
The metric structure of compact rank-one ECS manifolds

Andrzej Derdzinski and Ivo Terek

Abstract. Pseudo-Riemannian manifolds with nonzero parallel Weyl tensor

which are not locally symmetric are known as ECS manifolds. Every ECS man-

ifold carries a distinguished null parallel distribution D, the rank d ∈ {1, 2} of

which is referred to as the rank of the manifold itself. Under a natural genericity

assumption on the Weyl tensor, we fully describe the universal coverings of com-

pact rank-one ECS manifolds. We then show that any generic compact rank-one

ECS manifold must be translational, in the sense that the holonomy group of the

natural flat connection induced on D is either trivial or isomorphic to Z2. We

also prove that all four-dimensional rank-one ECS manifolds are noncompact,

this time without assuming genericity, as it is always the case in dimension four.

Introduction and main results

A pseudo-Riemannian manifold of dimension n ≥ 4 whose Weyl tensor is

parallel is referred to as conformally symmetric [6], and it is called essentially con-

formally symmetric (briefly, ECS) [27] if, in addition, it is neither conformally flat

nor locally symmetric. It was shown by Roter that ECS manifolds exist in every

dimension [27, Corollary 3] and that they all have indefinite metric signatures [8,

Theorem 2]. The local structure of ECS manifolds is fully known [10].

Conformal symmetry of (M, g) is one of the natural linear conditions imposed

on the covariant derivatives of the SO(p, q)-irreducible components of its curva-

ture tensor, in the sense of Besse [2, Chapter 16]. The interest in this subject

is reflected in more work by other authors: Cahen and Kerbrat [3, Section 2],

Hotloś [21], Mantica and Suh [25, Section 3], Schliebner [28], and Deszcz et al.

in [17, Sect. 4], [16, Theorem 6.1]. The techniques used in the study of ECS mani-

folds are themselves also of interest, appearing in [18, Example 2.2], [29], [1, The-

orem 3], [4], [5, Theorem 3.9], [22, Lemma 3], [24], [31, proofs of Theorems 1.1

and 4.5] and [30].
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As shown by Olszak [26], every ECS manifold (M, g) carries a distinguished

null parallel distribution D, whose sections are the vector fields corresponding

under g to 1-forms ξ with ξ ∧ [W(v′, v′′, ·, ·)] = 0 for all vector fields v′, v′′. The

rank of D – always equal to 1 or 2 – is referred to as the rank of (M, g) [15]. In the

rank-one case, the focus of this paper, we also call the ECS manifold in question

(∗) translational or dilational, depending on whether the holonomy group

of the natural flat connection induced on D is finite or infinite.

In [13] and [11], compact rank-one ECS manifolds of every dimension n ≥ 5

were constructed as suitable quotients of what we call model ECS manifolds (see

Section 6). All such compact examples are geodesically complete and transla-

tional, but none of them is locally homogeneous. On the other hand, we show

in [14] that, under a natural genericity assumption on the Weyl tensor, quotients of

dilational model ECS manifolds cannot be compact unless they are locally homo-

geneous. More precisely, genericity refers to a certain self-adjoint endomorphism

A of the vector space of parallel sections of D⊥/D, and it means that only finitely

many of its isometries commute with A (see also Section 4 and the end of Section

5). We have recently found [12] compact dilational examples in all odd dimen-

sions n ≥ 5, including locally homogeneous ones. They are all nongeneric and

incomplete.

It is still not known whether a compact ECS manifold can be four-dimensional,

or have rank two.

This paper provides partial answers to the above questions. We start with

structure theorems, calling a rank-one ECS manifold D⊥-complete if all the leaves

of D⊥ are complete relative to the induced connections (this definition makes

sense for any foliation with totally geodesic leaves, such as D⊥ itself), and max-

imally complete if every non-complete maximal geodesic in its universal cover-

ing intersects all leaves of D⊥. Note that maximal completeness implies D⊥-

completeness, while (due to (5.2) below) it follows from completeness.

Theorem A. Any compact D⊥-complete rank-one ECS manifold is necessarily max-

imally complete.

Theorem B. Every generic compact rank-one ECS manifold is both maximally com-

plete and D⊥-complete.

Theorem C. Any simply connected and maximally complete rank-one ECS manifold

is isometric to a model ECS manifold.

The next result is a trivial consequence of Theorems B and C.
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Corollary D. The universal covering of any generic compact rank-one ECS man-

ifold is isometric to a model ECS manifold.

For the Lorentzian signature, Schliebner [28] proved this last conclusion with-

out assuming genericity. From Corollary D, we obtain the following strengthened

version of [14, Theorem C], which refers to the dichotomy (∗):

Theorem E. Every generic compact rank-one ECS manifold is translational, as well

as geodesically complete, and it cannot be locally homogeneous.

Let us point out that Theorem E does not replace [14, Theorem C], but rather

relies on it, since the latter is needed to prove the former. As we point out in

Section 11, Corollary D combined with [11, Theorem 8.1] trivially leads to:

Corollary F. Four-dimensional rank-one ECS manifolds are noncompact.

In other words, if four-dimensional compact ECS manifolds do exist, they

must necessarily be of rank two.

How the paper is organized

Unless stated otherwise, all manifolds, bundles, connections, mappings, and

tensor fields are assumed to be smooth. The text is divided into two parts.

Part I. After Sections 1–3 dealing with preliminaries, in Section 4 we elaborate

on the meaning of genericity. Sections 5 and 6 lay the groundwork for proving

Theorems A and C, summarizing what is already known about the structure of

the universal coverings of compact rank-one ECS manifolds, and describing our

model ECS manifolds. In Section 7 we prove Theorems A–C, adapting to our

situation the proofs of some weaker results from [9] (namely, Lemma 7.3 and

Theorem 7.1 therein). Further details are provided in Appendices A and B.

Part II. Section 8 introduces the transitive-commutation property for a group-sub-

group pair, crucial for understanding the structure of the isometry group of a

locally homogeneous model ECS manifold. The focus on the locally homoge-

neous case is justified by [14, Theorem C], where we prove that a generic dila-

tional compact rank-one ECS manifold must be locally homogeneous. Section 9

presents what we call standard homogeneous rank-one ECS model manifolds, used in

Section 10 to prove Theorem E.
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1. Completeness of connections

Lemma 1.1. If ∇ is a connection on a manifold L, while X and Z are vector fields

along a curve in L defined on an open interval J ⊆ R of the variable s containing 0, and

(1.1) ∇sZ = ∇s∇sX = 0, X(0) = Z(0), [∇sX](0) = −Z(0),

then X(s) = (1− s)Z(s) for all s ∈ J.

