvature sec®”: St;(M,g) — R and the
s-magnetic Ricci curvature Ric®”: SM — R are defined by, respectively:

(24) (sec®”)x(0,w) = gy ((ME) (1) (), @) and Rict”(x,0) = tr (ME) 1.

The dependence of the objects R&”, M%7, sec®’, Ric®” on the energy param-
eter s > 0 reflects non-homogeneity of (1.I), which in turn implies that the dy-
namics of the magnetic flow it induces on each radius-s sphere bundle depends
heavily on the value of s. Finally, A& is simply the part of the magnetic curvature
operator which is both quadratic in Y and insensitive to s. We also note that the
magnetic sectional curvature does not survive as a function on the Grassmannian

bundle Gry(TM) — M, as (secf” ) (v, w) does not equal (sec”)(w, v) in general.

3. The classical compatibility equations from submanifold theory

The content of this section is standard and it is only included for the reader’s
convenience—more details can be found in, for instance, [20, Section 1.3]. Let
(M, g) be a Riemannian manifold, and N C M be a submanifold of M. We denote
by VM and V¥ the Levi-Civita connections of g and of the metric on N induced
by g. For each x € N we have

(3.1) the g-orthogonal direct-sum decomposition TxM = TyN & [TxN 1+,
leading to the Gauss and Weingarten formulas
B2 O VMY=VIY+I(X,Y) and (ii) V¥E = —S:(X) + V¢,

for all X,Y € X(N) and ¢ € X1 (N). Here, Il and V= denote the second fun-

damental form and normal connection of N relative to M, respectively, while
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S¢: TN — TN denotes the shape operator associated with . The second fun-

damental form and shape operators are related via
(33) g(Il(X,Y),¢) = g(5¢(X),Y).
Decomposing the curvature tensor of (M, g), we obtain the Gauss equation
(3.4) [RM(X,Y)Z]" = RN(X,Y)Z = Sy, z)(X) + Sux,z) (Y),
the Codazzi-Mainardi equation
(35) RM(X,Y)Z)* = (VEI) (Y, Z) - (V$I)(X, 2),
and the Ricci equation
(3.6) [RM(X,Y)Et = RE(X, Y)E +10(Se(X),Y) — 1I(X, S¢(Y)),

forall X,Y,Z € X(N) and ¢ € X+ (N). Here, R* is the curvature tensor of the
normal connection V+, while the covariant derivative of II is defined by the ex-
pression (V£II)(Y,Z) = V¢ (II(Y,2)) — I(VYY,Z) — 1I(Y, VY Z) (that is, it is
computed with the van der Waerden-Bortolotti connection VN @ V).

4. The magnetic second fundamental form and shape operator

Let (g, o) be a magnetic system on a smooth manifold M, and N C M be a
submanifold of M. We may restrict (g, o) to a magnetic system on N, so that

the Lorentz force operators YM and YV are related

4.1
@1 via YN (v) = [YM(v)]T forall x € Nand v € TyN;

the orthogonal projections [ -] " and [ - ]* being taken relative to (3.1). For economy
of notation, we set Y; (v) = [YM(v)]* for v € TyN. Let r: SN — N be the bundle
projection. With this setup:

DEFINITION 4.1. Let s > 0 be any positive real number.

(a) The s-magnetic second fundamental form of N relative to M is the bundle mor-
phism 11 : 77 (TN) — [TN]* given by (1Y) 1 ) (w) = s*Tlx (v, w) — sY3 (w).

(b) The s-magnetic shape operator of N relative to M is the bundle morphism
S7: *([TN]*+) — TN given by (89) (x,0) () = s2S¢(v) +sYM(@&E) T,

REMARK 4.2. Our Definition[4.1(a) does not immediately agree with [8, Defini-
tion 6.9], which is IT™8: TN — [TN]+ with I8 (v) = I, (v, v) + Y (0) — YN (v)
for any v € TxN, by an overall sign and the presence of s. There are three main

reasons for this, which we justify as follows:
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(i) The sign convention adopted in [8] for the classical second fundamental form
I is the opposite of the standard one used in submanifold theory [20, 21,
29,32]], which we adopt here, flipping the sign in the right side of (3.2}).
However, as pointed out in [8], the quantity II,(v,v) + YM(v) — YN (v) van-
ishes for every v if and only if I, (v, v) and Y (v) — YN (v) separately vanish
for every v, as the former is quadratic in v while the latter is linear in v.
For the same reason, this also holds for our magnetic second fundamental
form, meaning that our (IIY) , ;) (v) vanishes for all (x,v) € SN if and only if
1T, *8(v) in [8] does whenever ||| = s.