In fact, s 7→ X(s) = (1− s)Z(s) satisfies (1.1), and we use the uniqueness of

solutions for systems of second-order ordinary differential equations.

The next Lemma generalizes [9, Lemma 1.4] and is used in Section 7 to prove

Theorem B. In its proof (and later in Appendix A) we adopt the notational con-

vention of [9, end of Sect. 1]: given a variation of curves in a manifold M, that is,

a C∞ mapping (t, s) 7→ x(s, t) from an open set in R2 into M, and a connection

on M, we denote by xs, xt (or, xss, xst, xtss, etc.) its partial (or, partial covariant)

derivatives of orders 1, 2, 3 etc., all of which are vector fields along the variation,

meaning, as usual, sections of the corresponding pullback of TM. When the

connections involved are flat and torsion-free,

(1.2) all such derivatives depend symmetrically on the subscripts.

Lemma 1.2. Let P be a distribution on a manifold L, ∇ be a connection on L, and

assume that:

(a) ∇ is flat and torsionfree,

(b) P is trivialized by a vector space X of complete parallel vector fields,

(c) there is a vector space Y of complete vector fields on L which is isomorphically mapped

via the quotient projection onto a vector space of sections trivializing the quotient

bundle TL/P over L, and parallel relative to the connection induced on TL/P.

Then ∇ is complete.

Proof. The evaluation X → Pz at each z ∈ L is an isomorphism, and so

every ∇-geodesic of L starting tangent to P is complete, such a geodesic being an

integral curve of a complete parallel vector field on L.

Given z ∈ L and v ∈ Y, let y : R→ L be the integral curve of v with y(0) = z.

As ∇vv is always tangent to P, we may choose ζ, η : R→ X with

(1.3) [ζ(t)]y(t) = [∇vv]y(t) = ÿ(t), η̈ = −ζ.

Each η(t) is complete, and the variation R2 3 (t, s) 7→ x(t, s) = esη(t)y(t) has

(1.4) x(t, 0) = y(t), xs(t, 0) = [η(t)]y(t) , xss(t, s) = 0.
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Hence xtt(t, s) = (1− s)[ζ(t)]x(t,s) for all (t, s) ∈ R2, as one sees applying Lemma

1.1 to Z(s) = [ζ(t)]x(t,s) and X(s) = xtt(t, s), with fixed t, the equalities (1.1)

being immediate from (1.2)–(1.4). (Note that ∇[ζ(t)] = 0 and xttss = xsstt = 0.) In

particular, t 7→ x(t, 1) = eη(t)y(t) is a complete geodesic whose initial velocity is,

when η(0) = 0, equal to vz + η̇(0). However, every vector in Tz M is of this form

for suitable v and η, as the values vz realize all values at z in the complementary

subbundle to P spanned by Y, while the values η̇(0) realize all elements of Pz. �

Lemma 1.3. If ∇ is a complete connection on a manifold L and a non-constant

function f : L→ R has ∇d f = 0, then f is surjective.

Namely, along a maximal geodesic, f is an affine function of its parameter.

2. Properly discontinuous Rk-subactions

Three well-known facts are phrased here as a remark for easy reference.

Remark 2.1. First, the composition of two fibrations (including covering pro-

jections) is clearly a fibration. Secondly, if a Lie group G acts on a manifold M̂

with a subgroup Γ acting on M̂ freely and properly discontinuously, then Γ is a

discrete subset of G. Finally, whenever a compact topological manifold is con-

tractible, it consists of a single point. (Otherwise, it would have a nontrivial top

Z2 cohomology group.)

Lemma 2.2. If Rk acts freely on a contractible manifold M̂ and a subgroup Γ of Rk

acts on M̂ properly discontinuously with a compact quotient M̂/Γ, then k = dim M̂, the

action of Rk on M̂ is simply transitive, and Γ is a lattice in Rk. Consequently, M̂ and

M̂/Γ are, respectively, an affine k-space and a k-dimensional torus.

Proof. As Γ is a discrete subset of Rk (Remark 2.1), it forms a lattice in the

subspace Y ⊆ Rk which it spans and, due to commutativity, the action of Rk on M̂

descends to a free action of the torus Y/Γ on M̂/Γ which, according to [19, Corol-

lary 4.2.11, p. 213], turns M̂/Γ into the total space of a principal torus bundle over

some compact base B. By Remark 2.1, the composition M̂→ M̂/Γ→ B is a bun-

dle projection with the fibre Y, and its homotopy long exact sequence [20, The-

orem 4.49, p. 376] implies that B has trivial homotopy groups, being therefore

contractible [23, Lemma 2.1]. Due to Remark 2.1, B consists of a single point and

the resulting relations dim M̂ = dim Y ≤ k ≤ dim M̂, the last one immediate

since the action of Rk is free, yield our assertion. �
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3. Spectra of endomorphisms

Given an endomorphism B of a k-dimensional vector space X, by the spec-

trum of B we mean the unordered system β(1), . . . , β(k) formed by the complex

characteristic roots of B listed with their multiplicities. If B = [dσq/dq]q=1 is the

infinitesimal generator of a Lie-group homomorphism (0, ∞) 3 q 7→ σq ∈ GL(X)

and the spectrum of each σq is qα(1), . . . , qα(k), with qα(j) = qRe α(j)ei(log q)Im α(j),

where α(j) ∈ C do not depend on q, for j = 1, . . . , k, then

(3.1) B has the spectrum α(1), . . . , α(k).

In fact, the complex-linear extension of B to XC has, in some basis, an upper

triangular matrix with the diagonal entries β(1), . . . , β(k) forming the spectrum

of B. Thus σq = exp[(log q)B] has the spectrum qβ(j), j = 1, . . . , k, and, up to a

rearrangement, qβ(j) = qα(j). Hence [β(j)− α(j)] log q ∈ 2πiZ and so β(j) = α(j).

It is a trivial fact from linear algebra that, whether X is finite-dimensional or

not, every family F of eigenvectors of an endomorphism Ψ ∈ End(X) correspond-

ing to mutually distinct eigenvalues is linearly independent. As a consequence:

Lemma 3.1. Given Ψ and F as above, let (xα)α∈A be an indexed family of vectors

such that xα ∈ F whenever α ∈ A. If A0 ⊆ A is a nonempty finite set with the property

that ∑ α∈A0
xα ∈ ker Ψ, then xα ∈ ker Ψ for every α ∈ A0.

Proof. There are positive integers n and k1, . . . , kn, as well as α1, . . . , αn ∈ A,

such that ∑ α∈A0
xα = ∑n

i=1 kixαi , where xαi 6= xαj whenever i 6= j. If λi is the

eigenvalue of Ψ associated with xαi , it follows that ∑n
i=1 kiλixαi = 0, whence

λi = 0. Therefore n = 1 and λ1 = 0. �

The assumption and conclusion of Lemma 3.1 apply to Ψ = q d/dq in the

space of all complex-valued C∞ functions of the variable q ∈ (0, ∞) and the

family F formed by all the power functions (0, ∞) 3 q 7→ qa+bi = qaeib log q with

a, b ∈ R. The proof of Theorem E, in Section 10, uses the following consequence:

(3.2)
the sum of several terms of the form qa+bi can be constant

as a function of q only if each term in the sum is q0 = 1.

4. Generic endomorphisms

Throughout this section, we let (V, 〈·, ·〉) be a pseudo-Euclidean vector space

of dimension m, denote by A the space of all traceless self-adjoint endomorphisms

of V, and say that A ∈ A is generic if only finitely many linear isometries of
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(V, 〈·, ·〉) commute with A. For m = 2, unless A = 0, there are at most four linear

isometries commuting with A, cf. [9, Remark 6.2], and so

(4.1) every A ∈ Ar {0} is generic when m = 2.

In all dimensions m, generic endomorphisms always exist. In fact, any A ∈ A

with m distinct eigenvalues is generic, since its m eigenlines are mutually orthog-

onal and hence nondegenerate. Furthermore,

(4.2) the set of generic endomorphisms is an open and dense subset of A.

Indeed, note that an endomorphism A ∈ A is generic if and only if its isotropy

group GA under the action of O(V, 〈·, ·〉) on A by conjugation is finite. However,

finiteness of GA amounts to its being countable, since GA, given by the poly-

nomial equation CAC∗ = A, is an algebraic variety and so it has finitely many

connected components [32, Theorem 3]. Consequently, genericity of A is equiv-

alent to triviality of its isotropy algebra, which in turn means that the rank of

F(A) equals r, for r = dim O(V, 〈·, ·〉) and F : A→ Hom(so(V, 〈·, ·〉),A) given by

F(A)(B) = [A, B]. We now fix some generic endomorphism A0 ∈ A, some bases

of so(V, 〈·, ·〉) and A, and a nonzero r× r subdeterminant of the matrix represent-

ing F(A0) in these bases. By analyticity, such a subdeterminant is nonzero on an

open and dense subset of A, thus proving (4.2).

In [14, Section 5] we show that a nilpotent endomorphism A ∈ A is generic

if and only if Am−1 6= 0, in which case there is a basis (v1, . . . , vm) of V such that

(4.3)

Avj = vj−1 and 〈vi, vk〉 = εδij for all i, j ∈ {1, . . . , m}, where ε = ±1

is the semi-definiteness sign of 〈Am−1·, ·〉, k = m+ 1− j, and v0 = 0.

In addition, such a basis is also unique up to an overall sign change.

It follows [14, Corollary 5.3] that for every q ∈ (0, ∞),

(4.4)

there are only two linear isometries C,−C of (V, 〈·, ·〉)
with CAC−1 = q2 A and, in a basis satisfying (4.3), they are

given by Cvj = δqm+1−2jvj, for some sign factor δ = ±1.

5. The universal coverings

In this section we fix a rank-one ECS manifold (M, g) of dimension n ≥ 4

with arbitrary indefinite metric signature, and let Γ be the fundamental group of

M. Consider the universal covering projection π : M̃ → M, and set g̃ = π∗g, so

that (M̃, g̃) is a simply connected rank-one ECS manifold on which Γ acts freely

and properly discontinuously by isometries, with quotient M = M̃/Γ. We will

also write D̃ for the Olszak distribution of (M̃, g̃), defined in the Introduction.
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As the Levi-Civita connection of (M̃, g̃) induces a connection on D̃, and the

latter is flat [10, Lemma 2.2(f)], simple connectivity of M̃ allows to us to fix

(5.1)
a null parallel vector field w spanning D̃, leading to a surjective

function t : M̃→ I onto an open interval I ⊆ R, with dt = g̃(w, ·).

In addition, as shown in [15, end of Section 12],

(5.2) the leaves of D̃⊥ coincide with the level sets of t : M̃→ I.

By Lemma 1.3, (M, g) is incomplete when I 6= R. Moreover, as the Olszak distri-

bution is a local geometric invariant of the given ECS metric, t in (5.1) is unique up to

affine substitutions, and so for every γ ∈ Iso(M̃, g̃) there is (q, p) ∈ Aff(R) such

that t ◦ γ = qt + p, giving rise to two homomorphisms:

(5.3) a) Iso(M̃, g̃) 3 γ 7→ (q, p) ∈ Aff(R), b) Iso(M̃, g̃) 3 γ 7→ q ∈ Rr {0}.

The following principle will be repeatedly used:

(5.4)

replacing Γ with a finite index subgroup Γ0 amounts to replacing M

with the quotient M̃/Γ0, which is also compact (as the total space of

a finite-sheeted covering of M) and has M̃ as its universal covering.

Using (5.4), we from now assume that

(5.5) the image of Γ under (5.3-b) is contained in (0, ∞).

In [15, Section 12], we show that, if (5.5) holds and M is compact,

(5.6)
a) there exists a smooth positive function ψ on M̃ such

that the 1-form ψ dt is closed and Γ-invariant, and

b) the vector field w in (5.1) is complete.