(ii) The definition of magnetic curvature operator (2.2)-(2.3) makes the depen-
dence on the parameter s > 0 explicit, by restricting (x,v) to live in the
appropriate unit sphere bundle. As our goal is to relate the magnetic sec-
ond fundamental form to the magnetic curvature operators of M and N, it is

natural to carry out this same normalization here.

Points (i) and (ii), together with [8, Remark 6.10], imply that (IIJ) () (v) = 0 for
every (x,v) € SN if and only if N is totally s-magnetic, in the sense that every
magnetic geodesic (that is, a solution of (I.I)) with the specific speed s which starts

tangent to N remains in N for small time.

(iii) The classical second fundamental form may be regarded as a collection of
linear transformations Il (v, -): TxN — [TyN]+, one for each (x,v) € SN,
making it a bundle morphism II: 77*(TN) — [TN]*, and our definition of 11
only adds a magnetic term to that. Similarly, as the quantity Sz(v) is linear in
bothv € TyN and & € [T«N H, it may be regarded as a linear transformation
S(v): [TyN]* — TyN (the g-adjoint of I (v, -)), and the definition of S7 is

made so that the relation

gx ((H(sr)(x,v) (w)/ (:) = & ((SSU)(x,v) (‘:)/ w)

always holds, mimicking (3.3). This is also in line with the general philos-
ophy that, once a magnetic field is introduced, geometric objects become
anisotropic (that is, direction-dependent), already illustrated by the anisotropic
Lorentz force and anisotropic twisted connection used in [12] and [13].

EXAMPLE 4.3. Let (g,0) be any magnetic system on a smooth manifold M. If
N C M is any submanifold for which Y+ = 0, then N is totally s-magnetic for some
(and hence every) s > 0 if and only if N is totally geodesic. This is the case, in particular,
when (g,0) = (g, Aw) is a Kihler magnetic system and N is a complex submanifold of
M, as then YM = AJ and TN being J-invariant imply that Y+ = 0.
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5. Orthogonal decompositions and the proof of Theorem [A]

We continue with the setup of the previous section.

Via , we now obtain two vector bundles EM — SM and EN — SN; here
SN denotes the unit sphere bundle of N. The orthogonal projection TM — TN
clearly maps EM onto EV, cf. Figure As a crucial intermediate step in establish-
ing Theorem @ we will first determine how the operators (A&7)M: EM — M
and (A87)N: EN — EN_f. i)—are related.

TN
N
E(x0) TN

(9 |
N
\ Efio)

= E?ﬁv) N TN, for (x,v) € SN.

X

FIGURE 1. The relation Eé\’]w)

We have the obvious relations
) ()P, (zt) =P, (zt) =z, (i) P,.(z') =P, (2),
‘ (iii) (Py o YY),y =Py oYY, and (iv)P,o Yy =0,

for any (x,v) € SN and z € TxM, where P,: TyM — Rvand P, : TeM — E?ﬁv)
are as in Section[2] Note that (5.1}iv) follows from (5.T}ii).

PROPOSITION 5.1. The formulas
1

(1) (A5 ()T = (A8, () — 7P (MY ()T
(i) (A5 ()" = Y (o (Y (@))) — 3 Y3 (Y () — 3 Y (Y3 ()
hold, for any (x,v) € SN and w € Eé‘;v).

PROOF. As P,(YM(w)) € TyN, we may apply (1) and (5.1}ii) when taking
the tangent projection of formula i) for (A&7 )M to obtain
3 1

(A8 () = =S (P (Y (@))) — 4P (V)2 ()) .