With q related to γ as in (5.3-b), these ψ and w satisfy the conditions

(5.7) ψ ◦ γ = q−1ψ and γ∗w = q−1w, for every γ ∈ Γ,

due to the relation γ∗(dt) = q dt and Γ-invariance of ψ dt.

The Levi-Civita connection of (M̃, g̃) induces one on the quotient bundle

D̃⊥/D̃, which is flat by [10, Lemma 2.2(f)]. Thus, M̃ being simply connected, the

real vector space V of parallel sections of D̃⊥/D̃ has the full dimension m = n− 2.

The space V also inherits a natural pseudo-Euclidean inner product 〈·, ·〉 from g̃,

and the Weyl tensor W of (M̃, g̃) induces, cf. [9, Section 4],

(5.8)

a traceless self-adjoint operator A : V → V,

given by A(v + D̃) = W(u, v)u + D̃, where u

is any vector field on M̃ such that g̃(u, w) = 1.
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Clearly, u in (5.8) is unique modulo D̃⊥, so that A(X + D̃) is well-defined and, by

(5.7), γ∗u + D̃ = qu + D̃ for every γ ∈ Γ. Every γ ∈ Γ induces a linear isometry

C : V → V, acting via C(v + D̃) = γ∗v + D̃, which leads to

(5.9) a homomorphism Γ 3 γ 7→ C ∈ O(V, 〈·, ·〉) with CAC−1 = q2 A,

q being associated with γ as in in (5.3-b).

We will say that (M, g) itself is generic if A in (5.8) is generic in the sense of

Section 4. By (4.1), (M, g) is always generic when n = 4.

6. The rank-one ECS models and their isometry groups

Rank-one ECS models are built from the following data, cf. [27]:

(6.1)

an integer n ≥ 4, a pseudo-Euclidean vector space

(V, 〈·, ·〉) of dimension n− 2, a self-adjoint endomor-

phism A ∈ sl(V)r {0}, and a nonconstant smooth

function f : I → R defined on an open interval I ⊆ R.

Then, defining κ : I × R × V → R by κ(t, s, v) = f (t)〈v, v〉 + 〈Av, v〉 and

regarding 〈·, ·〉 as a constant flat metric on V, we consider the simply connected

n-dimensional pseudo-Riemannian manifold

(6.2) (M̂, ĝ) =
(

I ×R×V, κ dt2 + dt ds + 〈·, ·〉
)
,

where we identify dt, ds and 〈·, ·〉 with their pull-backs to M̂.

By [10, Theorem 4.1] (M̂, ĝ) is a rank-one ECS manifold. Calling the mani-

folds (6.2) models is justified by their being locally universal:

(6.3)

every point of a rank-one ECS manifold of dimension n has a neigh-

borhood isometric to an open subset of a manifold of type (6.2), with

one possible exception in (6.1): f may be constant [10, Theorem 4.1].

Our two uses of the term ‘generic’ are mutually consistent:

(6.4)
genericity of (M̂, ĝ) – see the end of Section 5 – is equivalent

to that of the endomorphism A in (6.1) as defined in Section 4.

Indeed, the Olszak distribution D̂ of (M̂, ĝ) – defined in the Introduction – is

spanned by the null parallel coordinate vector field ∂s [27, p. 93], so that the

leaves of D̂⊥ are the R × V factor submanifolds of M̂ in (6.2). This allows us

to isometrically identify (V, 〈·, ·〉) with the space of parallel sections of D̂⊥/D̂,

which, as shown in [15, the lines following (7.3)], also identifies A in (6.1) with A

in (5.8) (where one may set u = 2∂t).
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Central to the discussion are: the 2(n−2)-dimensional symplectic vector space

(6.5)

(E, Ω) consisting of all solutions u : I → V of the second-order equa-

tion ü = f u + Au, where Ω is defined by Ω(u, w) = 〈u̇, w〉 − 〈u, ẇ〉,
and its associated Heisenberg group H: the Cartesian product R×E

with the operation defined by (r, u)(r̂, û) = (r + r̂−Ω(u, û) , u + û).

We also need

(6.6)
the subgroup S of Aff(R)×O(V, 〈·, ·〉) formed by all (q, p, C) having

CAC−1 = q2 A, with qt + p ∈ I and f (t) = q2 f (qt + p) for all t ∈ I.

Each of q, (q, p), and C depends homomorphically on σ = (q, p, C), so that S

acts (from the left) on I, R, and C∞(I, V) via, respectively,

(6.7) i) σt = qt + p, ii) σs = q−1s, iii) (σu)(t) = Cu(q−1(t− p)).

As the notations in (6.7-i) and (6.7-ii) are in conflict, we will adopt only the for-

mer and explicitly write q−1s for the latter, always understanding that q is the

first component of σ. The action of S on C∞(I, V), obviously leaving E in (6.5)

invariant, restricts to an action on E with det σ = q2−n on E for all σ ∈ S, since

(6.8) σ∗Ω = q−1Ω, if σ is regarded as an operator σ : E→ E.

Rephrasing [14, Theorem 4.1], we have:

Theorem 6.1. The isometry group of a model (M̂, ĝ), with (6.1)–(6.2), can be iden-

tified with the set S×H, cf. (6.5)–(6.6), so that Φ = (σ, r, u) acts on (M̂, ĝ) via

Φ(t, s, v) =
(
σt , −〈u̇(σt), 2σv + u(σt)〉+ q−1s + r , σv + u(σt)

)
,

for every (t, s, v) ∈ M̂, and the group operation in S×H becomes

(σ, r, u)(σ̂, r̂, û) =
(
σσ̂ , r + q−1r̂−Ω(u, σû) , u + σû

)
,

for (σ, r, u), (σ̂, r̂, û) ∈ S×H. Thus, Iso(M̂, ĝ) is isomorphic to a semidirect product

S n H, where the diagonal action of S on H is defined via (6.7): σ · (r, u) = (q−1r, σu).

Remark 6.2. We identify H with the normal subgroup {(1, 0, Id)} × H of

Iso(M̂, ĝ), the kernel of the homomorphism Iso(M̂, ĝ) 3 (σ, r, u) 7→ σ ∈ S.

Remark 6.3. In any rank-one ECS manifold, the leaves of D⊥ are totally

geodesic, D⊥ being parallel. In addition, the resulting induced connection on

each leaf is flat. Namely, (6.3) allows us to assume that the manifold has the form

(6.1), with (6.2) except for nonconstancy of f . For i, j ranging over 2, . . . , n − 1,

any linear coordinates xi on V form, along with x1 = t on I and xn = s/2 on R,

a coordinate system on I ×R×V, and then – see [15, the lines following formula
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(7.2)] – the coordinate vector fields ∂n and ∂i span D⊥, while, according to [27, p.

93], Γ•ij = Γ•in = Γ•nn = 0, where • denotes any index.

Remark 6.4. In a rank-one ECS model manifold (M̂, ĝ), let there exist a sub-

group Γ of Iso(M̂, ĝ) acting freely and properly discontinuously on (M̂, ĝ) with

a compact isometric quotient M = M̂/Γ. Using (5.4) we also assume that q > 0

whenever (q, p, C, r, u) ∈ Γ. If the resulting ECS manifold (M, g) is translational,

then all (q, p, C, r, u) ∈ Γ have q = 1, due to [14, formula (3.5-a)]. Also, I = R in

(6.1): otherwise, all (1, p, C, r, u) ∈ Γ acting on M̂ (see Theorem 6.1) would have

p = 0 (since t 7→ t + p sends I onto itself), and so

(6.9)
t would descend to a function without

critical points on the compact manifold M.

Finally, according to [13, formula (3.1)], such translational (M, g) is geodesically

complete but not locally homogeneous.

7. Proofs of Theorems A, B, and C

In the first two proofs below, (M̃, g̃) is the isometric universal covering man-

ifold of the n-dimensional compact rank-one ECS manifold (M, g) in question.

The objects π, Γ, D̃, w, t, I, (V, 〈·, ·〉), and A are all defined as in Section 5.

Recall from the Introduction that (M̃, g̃) is said to be D̃⊥-complete if all the

leaves of D̃⊥ are complete, while its maximal completeness means that every

non-complete maximal geodesic intersects all leaves of D̃⊥. As D̃⊥ and geodesics

in (M̃, g̃) are mapped under π onto their analogs in (M, g), it suffices to prove

Theorem B for (M̃, g̃) rather than (M, g).

Proof of Theorem B. We apply Lemma 1.2 to any given leaf L of D̃⊥ with

the flat connection induced on it (Remark 6.3), setting X = Rw and Y =
⊕m

j=1 Rỹj

for m = n− 2 vector fields ỹj on M̃ defined below, which, due to their Γ-invariance,

will descend to the compact manifold M = M̃/Γ, making each v ∈ Y complete.

We begin by assuming (5.5) and choosing a basis (v1, . . . , vm) of V. Let

K ⊆ (0, ∞) be the image of Γ under (5.3-b). By (5.5), K is either trivial, or in-

finite. In the former case, the image of (5.9) is finite due to genericity of A, and

so its kernel has finite index in Γ. Thus, (5.4) allows us to further assume that Γ

acts trivially on V, via (5.9), and (v1, . . . , vm) can be completely arbitrary. If K is

infinite, (5.9) implies nilpotency of A, and we select a basis (v1, . . . , vm) of V for

which (4.3)–(4.4) holds. As δ in (4.4) depends homomorphically on γ, using (5.4)

we may require that δ = 1 for every γ ∈ Γ.
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In either case, we fix a Riemannian metric g◦ on M and lift (v1, . . . , vm) to

vector fields (y1, . . . , ym) tangent to leaves of D̃⊥ which are π∗g◦-orthogonal to

w. For ψ as in (5.6-a), the vector fields ỹj = ψ2j−1−myj, are Γ-invariant (cf. (4.4)

and (5.7)), which completes the proof. (When K = {1}, we may set ψ = 1.) �

Proof of Theorem A. In view of (5.2) and D̃⊥-completeness of (M̃, g̃) (due

to Theorem B), every maximal geodesic of (M̃, g̃) transverse to D̃⊥ can be para-

metrized by t, as t : M̃ → I restricted to its image is a diffeomorphism onto a

subinterval I′ ⊆ I, cf. [9, Remark 7.2]. To show that I′ = I, we invoke [9, Lemma

7.3] with minimal modifications in its proof, which never uses the assumption

stated there that the metric under consideration is Lorentzian. See Appendix A

for details. �

Proof of Theorem C. Assume that (M̃, g̃) is a n-dimensional simply con-

nected and maximally complete rank-one ECS manifold, and again choose π, Γ,

D̃, w, t, I, (V, 〈·, ·〉), and A as in Section 5. For the function f : I → R such

that R̃ic = (2 − n) f (t)dt ⊗ dt (cf. [15, formula (6.6)]), we consider the model

ECS manifold (M̂, ĝ) built from these ingredients as in (6.2). An isometry be-

tween (M̂, ĝ) and (M̃, g̃) is defined as in the proof of [9, Theorem 7.1], with no

significant changes. Details are given in Appendix B. �

8. The transitive-commutation property

For a group-subgroup pair (G, H), consider the transitive-commutation prop-

erty: the commutation relation on G r H is transitive, that is, the equalities

xy = yx and yz = zy for x, y, z ∈ G r H imply xz = zx.

Lemma 8.1. Let (G, H) be a group-subgroup pair.

(a) (G, H) has the transitive-commutation property if and only if there exists a family K

of Abelian subgroups of G such that {K r H}K∈K is a partition of G r H, and any

two elements of G r H which commute lie in the same K ∈ K.

(b) Whenever (G, H) has the transitive-commutation property and K is as in (a), any

Abelian subgroup of G is contained in H, or in a unique element of K.

Proof. The ‘only if’ part of (a) is obvious. Conversely, since commutation is

now an equivalence relation on G r H, the subgroup K generated by any equiva-

lence class E ⊆ G r H of the commutation relation is Abelian and K r H = E, the

right-to-left inclusion being immediate, the other one clear as elements in K r H

commute with all of E and hence lie in E. This yields (a).
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To prove (b), let N be an Abelian subgroup of G. If there exists an element

x ∈ N r H, we fix the unique subgroup K ∈ K with N r H ⊆ K. Then we must

have N ⊆ K, for if y ∈ (N∩H)rK, then xy ∈ N r H and so y = x−1(xy) ∈ K. �

Remark 8.2. One easily verifies the fact (not needed in our argument) that K

associated with E in the above proof is both the unique Abelian subgroup of G

containing E, and the centralizer of E.