THE SUBMANIFOLD COMPATIBILITY EQUATIONS IN MAGNETIC GEOMETRY 9

Substituting formula (2.2H) for (A&7)N into the above and simplifying, we obtain
(i). As for (ii), we proceed similarly: taking the normal projection of formula
[2:2H) for (A87)M, using the definition of Y+ and iv) on the first term in the
right side, and (5.1}) on the second term, we have that

(A4S ()" = 2P (YY () — (V)2 (w0)

Further expanding (YM)2(w)* = Y3 (YN (w)) + YM (YL (w)) 4, (ii) follows. O
Next, we must relate (R&7)M: EM — EM and (R&7)N: EN — EN. As (2.2}i)

involves covariant derivatives of the Lorentz force operator, it is convenient to

start with an auxilliary result.

LEMMA 5.2. The formulas
() (VEYM)2(@) T = (VYY)a(w) = Sy 4 (0) = Y2 (Lo, )T
(i) (Vo'YM)x(w) " = (Vo Y5)x(w) + e (v, YY (w)) — Y3 (I (0, w) ) -
hold, for any x € N and v,w € TxN, where the normal covariant derivative ViYL s

defined as (VY1) (Y) = Vg (YH(Y)) = YH(VYY), forall X, Y € X(N).

PROOF. Formulas (i) and (ii) are tensorial, but to establish them we first choose
vector fields V and W tangent to N, defined on some neighborhood of x, which

extend v and w. Then we project both sides of the relation
(THYM)(W) = THEN (W) + TR (W) — YM (VW) — YM (L, w),

obtained via the definitions of Y- and VMYM, onto the tangent and normal bun-
dles of N, using (3.2). From
(VY)Y (W) T = V(YN (W)) = Sy ) (V) = YN (VW) = YM(II(V, W) T
(VYY) (W)= =TV, YN(W)) + Vi (YH (W) = Y- (VW) = YM(II(V, W)+,
it suffices to recognize the definitions of VNYN and V+Y*, and evaluate all of it

at the point x to get (i) and (ii). O

With the definition of the normal covariant derivative VY= in place, we also
introduce the normal covariant derivative of the s-magnetic second fundamental

form as
(5.2) (V) (1,0 (w) = (Vi )y (0,w0) — (V2 YH)x(w),

forall (x,v) € SN, w € EN ., and z € TyN. We may now proceed.

(x0)
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PROPOSITION 5.3. The formulas
(1) (RET) {0y (@) " = (RE)R o) (@) = Suey (o) (W) + (8F) (2,0) (M (0, )

— 2Py1 (Syt () (0) + Y (Ii(o,0))T)
(i) (RE )M, (@) = (VHTIZ) (1) (2) = (VTIE) (1 (0) — 2 (VEY L) ()

(x0)

— sl (w, YN (v)) + %Yy(llx(v,w))J‘ + ;IIx(U, YN (w))

hold, for any (x,v) € SN, w € E%‘J’c o) and s > 0.

PROOF. Taking the tangent projection of both sides of (2.2}ii) for (RE7)M and

applying the Gauss equation (34), formula (5.1}ii), and Lemma [5.2(i) with the
roles of v and w switched, we obtain

(RETM (@) = 2(RY (1,000 — Sy (00)(®) + St (0 (0))
— S((VNYN)2(0) — Syt o (@) — YN (I (0,0))T)

s
+ 5P ((VTI}\]YN)X'(ZU) — Syt () = YxM(Hx(U/w))T) ‘
Simply recognizing the defintions of (ng’g)a]c 0’ II7, and SY, we obtain (i). As for

(i), we proceed in a similar fashion: taking the normal projection of both sides
of 2:2}ii) for (R¥”)M, applying the Codazzi-Mainardi equation (3.5), and Lemma
5.2{(ii) with the roles of v and w switched, it follows that
(RE) (5o (@) = (Vg2 (0,0) = (Vo I)x(w,0))
= s((V Y )x(0) + i (0, Y7 () = Y7 (e (w, 0)) )

2P ((VIYM)(w)

Expanding (VMYM),(w) = (VMYM),(w)" + (VMYM),(w)*, we may use for-
mulas i) and ii) to conclude that P, ((VMYM),(w)) L= (VMYM) ()L,
so that another application of Lemmal5.2((ii) yields
(RE7) {50y () = 52 (V)2 (v,0) — (VyM)x(w,v))
=s((VY)x(0) + (0, Y7 (0) = Y (e (w, 0)) )

_l’_

+ 2 (VY H)x(w) + (0, YY () = Y¥ (1L, w)) ).