9. Generic homogeneous models

By a standard homogeneous rank-one ECS model manifold (briefly, a standard ho-

mogeneous model), we mean (M̂, ĝ) as in (6.1)–(6.2) with

(9.1) I = (0, ∞) and f (t) =
c2 − 1/4

t2 , where c ∈ [0, 1/2) ∪ (1/2, ∞) ∪ i(0, ∞).

All such (M̂, ĝ) are homogeneous, as pointed out in [7, Remark 1 on p. 172].

(This also follows from Theorem 6.1: one easily sees that the group of all elements

(q, p, C, r, u) ∈ Iso(M̂, ĝ) having p = 0 acts on M̂ transitively.) The factor c2 − 1/4

is just any real constant h 6= 0, written so for later convenience.

Lemma 9.1. Every locally homogeneous rank-one ECS model manifold is isometric

to an open submanifold (a, b)×R×V of a standard homogeneous model (6.2).

Proof. By [13, formula (3.4)], in (6.1), f 6= 0 everywhere and | f |−1/2 is a

linear function of t, so that f (t) = h(t− t0)
−2 for some real h 6= 0 and t0. Under a

suitable coordinate change (t, s) 7→ (qt + p, q−1s), with (q, p) ∈ Aff(R), (6.1)-(6.2)

remain valid, allowing us to assume that t0 = 0 and I ⊆ (0, ∞). �

As a trivial consequence of Lemma 9.1 and (6.3), we obtain:

Corollary 9.2. All locally homogeneous rank-one ECS manifolds are locally iso-

metric to standard homogeneous models.

If a standard homogeneous model (M̂, ĝ) is also generic, cf. (6.4), then, with

notations of (6.5) and Theorem 6.1, elements of

(9.2) the identity component G0 of Iso(M̂, ĝ)

have the form (q, 0, Cq, r, u), where q ∈ (0, ∞), (r, u) ∈ H, cf. (6.5) and Remark

6.2, while Cq : V → V is as in (4.4) with δ = 1. We also consider

(9.3) σq : E→ E defined as in (6.7-iii): (σqu)(t) = Cqu(t/q).

Abbreviating Φ = (q, 0, Cq, r, u) simply to (q, r, u), we may now

(9.4) identify G0 with (0, ∞)×H,
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and, for Φ̂ ∈ G0 and (t, s, v) ∈ M̂, we obtain, from Theorem 6.1 that

(9.5)

i) ΦΦ̂ = (qq̂, r + q−1r̂−Ω(u, σqû), u + σqû),

ii) Φ−1 = (q−1,−qr,−σ−1
q u),

iii) the E-component of the commutator [Φ, Φ̂] is (σq − 1)û− (σq̂ − 1)u,

iv) Φ(t, s, v) =
(
qt , −〈u̇(qt), 2Cqv + u(qt)〉+ q−1s + r , Cqv + u(qt)

)
With 1 denoting the identity operator E→ E, conjugation by Φ has the form

ΦΦ̂Φ−1=
(

q̂ , q−1r̂+(1−q̂−1)r−Ω((1 + σq̂)u, σqû)+Ω(u, σq̂u) , (1−σq̂)u+σqû
)

.

Let us now fix a generic homogeneous model (M̂, ĝ).

By [14, Theorem 6.1], each σq : E → E has the spectrum λ±j = qm+1−2jµ±,

j = 1, . . . , m, for the eigenvalues µ± ∈ C of the operator T with (Tu)(t) = u(t/q),

on the space W of solutions y : (0, ∞) → C to the ordinary differential equation

ÿ = f y. The expression for f in (9.1) gives µ± = q−
1
2∓c, the corresponding

T-diagonalizing (or, T-triangular) basis of W being t 7→ t
1
2±c if c 6= 0 (or, respec-

tively, t 7→ t
1
2 and t 7→ t

1
2 log t when c = 0). Hence

(9.6) the spectrum of σq becomes λ±j = qm+ 1
2−2j∓c, for j = 1, . . . , m.

The assignment (0, ∞) 3 q 7→ σq ∈ GL(E), being a homomorphism, has an

infinitesimal generator B ∈ gl(E), with σq = exp[(log q)B]. By (3.1) and (9.6),

(9.7) the spectrum of B is κ±j = m+
1
2
− 2j∓ c, where j = 1 . . . , m.

Lemma 9.3. For E and B as above, let E0 = ker B and E+ = B(E). Then:

(a) Either E0 is trivial, or dimE0 = 1 and B is diagonalizable with 2m distinct real

eigenvalues. In both cases, E = E0 ⊕ E+ and (σq − 1)(E0) = {0} if q ∈ (0, ∞).

(b) For every q ∈ (0, ∞)r {1} the operator σq − 1 : E+ → E+ is an isomorphism.

Proof. If det B = 0, some κ±j in (9.7) equals 0, so that 2c = ±(2m− 4j + 1)

is an odd integer. Hence, the eigenvalues of B are real and mutually distinct:

j 7→ κ±j is injective for a fixed sign ±, while 2c would be the even integer 2(i− j)

if there existed i and j with κ+j = κ−i . Since σq = exp[(log q)B], this yields (a).

To prove (b), we use (9.6) and consider two cases. If c ∈ R, the resulting

injectivity of a 7→ qa on R for q 6= 1 gives λ±j 6= 1 except – see the last paragraph

– when dimE0 = 1 and (j,±) is the unique pair with κ±j = 0. If c ∈ i(0, ∞),

|λ±j | = qm−2j+1/2, being a half-integer power of q, cannot equal 1 unless q = 1,

and hence λ±j 6= 1 again. �

Lemma 9.4. For a generic standard homogeneous model, the group-subgroup pair

(G0, H) given by (9.2) and (6.5) has the transitive-commutation property of Section 8,
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and its equivalence classes generate subgroups of G0 acting freely on M̂, and isomorphic

to Rk, for k = dimE0 + 1 ∈ {1, 2}.

Proof. Define J : R× E+ × (0, ∞)× E0 → G0 r H by

J(a, z, q, w) =
(

q , a(1− q−1) + Ω(z, σqz + (1 + q−1)w) , (σq − 1)z + w
)

.