Recognizing two instances of (5.2) and combining the terms with YM (1T, (v, w)) ",
(i) is established. U

PROOF OF THE MAIN RESULTS. Theorem |A| follows from adding the expres-
sions obtained in Propositions[5.1]and [5.3] Corollary [Bfollows immediately from
Theorem [A| once one notes that the expression in the second line of item (i) in
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Proposition [5.3]is always orthogonal to w. As for item (i) of Corollary [C, we sub-
stitute that Il (o, w) = g«(Sy(v), w)nx and (II) (x,0) (W) = &x((S7) (x,0) (1), w)11x
into Corollary [B| Finally, in item (ii), we let ey, ..., e,_1 be an orthonormal basis
of Eé’c o) Setw = ¢ in item (i) and sum over j, adding and subtracting the term

(sec®”)M (v, 17y ) required to produce (Ric§” )M (x,v). O

Appendix A. The curvature of Killing magnetic systems

We briefly explore some properties of Killing magnetic systems.

A.1. Geometry in dimension three. Let (M, g) be an oriented three-dimen-
sional Riemannian manifold, and fix its Riemannian volume form ug € Q3(M).
Given x € M and v,w € TyM, we define the cross product v x w € TyM as the

unique tangent vector such that
(A1) gx(vxw,u) = (ug)x(v,w,u), forallu € TyM.

This generalizes the standard cross product in IR?, and shares all of its well-known
algebraic properties. Namely, the X operation is bilinear and skew-symmetric,
v X w is always orthogonal to both v and w, we have that v x - € so(TxM, gx) for
each v € Ty M, and the relations
() v x (wxz)=g(v,2)w—gx(v,w)z,

(A2) (i) ge(vxw,z)=gy(v,wxz),and

(iil) gx(01 X 02, w1 X W2) = gx (01, W1 )8x (v2, W2) — gx (01, W2)gx (02, W)
hold for all possible tangent vectors.

On the level of vector fields, if X,Y,Z € X(M), we have the Leibniz rule
Vx(YxZ)=VxYxZ+Y x VxZ (as a consequence of gand ji; being V-parallel),
while [X,Y x Z] = [X,Y] x Z+Y X [X, Z] holds whenever X is a Killing vector
field (for a similar reason, as then Lxg = Lxpig = 0). The curl of X € X(M) is the
unique vector field curly X € X(M) such that

(A3)  pglcurlgX,Y,Z) =g(VyX,Z) —g(Y,VzX), forallY,Z e X(M).

Once again, this generalizes the classical notion of curl in R3. Gradients are always
curl-free and curls are always divergence-free, as a consequence of the identity
d? = 0, and for any f € C®(M) it holds that curlg(fX) = f curl, X + grad,f x X.
Finally, it follows from the Koszul formula together with and that

1
(A.4) VyX = 3 (curlgX) x Y, forallY € X(M),

whenever X is a Killing vector field.
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A.2. Killing systems. Given a vector field B € X(M), we may consider the
2-form ¢ = pg(B,-,-) on M. As do = (divgB) jig, it follows that ¢ is closed if
and only if divgB = 0 (Gauss’s law redux), which in particular happens when
B = curlgX for some X € X(M), or when B is a Killing vector field; we assume
from here onwards that we are in the latter situation (hence Killing systems). It
immediately follows from and that the Lorentz force operator of (g, o)
is given by Y,(v) = By X v, forall (x,v) € TM. Using (A.2}) to deal with the last
term in (2.2}i), we may readily compute that

3 1 1
(A5) AP, (w) = —ex(v, By X @) By X 0 = 2gx(By, )P, (Bx) + 4[| Bx|*w

(x,0

forall (x,v) € SMand w € v*, where P, isasin Section We may also use (A.4)
and (A.2}i) to compute that

1 1
(A6) (VuY)x(v) =VyBxov= E((curlgB)x X W) X0 = ng((curlgB)x, v)w,
directly leading to
s
(A7) (ng,g)(x,v) (w) = ssz(w, v)v — ng((curlgB)x,v)w

from 1 i), and hence to ( §’U)(x,v)(w) via (2.3). With this in place, it follows
from (A.2}) and (2.4) that the s-magnetic sectional curvature is given by

(secg’g)x(v, w) = szsecx(v, w) — %gx((curlgB)x, v)
(A.8) .
+ gx(By, v X w)z + ng(Bx,U)2

for all (x, (v,w)) € Stp(M, g). As for the s-magnetic Ricci tensor, note that w and
v x w form an orthonormal basis of v~ whenever (x,v) € SM, so that yields
(A9) (Ric$”) (x,0) = gx((ME7) (1) (w), ) + g2 ((ME?) () (v X W), 0 x w)

' = (sec®”)x(v,w) + (sec¥”)x (v, v X w).

The second term is obtained by replacing w and v x w in (A.8) with v x w and
v X (v X w) = —w, respectively, cf. (A.2H). It follows from (A.8) and (A.9) that

1
(A10) (Ric®")(x,0) = szRicx(v,v) — sgx((curlgB)y, v) + |Bx||* — ng(Bx,v)2
forall (x,v) € SM.

A.3. The static case. Here, we assume that the Killing field B is hypersurface-
orthogonal, in the sense that the distribution B+ on M is nontrivial and integrable
(in general relativity, hypersurface-orthogonal Killing fields are often called static).

Provided that B is nowhere-vanishing,

(A11) B is integrable if and only if curlg B is always orthogonal to B.
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Indeed, this is an easy consequence of the formula
(A.12) Xg(Y,B) — Yg(X,B) = g([X,Y],B) + g(curlgB, X x Y),

valid for all X,Y € X(M), and obtained via (A.T), (A.3), and (A.4).
Let N be an integral surface of B, equipped with its induced magnetic sys-

tem. We first claim that
(A.13) Nisboth totally geodesic and totally s-magnetic in M, for every s > 0.

Namely, as YM(v) = B, x v is always tangent to N (being orthogonal to By), it
follows that Y- = 0; by Example it now sulffices to argue that N is totally
geodesic. This, in turn, is immediate from B being a Killing vector field and N
being an integral surface of B*: geodesics which start tangent to N remain tangent
to N as the function t — g, ;) (7(¢), B,,(4)) is constant whenever 1 is a geodesic but
vanishes at t = 0.

It now follows from that both the shape operators and the s-magnetic
shape operators of N vanish. Hence, with the aid of (A.2}ii), (A.4), and (A.11), we
use Corollary |C|to compute the s-magnetic Gaussian curvature K&’ : SN — R of
N as

KE (x,0) = (sect )Y (0, | Be| By x 0)

(A.14) s
= szsecM(TxN) — ng((curlgB)x,v) + ||Bx||2.

Particularizing it further: if B has constant length b = ||B|| # 0, then B is a ge-
odesic vector field, in the sense that VgB = 0, and this implies via that
curlgB = 0 (as curlgB becomes both orthogonal and proportional to B # 0).
Hence, B is parallel (again by (A4)) and K7 (x,v) = s?sec™(T,N) + b? is inde-
pendent of v.

A.4. Special Killing systems on S3. Denoting by x = (x°, x!, x2, x3) the usual

Cartesian coordinates in IR*, consider the unit sphere
$3 = {x e R*: (x0)? + (x1)? + (x®)? + ()% = 1}
equipped with its standard round metric g°. Its tangent bundle is globally trivial-
ized by the orthonormal vector fields
Ei(x) = —x'9y + x°91 — x39, + x%03
(A.15) Ej(x) = —xzao + X381 + x082 — x183
Ec(x) = —x380 — x281 + xlaz + x083,
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corresponding to quaternionic left-multiplication by i, j, and k; their Lie brackets

are easily computed to be
(A.16) [Ei, E]] = —ZEk, [Ej, Ek] = —2Ei, and [Ek, Ei] = —ZE]'.