It is an obvious consequence of Lemma 9.3, (9.5-i) and (6.8) that

i) J maps R× E+ × [(0, ∞)r {1}]× E0 bijectively onto G0 r H,

ii) J(a, z, · , · ) : (0, ∞) × E0 → G0 is an injective group homomorphism when-

ever (a, z) ∈ R× E+.

By (ii), the images Ka,z of J(a, z, · , · ), with (a, u) ∈ R× E+, are connected Abeli-

an Lie subgroups of G0, isomorphic to R (if E0 = {0}) or R2 (when dimE0 = 1),

while, due to (i), the family {Ka,z r H : (a, z) ∈ R× E+} is a partition of G0 r H.

We now define F : G0 r H → R× E+ by F(J(a, z, q, w)) = (a, z) when q 6= 1,

which makes sense according to (i). Thus, F associates with Φ ∈ G0 r H the

unique (a, z) for which Φ ∈ Ka,z. It follows that

iii) Φ, Φ̂ ∈ G0 r H commute if and only if F(Φ) = F(Φ̂).

In fact, the ‘if’ part is obvious as Φ and Φ̂ then lie in the same Abelian subgroup

of G0. By (9.5-i), two elements (q, r, u), (q̂, r̂, û) ∈ G0 commute if and only if

(9.8) r + q−1r̂−Ω(u, σqû) = r̂ + q̂−1r−Ω(û, σq̂u) and (σq − 1)û = (σq̂ − 1)u.

We now prove the ‘only if’ part of (iii) assuming – see (i) – that J(a, z, q, w)

commutes with J(â, ẑ, q̂, ŵ) and q 6= 1 6= q̂. The second equality of (9.8) with

(u, û) = ((σq − 1)z + w, (σq̂ − 1)ẑ + ŵ) yields z = ẑ, since – by Lemma 9.3(b) – the

operators σq − 1 annihilate E0, and form a family of mutually commuting auto-

morphisms when restricted to E+ (the latter since q 7→ σq is a homomorphism).

As z = ẑ, the first equality of (9.8), for (u, û) chosen above, and (r, r̂) replaced

by the R-components of J(a, z, q, w) and J(â, ẑ, q̂, ŵ), easily yields a = â, and (iii)

follows. The conclusion is now immediate from Lemma 8.1(a). �

10. Proof of Theorem E

We fix a generic compact rank-one ECS manifold (M, g). By Corollary D, the

universal covering of (M, g) is isometrically identified with a model (M̂, ĝ) as in

(6.1)–(6.2), and then M̂/Γ = M, as at the beginning of Section 5, where (5.4) also

allows us to assume that Γ ⊆ G0, cf. (9.2).

By Remark 6.4, the “translational” conclusion about (M, g), which we prove

in the subsequent paragraphs, implies the other two assertions of Theorem E.
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Next, suppose that, on the contrary, our (M, g) is not translational. The di-

chotomy (∗) in the Introduction and [14, Corollary D] imply that (M̂, ĝ) is locally

homogeneous. Lemma 9.1 now allows us to write M̂ = (a, b) ×R× V. Then,

(a, b) = (0, ∞), or else all elements Φ = (q, r, u) ∈ Γ, acting on M̂ via (9.5-iv),

would have q = 1 (as t 7→ qt maps (a, b) onto itself), leading to (6.9).

The group Σ = Γ ∩H, cf. Remark 6.2, is the kernel of the homomorphism

(10.1) Γ 3 (q, r, u) 7→ q ∈ (0, ∞).

As an immediate consequence of [14, Lemma 3.2(b) and (f) in Section 4] and [14,

Theorems A, B, and Lemma 3.1],

(10.2) Σ∩ ({1}×R×{0}) is trivial and the image of (10.1) is dense in (0, ∞).

The last line in (6.5) now has three consequences. First, Σ 3 (1, r, u) 7→ u ∈ E

is a homomorphism, and its injectivity due to (10.2) implies that Σ is Abelian.

Secondly, the image Λ of this last homomorphism spans a subspace L of (E, Ω)

which is isotropic, in the sense that Ω = 0 on it. Finally, R× L is an Abelian

subgroup of H (see Remark 6.2) containing Σ, and its group operation coincides

with the addition in the vector space R× L. Applying Remark 2.1 to Σ rather

than Γ and the subspace Z of R×L spanned by Σ, we see that

(10.3)
Σ is a lattice in Z and either Z = R×L, or Z is

a hyperplane in R×L transverse to R×{0}.
Any (q, r, u) ∈ Γ leads to the conjugation mapping Cq,r,u : H→ H given by

(10.4) Cq,r,u(r̂, û) =
(

q−1r̂− 2Ω(u, σqû), σqû
)

,

cf. Remark 6.2 and the lines after (9.5) with q̂ = 1. This makes Cq,r,u a linear

endomorphism of R× E and, by (9.6), for Λ and Z as in the lines before (10.3),

(10.5)
the spectrum of Cq,r,u consists of q−1 and the spectrum of σq,

while Cq,r,u(Σ) = Σ , so that σq(Λ) = Λ and Cq,r,u(Z) = Z .

From (10.5), due to (9.4), (9.3), and the denseness conclusion in (10.2),

(10.6) σq(Λ) = Λ and σq(L) = L for every q ∈ (0, ∞).

It follows that rank Σ ≤ 1. Namely, by (10.5) and (10.4), each Cq,r,u ∈ gl(R× E)

leaves invariant the subspaces Z and R× {0}, as well as Z′ = Z ∩ (R× {0}), so

that it descends to a linear endomorphism of the quotient Z/Z′ and, in view of

(10.4), the isomorphism Z/Z′ → L induced by the projection (r, u) 7→ u makes

the latter endomorphism correspond to ζq : L → L arising as the restriction

of σq to L. The spectrum of Cq,r,u acting on Z thus equals the spectrum of ζq

in L, augmented – only when Z = R × L in (10.3) – by the eigenvalue q−1.
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At the same time, the infinitesimal generator of the Lie-group homomorphism

(0, ∞) 3 q 7→ ζq ∈ GL(L), cf. (10.4), being the restriction to L of B appearing in

(9.7), has the spectrum α(1), . . . , α(k) which is a part of that in (9.7). For reasons

stated three lines after (3.1), ζq then must have spectrum qα(1), . . . , qα(k). Thus, the

spectrum of Cq,r,u : Z→ Z consists of

(10.7) qα(1), . . . , qα(k) and, possibly, q−1,

which are complex powers of q with exponents not depending on q, so that, as

Cq,r,u(Σ) = Σ in (10.5), the trace of Cq,r,u : Z → Z, being integer-valued and

continuous in q, must be constant. By (3.2), the eigenvalues (10.7) are all equal to

1, which excludes q−1 and, due to continuity in q, gives α(1) = . . . = α(k) = 0.