In addition, (A-15) are Killing fields for g°, as their flows consist of rotations in S3.
Orienting G3 50 its Riemannian volume form is Hgo = 0t A O A 0¥, where 6, 01, %
constitute the coframe dual to (A.15), we may use (A.16) and (A.12) to obtain that

(A.17) curlgE; = 2E;, curlgE; = 2E;, and curlgEy = 2Ey.

Consider now the Killing magnetic system (g°,¢') corresponding to B = E;.
Observe that E; is not hypersurface-orthogonal, cf. and (A.17), and that
ol = d(6/2) = 6 A6 as a consequence of (A.16). It is well-known that the
corresponding magnetic geodesics are the helices whose axes are the great cir-
cles of §° tangent to E; [18, Theorem 4.1]. Combining with to write
VwE;i = Ei(x) X w, we compute the s-magnetic sectional curvature via to be

. 2
(A.18) (sect ) (0,w) = ( - ;g;xa(x),v)) + g3 (Ei(x), 0 x w)?,

forall (x, (v,w)) € Stp(S3,g°). Itis clear that is non-negative for all values of
s > 0, and it is in fact positive whenever s > 1/2. On the other hand, if s € (0,1/2],
we may choose any (x,v) € SS® such that g3(E;j(x),v) = 2s, and let w be any
unit vector orthogonal to both v and E;(x) x v, so that (sec® 7 )¢ (v,w) = 0. (For
example, v = 2sE;(x) + (1 — 4s?)/2E;(x) and w = (1 — 4s%)!/2E;(x) — 2sEj(x)
work.)

In a similar manner, using and (A.10), it follows that each s-magnetic

Ricci curvature is given by

A1) (R (x0) = 25 25g3(Ei(x), 0) +1 - 55 (Ei(x),0)%,

for all (x,v) € SS°. This time, we have that is positive for all values
s € (0,00) \ {1/2}, while (Ric%;’za)(x, Ei(x)) = 0. See Figure below. This was
predicted by item (ii) of [12, Proposition 7], which states that if (g, o) is any mag-
netic system on a compact manifold M, and ¢ is nowhere-vanishing, thereis sy > 0
such that Ric®” > 0 for all s € (0, s).
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f(s)
A
0.5 -
0 3—5' i 1f5 > 8

FIGURE 2. The graph of the function f: (0,c0) — R given by
f(s) = (RicE"7)(x,Ei(x)) = 2% — 25 +1/2 = 2(s — 1/2)?, sat-
isfying the optimal bound RicE"" > f(s) for every s > 0.

The value sp = 1/2 marks a distinct change in the geometric behavior of the

magnetic system (g°, ). This makes our last result not surprising:
PROPOSITION A.1. The Maiié critical value is c¢(g°, ') = 1/2.

Recall from Section 2| that the dynamics of the magnetic flow on the s-sphere
bundle depends on the value of s > 0. The Mané critical value ¢(g, 0)—defined
for arbitrary magnetic systems (g, o) on any manifold M—marks where the dy-
namical behavior of the magnetic flow changes. To justify Proposition|A.1} we use

two distinct characterizations of ¢(g, o). The first one is that

inf sup ||6x]|, if o is weakly exact,
A.20 C o) = P 0 xeM

400, otherwise,

where p: M — M is the universal covering of M, cf. [30, Section 2]. The second

one, in the weakly exact case, is that
(A.21) c(g,0) = inf{s > 0: As(y) > 0forall y € AM},

where AM is the Hilbert manifold of absolutely continuous loops in M, and the
action functional Ag: AM — R is defined as

T1
(A22) A1) = [ SUAOIP +2) = 0y (1)

with T > 0 being the least period of 7, the norm computed via p*g, and 0 being
any primitive of p*c; see [19, Section 5.1].
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PROOF OF PROPOSITION[ATl As ¢l = d(0'/2) and ||6'/2|| = 1/2, it follows
from that c(g° ¢') < 1/2. As for the reverse inequality, let s € (0,1/2)
and consider the curve 7: [0,271/s] — S given by () = (cos(st),sin(st),0,0).
Then Gg(t) (7(t)) = s implies—via (A22)—that As(y) = (2s — 1)t < 0, due to our
choice of s; by (A:21), this shows that ¢(g°, ') > 1/2. O
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