From Lemma 9.3(a), it now follows that k = rank Σ ≤ 1.

However, the conclusion that rank Σ ≤ 1 further implies that Γ is Abelian.

Indeed, when Σ is trivial, injectivity of (10.1) makes Γ isomorphic to a subgroup

of (0, ∞), while if rank Σ = 1, we fix a generator (1, b, w) of Σ, noting that (10.2)

gives w 6= 0 and σqw = w for every q ∈ (0, ∞). Thus, the commutator [γ, γ̂] ∈ Σ

of any two elements γ = (q, r, u) and γ̂ = (q̂, r̂, û) in Γ equals (1, `b, `w), for some

` ∈ Z. By (9.5-iii), (σq − 1)û− (σq̂ − 1)u = `w ∈ E0 ∩ E+ = {0}, cf. Lemma 9.3(a).

Consequently, ` = 0 and [γ, γ̂] = (1, 0, 0) as required.

Now comes the contradiction: if Γ were Abelian, Lemmas 8.1(b) and 9.4

would give Γ ⊆ H or Γ ⊆ K for some subgroup K of G0 isomorphic to Rk,

k ∈ {1, 2}, acting freely on M̂. The former case leads to (6.9), while the latter

contradicts Lemma 2.2 as dim M̂ > 2.

11. The four-dimensional case: proof of Corollary F

Assume, on the contrary, that there exists a four-dimensional compact rank-

one ECS manifold (M, g), and let Γ be its fundamental group. As (M, g) is generic

– see the very end of Section 5 – it must be translational by Theorem E, while

Corollary D allows us to identify its universal covering with a model (M̂, ĝ) as

in (6.1)–(6.2), so that Γ ⊆ Iso(M̂, ĝ) and M̂/Γ = M. Applying (5.4) if necessary,

we use Remark 6.4 to conclude that I = R in (6.1) and that every γ ∈ Γ has the

form γ = (1, p, Id, r, u), with p ∈ R and (r, u) ∈ H (cf. Theorem 6.1). Here, the

O(V)-component of γ is assumed to be trivial due to genericity combined with

(5.4). The image P of the homomorphism Γ 3 γ 7→ p ∈ R is infinite cyclic as its

being dense (or, trivial) would imply constancy of f via the last condition in (6.6)

(or, lead to (6.9)). While G = {(1, p, Id, r, u) ∈ Iso(M̂, ĝ) : p ∈ P and (r, u) ∈ H}
contains Γ as a subgroup, no subgroup of G can act on M̂ freely and properly

discontinuously with a compact quotient, as shown in [11, Theorem 8.1].
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Appendix A. How [9, Lemma 7.3] leads to Theorem A

With u in [9, Lemma 7.3] being w in (5.1), we fix y : I → M̃ parametrized by

t (see [9, Remark 7.2]) and consider the differential equation

(A.1) ∇ẏ∇ẏz + R(ẏ, z)ẏ +∇ẏẏ = −Q(z)w
4

,

where Q(z) = 3〈A(z + D̃), z + D̃〉· + 3 f g̃(z, z)· + 2 ḟ g̃(z, z), imposed on sec-

tions z of D̃⊥ along y. Here 〈·, ·〉 stands for the inner product on the vector

space V of parallel sections of D̃⊥/D̃. For a maximal solution z of (A.1), we set

x(t, s) = expy(t) sz(t), and observe that z and x are now defined on I and I ×R

instead of R and R2 as in [9]: namely, a solution z0 of∇ẏ∇ẏz+ R(ẏ, z)ẏ+∇ẏẏ = 0

is clearly defined on all of I, while for a function µ : I → R with µ̈ = Q(z0)/4,

z = z0 − µw is a solution to (A.1). With the subscript convention referred to

in (1.2), the vector field v along x having vs = 0 for all (t, s) and v = ∇ẏẏ for

s = 0 satisfies the conditions xtt + (s− 1)(v−Q(xs)w/4) = 0 and [Q(xs)]s = 0:

they are precisely [9, formula (9)], being established here by the argument given

there repeated verbatim. It follows that I 3 t 7→ x(t, 1) ∈ M̃ is a maximal geodesic,

which can be chosen to realize any t-normalized initial velocity.

Appendix B. From [9, Theorem 7.1] to Theorem C

Due to maximal completeness and (5.2), we may fix a maximal null geodesic

x : I → M̃ parametrized by t (cf. [9, Remark 7.2]), and define a parallel field Π of

Lorentzian planes along x by Πt = Rẋ(t)⊕ D̃x(t). As D̃⊥x(t) = Π⊥t ⊕ D̃x(t) and V

is the space of parallel sections of the quotient bundle D̃⊥/D̃, for every t ∈ I we

have an isomorphism V → D̃⊥x(t)/D̃x(t) → Π⊥t , the image of v ∈ V under which

will be denoted by v(t). Therefore, for each t ∈ I and w as in (5.1),

(B.1) R×V 3 (s, v) 7→ v(t) +
swx(t)

2
∈ D̃⊥x(t) is an obvious isomorphism.

By [10, Lemma 5.1], F : M̂ → M̃ given by F(t, s, v) = expx(t)(v(t) + swx(t)/2)

has F∗g̃ = ĝ, and so, due to the italicized statement following (5.2), F∗D̂ = D̃. As

the leaves of D̃⊥ are simply connected – see [15, Theorem B] – and their induced

connections are flat (Remark 6.3), each slice {t} × R × V is diffeomorphically

mapped under F onto the leaf of D̃⊥ passing through x(t), so that injectivity

of (B.1) yields the one of F. Finally, the definition of maximal completeness and

surjectivity of (B.1) imply that F is surjective as well. Hence, F is a global isometry.
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